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CSA-Net: Complex Scenarios Adaptive Network for
Building Extraction for Remote Sensing Images

Dongjie Yang , Xianjun Gao , Yuanwei Yang, Minghan Jiang, Kangliang Guo, Bo Liu , Shaohua Li ,
and Shengyan Yu

Abstract—Building extraction is significant for the intelligent
interpretation of high-resolution remote sensing images (HRSIs).
However, in some complex scenarios where the features of the
building and its adjacent ground objects are similar, the current
segmentation model cannot distinguish them effectively. Therefore,
we propose a complex scenarios adaptive network (CSA-Net) for
building extraction. CSA-Net is comprised of the hierarchical-
context feature extraction (HFE) module, the global-local feature
interaction (GFI) module, and the multiscale-adaptive feature fu-
sion (MFF) structure. The HFE obtains high-level semantic in-
formation at different levels and fuses it with low-level detailed
information by skipping connections to enhance the reasoning
and perception ability of building structure in complex scenes.
Then, the GFI acquires global-local features of buildings and their
surrounding environment via dense multiscale dilated convolution.
The information can be shared through efficient interaction among
features, and irrelevant backgrounds can be suppressed. Then,
in the up-sampling process, the MFF alleviates the feature loss
and enhances the robustness of the network by using feature fu-
sion after layer-by-layer adaptive weight allocation. Experiments
show that CSA-Net outperforms other comparable methods, with
intersection over union values of 79.99%, 89.75%, and 73.59%,
respectively, on the Google Arlinton, WHU, and Massachusetts
building datasets. The visual comparison results demonstrate that
our method can enhance the accuracy of building extraction in
complex scenes. Meanwhile, the efficiency results indicate our ap-
proach strikes a balance between calculation parameters and time
and achieves high levels of efficiency.
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I. INTRODUCTION

THE automatic extraction of buildings from high-resolution
remote sensing images (HRSIs) is widely used in urban

planning [1], [2], population estimation, and digital city im-
plementation [3]. In fact, building scenarios are complex and
diverse. For example, some buildings are surrounded by roads
and squares of similar spectra and texture features, leading to
false distinguishing of buildings. In addition, trees and shadows
around the building also block the building information in HRSI,
affecting the integrity of the building extraction. Therefore, the
automatic extraction of buildings in complex scenes is still very
challenging.

Traditional building extraction primarily uses pixel-based or
object-based classification methods [4]. By manually designing
and selecting features, the classifier is trained to classify build-
ings [5]. Postprocessing is designed to improve classification
accuracy based on region growth, morphological processing, and
other methods [5]. However, these methods cannot be adaptively
adjusted as the environment changes. Therefore, the application
of these methods is minimal, and it is challenging to achieve
high-precision and efficient building extraction in large-scale,
complex scenes [6].

Convolutional neural networks (CNNs) can automatically
obtain multilevel features from low to high, thereby reducing the
impact of artificial factors on the feature acquisition process [7],
[8], [9], [10], [11], [12], [13], [14], [15], [16], [17]. The end-to-
end pixel-level semantic segmentation method, such as CNNs
[18], [19], fully convolutional network [20], and U-Net [21],
has become the prevailing framework for deep learning-based
building extraction in HRSI [22]. To improve the accuracy of
building semantic segmentation, researchers often created more
dataset [23], [24], [25], enhance advanced network architecture
[26], and develop building characterization modules [27], [28].
Although the above methods have obtained remarkable achieve-
ments in building segmentation, the following challenges remain
in complex scenes

The first challenge is that it is difficult to extract effective
discriminative features when the spectral and texture feature
information of buildings and adjacent nonbuildings is contin-
uous. As shown in Fig. 1(a), the parking lot around the building
is easily recognized as a building. Meanwhile, white objects
with different spectra and textures inside the building roof
are easily recognized as nonbuildings due to the limitations
of local features. Multiscale feature extraction and attention
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Fig. 1. Complex building scenes from the GA dataset. The red boxes mark
areas that are challenging for building extraction in HRSI. (a) Spectrum and
texture of the neighborhood and interior parts influence building identification.
(b) Buildings are easily affected by trees and shadows.

mechanisms [22] are explored to capture more local and global
feature information. However, these methods cannot effectively
distinguish complex buildings from adjacent nonbuildings with
similar features.

The second challenge is occlusion by trees or shadows. As
shown in Fig. 1(b), the shadows of trees or buildings will block
partial building information, resulting in incomplete building
extraction. Existing methods generally enhance detailed infor-
mation by focusing on boundaries [29] or generating building
vectors from corner points [30]. They always rely on prior
parameter settings. However, in complex scenes, the appeal
methods are difficult to effectively extract the occluded part of
the building.

Aiming to solve the building extraction challenges in complex
scenes, we propose a complex scenarios adaptive network, CSA-
Net. The main contributions are illustrated as follows.

1) We designed the global-local feature interaction (GFI)
module for the first challenge. The GFI module mainly
comprises the global-local feature extraction (GFE) mod-
ule and the efficient channel interaction (ECI) structure.
The GFE uses string and parallel dilated convolution archi-
tecture to obtain more abundant local and global features
of buildings and the surrounding environment. The ECI
shares global-local feature information through channel
interaction. Finally, building features in complex scenes
are enhanced by assigning higher weights to buildings in
global-local features.

2) We designed the hierarchical-context feature extraction
(HFE) module for the second challenge. The HFE uses
two hierarchies features as input to obtain richer high-level
features, such as shape, structure, and other abstract fea-
tures. Meanwhile, we conduct an interactive combination
of input information to reduce noise, such as inaccurate
edge or occluding information, and suppress background
noise. Thus, the HFE helps the network to extract the
building more completely by enhancing the reasoning and
perception of the overall structure of buildings.

3) We designed the multiscale-adaptive feature fusion (MFF)
structure to adapt to complex scenes. Since the critical
feature information received by the GFI and HFE modules
is partly lost during the upsampling process, the informa-
tion recovery of complex scene features is unstable. The
MFF supplements features progressively from the bottom

to the top to mitigate the loss of critical feature informa-
tion. The transmission of essential semantic information
is strengthened by assigning weights to different layers.

The rest of this article is organized as follows: Section II
summarizes some previous research results and problems
with building extraction according to the research direction.
Section III presents the GFI, the HFE modules, and the MFF
structure in CSA-Net. Section IV presents the experimental
results. Section V concludes the article.

II. RELATED WORK

In this section, we will briefly introduce the related work of
building extraction by traditional and deep learning methods.

A. Traditional Building Extraction Methods

The traditional building extraction method can usually be
divided into two steps: feature information extraction and classi-
fication to distinguish buildings from the background [5], [31],
[32]. In feature extraction, many manually designed features
were explored. Huang and Zhang [33] introduced morpholog-
ical index MBI. Turker and Koc-San [34] utilized building
features such as morphology and texture. Zhang et al. [35]
used various features like spectrum and texture to obtain more
building information. In addition, some scholars have also tried
to utilize nonbuilding features, such as the normalized difference
vegetation index, to distinguish buildings and backgrounds [36].
Further, by inputting the extracted features into a classifier, such
as the support vector machine [37] or artificial neural networks
[38], the classifier can be trained for building classification [39],
[40]. However, traditional methods are affected by artificial
prior knowledge, and when faced with building extraction in
large-scale and complex scenes, the results are challenging to
meet actual needs [41].

B. Deep Learning Building Extraction Methods

Numerous scholars have researched and explored building
extraction based on deep learning [42], [43], [44], [45], [46],
[47], [48], [49]. They mainly explored building extraction meth-
ods from three aspects: multilevel feature extraction, GFE, and
upsampling optimized structure. This section will briefly review
the relevant work in these three directions.

1) Multilevel Feature Extraction: Contextual feature supple-
mentation benefits semantic segmentation [50]. U-Net [21] sup-
plements contextual information by skipping connection. Seyed-
hosseini and Tasdizen [51] optimized the network to segment
images of different resolutions by obtaining features at different
hierarchies. However, features at different levels are frequently
different. The irrelevant noise weakens the semantic segmenta-
tion ability of the network [52]. For example, high-level features
contain information such as occlusion, edges, corners, contours,
and shapes. The structure and shape features can enhance the rea-
soning ability of regular buildings. However, inaccurate edge and
occlusion information will also affect the complete extraction
of buildings. Therefore, some researchers suppress irrelevant
background noise by introducing attention [53], [54], [55], [56].
Wang et al. [57] adopted a two-dimensional importance weight
map to reweight the original features after learning a space-wise
importance score using an encoder-decoder structure. Chen et al.
[23] added an attention mechanism to obtain more refined fea-
tures during image size restoration. Gong et al. [58] introduced
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a context–content aware module (C2AM) to acquire contextual
information and enhance building dependencies. The above
method proves the importance of multilevel feature extraction
for semantic segmentation. However, previous models still lack
efficient extraction of high-level features, resulting in difficulty
in describing the complete inference of complex scenes and
increasing calculation parameters.

2) Global-Local Feature Extraction: The effective extrac-
tion of building information relies on the efficient mining and
comprehensive utilization of both global and local data from
HRSI [59], [60]. ParSeNet [61] provides a new direction for
subsequent semantic segmentation by introducing global con-
cepts. However, in real scenarios, extracting global features
places higher requirements on the receptive field [62]. Some
scholars improve the receptive field through dilated convolution
to obtain more global–local features [22], [63], [64]. Neverthe-
less, the characteristics are frequently discontinuous. PSPNet
[65] utilizes the pyramid pooling module to get more complete
global features. However, the receptive field of the network is
still limited. Transformer introduces a novel approach for global
feature acquisition by establishing global feature correlation
through self-attention [66], [67]. Researchers are attempting
to address the challenge of effectively capturing various global
features in CNN by including vision transformer (ViT) models in
classification tasks [59], [68], [69]. Nevertheless, the substantial
computational expense restricts the use of ViT in classification
problems. Furthermore, ViT presents challenges in efficiently
obtaining features of the local context. Liu et al. [70] obtained
rich global–local building features through three parallel ar-
chitectures. However, when the network acquires additional
global features, it unintentionally brings more background noise.
Therefore, GFE networks are frequently required for enhanced
representation of building aspects via combining attention [44].
Liu et al. [46] combine attention and multiscale nested char-
acteristics to more effectively represent multiscale features and
spatial connections between buildings and surrounding areas. In
summary, fusing global and local features is a practical building
extraction method, but it is still ineffective for accurate feature
extraction for complex scenes of buildings. ECA [71] efficiently
acquires important features through feature interactions within a
1D convolution, and such interactions are crucial for enhancing
the extraction of compelling discriminative features in complex
building scenes. Therefore, inspired by ECA [71] and HDC
[64], we constructed the GFI module. The GFI mainly uses
the GFE module to extract GFE by successive parallel dilated
convolutions. Besides, the GFI uses the original features to
lessen the effects of feature discontinuity during global feature
extraction. Finally, the GFI performs adaptive one-dimensional
convolution via the ECI structure to interactively manipulate the
global-local fusion features, thus enhancing the discrimination
of building features in complex scenes.

3) Upsampling Optimized Structure: Networks with encod-
ing and decoding structures will suffer the loss of features
during upsampling [72]. SegNet [73] obtains the maximum
value position through the MaxPooling operation and restores it
by upsampling to increase the accuracy. The above methods fail
to fully utilize the features generated by each layer during the
upsampling process. FPN [74] enhances the feature utilization of
each layer in the upsampling process by predicting and perform-
ing feature fusion layer by layer from the bottom to the top layer.

TABLE I
HFE ALGORITHM

Ji et al. [75] enhanced the upsampling process in a scale-invariant
manner and applied it to building extraction. Inspired by distil-
lation, Ma et al. [76] improved the inference speed by removing
the first layer of upsampling. However, simple deletion may
also lead to losing some critical information. Thus, in complex
scenes, utilizing the features of each upsampling layer efficiently
will help alleviate the loss of crucial information.

III. METHODOLOGY

A. Model Overview

The CSA-Net is proposed for better building extraction in
complex scenes. Fig. 2 shows the overall structure of CSA-Net.
It consists of the encoder, the HFE module, the GFI module, the
MFF structure, the decoder, and the skip connections.

B. Hierarchical-Context Feature Extraction

Inspired by ECA-Net [71] and CHM [51], we design the HFE
module to fully leverage crucial structural features and augment
the discernibility amidst intricate backgrounds. Fig. 3 and Table I
show the structure and algorithm of HFE, respectively. Specifi-
cally, we first carry out global average pooling of two hierarchies
features x1, x2 ∈ RC×W×H in the same downsampling stage
to obtain aggregate features y1 and y2. Then, 1D convolution
C1D is used to interact with k channels adjacent to y1 and
y2, respectively, and weights W j and Wm are assigned to the
channels, and the mixed weight ω is obtained by merging the
interaction results as follows:

ω = σ(C1Dk(y1) + C1Dk(y2))

= σ

⎛
⎝

k∑
j=1

W jyji +

k∑
m=1

Wmymn

⎞
⎠ , yji ∈ Ωk

i , y
m
n ∈ Ωk

n (1)

where y1 and y2 represent the result of fGAP(·) (global averaging
pooling) for input features x1, x2 ∈ RC×W×H .C1D(·) denotes
1D convolution.σ is the sigmoid activation process.Ωk

i indicates
the set ofk adjacent channels of yi [71], andk is calculated in (2).
W j and Wm represent the weight of the corresponding channel

k =
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+
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Fig. 2. Overall structure of CSA-Net. The HFE is at the skip connection, the GFI is mosaiced with the middle of the model, and the MFF is fused in the image
restoration stage.

whereC is the channel dimension, |t|odd is the nearest odd
number of t. In this study, we kept γand b at 2 and 1, respectively,
throughout all the experiments.

Finally, given that deeper layers contain richer high-level
semantic information, the fusion weight ω is dot-multiply with
the deeper feature input x2 as follows:

fHFE = x2ω (3)

where fHFE is the output of the HFE module, x2 ∈ RC×W×H

represents deeper feature input, and ω is the fusion weight.
With the HFE, important structural features can be guided

by jump connections to lower-level features and enhance the
derivation of building integrity.

C. Global-Local Feature Interaction

To discern building from nonbuilding areas by leveraging the
abundant high-level features of the underlying layer, we explored

the GFI module inspired by HDC [64] and ECA-Net [71]. As
shown in Fig. 4 and Table II, the GFI module consists of two
main parts: the GFE module and the ECI structure.

Initially, the GFE module is employed to extract com-
prehensive global-local features. The GFE, defined in (4),
comprises five parallel structures. To obtain rich and relatively
continuous global-local feature information, the first three par-
allel structures incorporate continuous dilated convolution, with
dilation rates set at (1, 2, 3), (1, 3, 5), and (1, 3, 9), respectively.
The fourth structure utilizes global average pooling to comple-
ment channel-level features. To mitigate the feature discontinu-
ity caused by dilated convolution, the fifth structure is employed
to reintegrate original data and supplement the features

fGFE = ((φ3
3φ

2
3φ

1
3θ

1
1(x)) + (φ5

3φ
3
3φ

1
3θ

1
1(x))

+ (φ9
3φ

3
3φ

1
3θ

1
1(x)) + (φ1

1fGAP(θ
1
1(x))) + θ11(x))θ

1
1

(4)
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Fig. 3. Structure of the HFE module.

TABLE II
GFI ALGORITHM

where fGFE represents the result of GFE. φd
K denotes dilated

convolution and batch normalization processing. K is the size
of the convolution kernel, and d is the dilate rate. θ11 represents
a convolution operation with a convolution kernel size of 1× 1.
fGAP(·) represents a global average pooling operation and x ∈
RC×W×H is an input feature.

The weight ω through the ECI will then be used to rein-
force the area of concern. Specifically, through fGAP(·), the
global-local features obtained by the GFE are fused to get ya.
Adaptive 1D convolution is employed to integrate the features
of k channels adjacent to ya, with a heightened emphasis on
the building area by assigning a higher weight. The output is
denoted as ωa. However, fGFE is not completely continuous.
Consequently, the original input feature x for global average
pooling is used to derive yb, followed by interactive operations
to yield the weighted result ωb. Finally, ωb is employed to
complement ωa, resulting in the acquisition of the fused weight
ω as follows

ω = σ(C1Dk(fGAP(fGFE(x))) + C1Dk(fGAP(x)))

= σ(C1Dk(ya) + C1Dk(yb)) = σ (ωa + ωb) (5)

whereω is the fused weight,C1Dk(·) is 1D convolution.fGAP(·)
represents global average pooling operation.x ∈ RC×W×H de-
notes input feature. fGFE(·) indicates the GFE process. k is
the adaptive convolution kernel, calculated in (2) [71]. ωa is
the weight of ya after the interaction. ωb is the weight of yb after
the interaction. σ is the sigmoid activation function.

Finally, fGFE obtained after the GFE module is dot-multiplied
by the global-local interactive fusion weight ω, and the feature
fGFI extracted by the GFI module is output

fGFI = ωfGFE(x) (6)

where fGFI is the result of the GFI module. ω is the weight.
fGFE(·) is the GFE process.x ∈ RC×W×H is the input feature.

D. Multiscale-Adaptive Feature Fusion

In recovering feature maps through the U-shaped structure,
encompassing layers from low to high, and adaptively amalga-
mating crucial features from each layer, we introduce the MFF
structure. This design enhances the robustness of the network for
extracting buildings within complex scenes through an extended
fusion approach.

Fig. 5 illustrates the MFF structure. Inspired by FPN [74],
the MFF aims to fully leverage the features of each layer during
the upsampling to mitigate the loss of crucial features. Initially,
the MFF employs effective attention mechanisms to eliminate
interference. Moreover, a 1 × 1 convolutional layer and a sig-
moid function, denoted by the purple arrows, are positioned
at the end of each output path to generate predictions. The
anticipated results, excluding the final level, undergo double up-
sampling. The blue arrow signifies the merging of the upsampled
result with the output from the skip connection. As demonstrated
by the orange arrows, the output of each level is subjected to a
loss function with distinct weights and is then restored to the
original image size through upsampling.

E. Multilevel Loss Function

The loss function plays a pivotal role in quantifying the dispar-
ity between the actual value and the predicted value, significantly
influencing the training of neural networks. The loss functions
for building extraction is binary cross entropy loss (BCE loss)
[77] as follows

LB = − 1

N

N∑
i=1

(Gi × log pi + (1−Gi)× log(1− pi)) (7)

where N is the total number of pixels in the picture. LB is
the BCE loss. Gi represents whether the ith pixel belongs to
a building or not.Gi = 1 if it is part of a building; otherwise,
Gi = 0. pi is the likelihood that a building will appear as the ith
pixel in the anticipated outcome.

Given that CSA-Net employs the MFF structure and forecasts
outcomes at each level of the expansive route, the ultimate loss
function must be established by harmonizing the loss functions
associated with each expected result. The LCSA−Net is defined
as

LCSA−Net =

4∑
n=1

ωnLn. (8)
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Fig. 4. GFI overall structure. (a) Structure of the GFI. (b) Structure of the GFE.

Fig. 5. Architecture of the MFF.

Fig. 6. Some samples of the WHU and Massachusetts datasets.

where Ln represents the loss function of CSA-Net from the
bottom of the network to the output level n at the final output,
and ωn represents the weight of the output level n.

IV. EXPERIMENTS AND RESULTS

A. Experimental Datasets Introduction

The GA, the WHU [78], and the Massachusetts [79] dataset
were the three building datasets we employed in this experiment.
Table III provides the detailed dataset configuration.

1) Public Dataset: Fig. 6 shows some samples of the WHU
and Massachusetts datasets. The WHU dataset [78] has a resolu-
tion of 0.3 mers and an area of 450 km2. A total of 8189 images
with a size of 512 × 512 are included. We downsized all images
from 512 × 512 to 256 × 256. Finally, it contains 18 944, 4144,
and 9664 images in training, validation, and test sets.

The Massachusetts dataset constructed by Mnih [79] has a
resolution of 1m, a size of 1500 × 1500, and a total of 151
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Fig. 7. Information of GA dataset. (a) and (b) Overviews of the GA dataset, with the light red portion being the test set. (c) Displays some samples from the GA
dataset.

TABLE III
DATASET CONFIGURATION

images. We cropped all of the images to a size of 256 × 256.
We have 360 images for testing, 144 for validation, and 4392
for training.

2) Google Arlinton Building Dataset: To better test the gen-
eralization ability of our model in practical applications, we
created a Google Arlinton (GA) dataset, as shown in Fig. 7.
The GA is collected from Northeast Arlington and obtained
via Google Earth with a resolution of 0.46 m. We divided the
whole image into 7644 RGB images of the same size 256 × 256.
Concurrently, they are separated into 2000 test sets, 532 valida-
tion sets, and 5112 training sets. Fig. 7 depicts the test set with
a red dashed box. Because the buildings in the test area are
relatively concentrated, and the building scenes contain more
tree occlusion, we can better evaluate the generalization of the
model in complex scenes.

B. Implementation Details

We apply the TensorFlow 1.14 and Keras 2.24 frameworks to
implement the CSA-Net and nine additional contrast designs.
Additionally, this computer has NVIDIA RTX 2080 Ti GPUs
for training acceleration. The parameter settings are shown in
Table IV.

Five metrics are defined as follows:

OA =
TP+ TN

TP + TN+ FP + FN
(9)

Precision =
TP

TP + FP
(10)

Recall =
TP

TP + FN
(11)

TABLE IV
PARAMETER SETTINGS

F1−score =
2× Precision × Recall

Precision + Recall
(12)

IoU =
TP

TP + FP + FN
(13)

where TP is true-positive, FP represents false-positive, TN de-
notes true-negative, and FN is false-negative.

C. Detail Settings of CSA-Net

We also provide detailed parameters for the CSA-Net in
Table V, which include encode, skip, decode, and upsample-
optimization.

D. Test Result and Analysis

In this part, we use nine comparative methods to prove the
effectiveness of CSA-Net on three datasets and conduct a com-
parative analysis of the results of each method.

1) Test on the WHU Building Dataset: Table VI displays
quantitative results on the WHU dataset. Regarding the intersec-
tion over union (IoU) and F1-score, our proposed method outper-
forms the basic model (U-Net [21]) by 4.41% and 2.51%, respec-
tively. In addition, the IoU is 6.14% higher than DeepLabV3+
[63] and 2.93% higher than ASF-Net [23], while the F1-score by
CSA-Net is 3.53% better than DeepLabV3+ and 1.65% better
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TABLE V
CSA-NET DETAILED SETTINGS

TABLE VI
EVALUATION RESULTS OF TEN NETWORKS ON THE WHU DATASET (%)

TABLE VII
EVALUATION RESULTS OF TEN NETWORKS ON THE GA DATASET (%)

TABLE VIII
EVALUATION RESULTS OF TEN NETWORKS ON THE MASSACHUSETTS

DATASET (%)

than ASF-Net. Thus, the CSA-Net outperforms other approaches
in both IoU and F1-score.

Figs. 8 and 9 are the outcomes of the building extraction of
CSA-Net and the comparison method. Fig. 8 is the extensive
area building extraction result, and Fig. 9 is the typical building
extraction example. As shown in Figs. 9(a), (b), and 8(a), the
comparison method easily classifies some roofs as nonbuild-
ings due to the distinct spectral textures of the building roofs.
Figs. 9(c), (d), (e), and 8(b) illustrate that some places have a
spectrum and texture similar to buildings due to the closeness of
materials to buildings, leading to false identification. In response
to the issues above, the GFI module enhances the ability of
CSA-Net to identify buildings by enhancing the acquisition of
global-local features and integrating attention. The visualization
results outperform the comparison method.

As illustrated in Fig. 9(f), when the foliage of trees obscures
the structure of a building, the covered portion becomes less
readily identifiable by the network. By obtaining contextual
features at different levels, the HFE module improves the rea-
soning capacity of CSA-Net and reduces the interference caused
by trees and shadows. The MFF structure further enhances the
adaptability of the network to complex building scenarios by
mitigating the loss of essential features.

2) Test on the GA Dataset: To further verify the generaliza-
tion ability of the network in complex scenes, we tested the GA
datasets with poor lighting and more occlusion and shadows.
Table VII presents the quantitative comparative outcomes of
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Fig. 8. Large-area building extraction findings from several approaches on the WHU dataset. (a) and (b) Enlarged images of the dotted red boxes.

Fig. 9. Visual comparison of ten methods conducted on the WHU dataset. In the diagram, green is TP, red is FP, and blue is FN.

the ten approaches on the GA dataset, while Figs. 10 and 11
depict the visual results. As can be seen in Table VII, CSA-Net
performs the best across all approaches, outperforming SegNet
and DeepLabV3+ in the IoU by 3.54% and 7.34%, respectively,
and outperforming the baseline model (U-Net) by 6.89%.

As can be seen from Figs. 10(a) and 11(a)–(c), (f), occlusion
and shadow easily affect the integrity of building extraction.
CSA-Net uses the HFE to help the network extract a more

complete building, reducing the interference of occlusion and
shadows. As shown in Figs. 10(a), (b) and 11(a), (b), (d)–(f),
when the internal spectral texture of the building roof is different
but similar to the surrounding area, it is easily identified as a
nonbuilding. When the surrounding region has characteristics
similar to those of buildings, it is easy to identify it as a building.
The CSA-Net fusion of the GFI module improves building
recognition by assessing global–local features and focusing on
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Fig. 10. Large-area building extraction findings from several approaches on the GA dataset. (a) and (b) Enlarged images of the dotted red boxes.

Fig. 11. Visual comparison of ten methods conducted on the GA dataset. In the diagram, green is TP, red is FP, and blue is FN.

the building component among them. Finally, combined with
the MFF structure, our method further enhances its robustness
in complex environments.

3) Test on the Massachusetts Dataset: Table VIII shows the
evaluation results of ten networks on the Massachusetts dataset,
and Figs. 12 and 13 are visualizations of the results. The eval-
uation results for the Massachusetts dataset are lower than for
the WHU and GA datasets because they have a lower image
resolution. Nevertheless, CSA-Net continues to perform best
across all evaluation measures.

The visualization results show that CSA-Net has the least
FP and FN. In red-framed regions in Figs. 12(a), (b),
and 13(a)–(c), the buildings have similar textures and spectra
to the surrounding areas. Fig. 13(d) and (e) depicts a for-
eign object on the roof of a building. The scenario above
poses difficulty in accurately extracting buildings using the
nine comparison approaches. CSA-Net employs the GFI to
optimize the extraction of global–local features and integrates
feature interactions to enhance building judgment. According to
Fig. 13(f), CSA-Net incorporates the HFE modules to mitigate
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Fig. 12. Large-area building extraction findings from several approaches on the Massachusetts dataset. Lines (a) and (b) are enlarged images of the dotted red
boxes.

Fig. 13. Visual comparison of ten methods conducted on the Massachusetts dataset. In the diagram, green is TP, red is FP, and blue is FN.

interference from trees and shadow occlusion. In addition, by
combining the MFF, our approach further improves segmenta-
tion accuracy.

E. Ablation Experiments of the CSA-Net

1) Ablation Experiments for Modules and Structures: To
prove the effectiveness of the proposed HFE module, the GFI
module, and the MFF structure for CSA-Net, we chose U-Net
as the baseline model and conducted ablation experiments on

the WHU dataset. Table IX shows the quantitative evaluation
results of the continuous addition of modules. Fig. 14 shows the
visualization results of the ablation experiment, and the areas of
interest are marked in the red frame.

Network (c) demonstrates that when the GFI module was
included in the U-Net, the baseline went from 92.09 and 85.34 in
terms of F1-score and IoU to 92.26 and 85.63. As evident from
the red frame in the first and second lines of Fig. 14, some areas
with similar characteristics to buildings are easily identified
as buildings, while buildings with different internal textures
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TABLE IX
QUANTITATIVE EVALUATION RESULTS OF DIFFERENT MODULES ON THE WHU DATASET (%)

Fig. 14. Visualized results of ablation experiments on the WHU. (a) Image. (b) Label. (c) U-Net. (d) U-Net+ HFE. (e) U-Net+ HFE +MFF. (f) U-Net+GFI.
(g) U-Net+GFI+MFF. (h) CSA-Net.

TABLE X
MODULE WEIGHT ABLATION EXPERIMENTS (%)

and spectra are easily identified as nonbuildings. The baseline
network acquires more global features after adding the GFI, thus
enhancing the identification of building parts. However, there are
still some areas where the identification is wrong. As shown in
Fig. 14 and network (f), the recognition ability of buildings is
further improved when the MFF is added to the network.

Network (b) shows that adding the HFE to U-Net increases
the F1-score and IoU by 0.52% and 0.89%, respectively. As
seen from the red frame in the third row in Fig. 14, it is
easy to miss extraction when trees are around the building.
CSA-Net mitigates this phenomenon by combining contextual
reasoning with the HFE modules to help the network extract a
more complete building. Meanwhile, introducing the MFF can
further strengthen the robustness of the network. As shown in

Fig. 14 and Network (e), when the MFF is added to the network,
the semantic segmentation accuracy is further improved, which
helps CSA-Net to extract building information more thoroughly.

Ablation experiments show that the performance of CSA-
Net can be effectively improved by adding the HFE, the GFI
modules, and the MFF structures one by one.

2) Ablation Experiments for Maximum Dilated Rate and
Module Weight: To verify the robustness and feasibility of
the maximum expansion rate and weights for the accuracy of
CSA-Net, we do the corresponding ablation experiments on the
WHU dataset. It is known through Table XI that segmentation
accuracy is highest when the maximum dilated rate is 9. It is
known through the weight ablation experiment in Table X that
the addition of weights in the modules GFI and HFE improves
the IoU by 2.16% and 2.24%, respectively. It is demonstrated
through Table XI that successive parallel dilated convolution
with a maximum dilated rate of 9 is more effective in obtain-
ing global–local features. It is proved through Table X that
the weights are essential for the robustness and classification
accuracy of the network.

3) Ablation Experiments for Different Epochs: To verify the
effect of different epochs on accuracy, we conducted abla-
tion experiments with different epochs on different datasets.
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TABLE XI
ABLATION EXPERIMENTS FOR MAXIMUM DILATED (%)

TABLE XII
EPOCH ABLATION EXPERIMENT ON THE WHU DATASET (%)

TABLE XIII
EPOCH ABLATION EXPERIMENT ON MASSACHUSETTS DATASET (%)

TABLE XIV
EPOCH ABLATION EXPERIMENT ON GA DATASET (%)

Table XII shows the CAS-Net segmentation accuracy of the
WHU dataset at different epochs. Although the segmentation
accuracy of CSA-Net occasionally fluctuates as the epoch in-
creases, the overall trend is to improve and stabilize gradually.
The overall accuracy is highest at epoch 50, while the recall
value is not the highest. Therefore, the result of the experiment
indicates that epoch 50 is the most appropriate. Tables XIII and
XIV show the segmentation results on the Massachusetts and
GA datasets with different epochs, which indicate that epoch
200 is more suitable.

F. Comparison of Training Times and Parameters for Different
Methods

Table XV presents a comparative analysis of the computa-
tional efficiency of different methods, encompassing model pa-
rameters and FLOPs. Additionally, Table XV provides insights

TABLE XV
EVALUATION OF THE COMPUTATIONAL EFFECTIVENESS OF VARIOUS

APPROACHES

into the total time required for each approach to complete 50
iterations of training on the WHU buildings dataset.

These test results show that CSA-Net outperforms existing
state-of-the-art building extraction methods while requiring less
parameterization than the U-Net. This is mainly because we
replaced the last layer of U-Net with GFI. Our approach ex-
hibits faster execution compared to SegNet, MAP-Net, BRRNet,
and ASF-Net, albeit with a slight decrease in speed compared
to DeepLabV3+. Simultaneously, the parameter number and
FLOPs of our method are lower than that of DeepLabV3+,
MAP-Net, SegNet, and ASF-Net and only marginally higher
than BRRNet. Although the computational efficiency of FSAU-
Net and DMU-Net is higher than our method, there is a relatively
large gap in accuracy. In summary, CSA-Net strikes a commend-
able balance between efficiency and accuracy.

V. CONCLUSION

This study recommends a novel CSA-Net based on the HFE
module, the GFI module, and the MFF structure for building
extraction. The HFE modules are embedded in skipping con-
nections to help networks derive more complete buildings in
complex scenes by acquiring richer and more effective high-
level features. The GFI module is explored to obtain rich global
and local features in the encoding process and suppress the
background part to enhance the characterization of building
features. The primary objective in devising the MFF structure is
to mitigate feature loss during the upsampling process, aiming to
augment the network robustness, particularly in complex scenar-
ios. In the three datasets used in this article, the IoU of CSA-Net
is 79.99%, 89.75%, and 73.59%, respectively, outperforming
other advanced methods with nearly the fewest parameter in-
dicators. Moreover, the results of the visualization experiments
demonstrate that CSA-Net is capable of resolving some issues
associated with building extraction in complex scenes.
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Although our method can achieve good extraction results for
complex building scenes, our method requires a large number of
labels to train, so semisupervised methods that reduce manual
labels will be the focus of future building extraction research.
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