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Exploring the Cross-Temporal Interaction: Feature
Exchange and Enhancement for Remote Sensing

Change Detection
Yikun Liu , Kuikui Wang, Mingsong Li , Yuwen Huang , and Gongping Yang

Abstract—Change detection (CD) aims to identify surface
changes from bitemporal remote sensing (RS) images, which is a
crucial and challenging topic in RS. In recent years, RS images CD
has achieved significant advancements through the use of convo-
lutional neural networks. However, existing deep learning-based
CD methods still face some challenges, such as blurry boundaries,
pseudochanges caused by fluctuations in imaging conditions, and
complexity of change objects in the scene. In this study, we present
a novel perspective for exploring the cross-temporal interaction in
the feature fusion stage and propose a bitemporal feature exchange
and enhancement network (ExNet). Specifically, we argue that
the heterogeneity of bitemporal RS images leads to the failure of
the CD model in some cases. Therefore, we attempt to achieve
feature alignment in two aspects by feature exchange. On one
hand, we exchange the statistical information of bitemporal fea-
tures, facilitating the transfer of their style. On the other hand,
bitemporal features are composed of content correlation embed-
dings and domain correlation embeddings (DCEs). We design a
dynamic low-pass filter (DLF) to partially extract and exchange
DCEs in bitemporal features to achieve the feature distribution
alignment. Moreover, a frequency separation enhancement module
is proposed, which transforms the fused features into the frequency
domain and enhances the corresponding frequency representation.
Comprehensive experimental results on three popular CD datasets
demonstrate the effectiveness and efficiency of ExNet compared
with state-of-the-art methods.

Index Terms—Change detection (CD), dynamic low-pass filter
(DLF), feature alignment, frequency domain enhancement.

I. INTRODUCTION

R EMOTE sensing (RS) change detection (CD) through im-
age analysis techniques is utilized to compare and assess

surface alterations between paired images taken at different pe-
riods in corresponding areas [1]. This method finds applications
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across different fields including urban planning [2], monitoring
land use changes [3], and evaluating responses to disasters
[4], [5].

Optical images have become a major source of data for CD due
to their wide availability. Since these satellite sensors are capable
of acquiring images with meter and submeter spatial resolution,
fine spatial details of terrestrial objects can be studied [6].
However, optical very-high-resolution RS CD faces several chal-
lenges. First, there is heterogeneity in bitemporal RS images,
which is due to the fact that bitemporal RS images are captured
under diverse imaging conditions and at different time intervals,
leading to variations in color or shape of ground objects caused
by factors,such as seasonal changes, lighting conditions, and
appearances. Second, high-resolution multitemporal RS images
provide detailed information about ground objects, necessitating
CD models to have strong feature recognition abilities. These
challenges make it difficult to extract semantic features across
temporal and spatial dimensions. Therefore, an effective CD
model should exhibit robust cross-temporal interaction and se-
mantic extraction capabilities.

So far, traditional CD methods can be generally divided
into two primary categories: pixel-based CD and object-based
CD [7]. Pixel-based CD techniques involve deriving the differ-
ence map directly from the spectral or texture characteristics
of the bitemporal RS images. This method typically produces
the change map by applying appropriate thresholds or clustering
methods, such as change vector analysis [8], principal compo-
nent analysis [9], and multivariate alteration detection [10]. To
overcome the limitation of pixel-based CD methods in capturing
spatial context details, object-based CD methods have been
introduced. These techniques segment bitemporal RS images
into regions based on spectral and spatial similarities, from
which features are extracted to identify changes [11]. Object-
based CD methods include algorithms, such as support vector
machine [12], decision tree [13], and random forest [14]. Nev-
ertheless, these traditional methods heavily rely on manually
extracted features and often struggle to effectively represent
high-level features, leading to reduced accuracy especially on
high-resolution RS images.

In recent years, convolutional neural networks (CNNs) have
been widely used in various RS tasks, such as scene classi-
fication [15], [16], [17], object detection [18], [19], semantic
segmentation [20], and CD [21], [22], [23]. Several CNN-based
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methods have been developed to improve the accuracy of CD.
For example, one method utilized an edge-guided recurrent
CNN that incorporated edge structure information to enhance
CD [24]. Another technique involved generative adversarial
training to create diverse bitemporal images, addressing is-
sues related to data scarcity [25]. In addition, an unsupervised
progressive learning framework was implemented to filter out
incorrect change information in specific regions using a label
selection filter [26]. Selective attention modules have been de-
veloped to explore the connection between semantics and pixel
states, and these modules have been incorporated into metric
learning-based architectures [27]. Moreover, a pair-to-video CD
framework addressed CD as a video comprehension issue by
generating a pseudotransition video [28]. In addition, generative
adversarial networks have been employed to enhance super-
resolution images and reduce resolution differences between
bitemporal images [29].

Despite recent advancements, the ongoing diversity in bitem-
poral RS images poses a significant challenge, hindering CD
methods from accurately pinpointing locations [30]. This issue
stems from the heterogeneity of bitemporal features, resulting
in variations in color and lighting of the same ground objects
between different temporal RS images. While existing CD meth-
ods have made progress, their ability to harmonize domains
in bitemporal RS images is still lacking. These methods often
rely on complex model structures to enhance accuracy when
merging bitemporal features [31], [32], [33], [34]. Whether
bitemporal features are fused early or late in the CD net-
work, two common fusion operators are utilized point-to-point
differencing [28], [35] and channelwise concatenation [36],
[37], [38]. Various feature fusion modules have been devel-
oped based on these fusion operations, including self-attentive
structures [31], [33] and distance metrics [24], [39]. However,
intricate model architectures may not fully tackle the diversity
of bitemporal features. In addition, these feature fusion mod-
ules often prioritize the spatial aspect, overlooking valuable
semantic information, such as the frequency domain. Conse-
quently, biases exist in feature representation across different
phases of RS images, significantly impacting the accuracy of
CD models and resulting in cases of pseudochanges and missed
changes [40].

To overcome these challenges, our strategy focuses on align-
ing domains for cross-temporal features and accurately captur-
ing change features. With this in mind, we present a bitem-
poral feature exchange and enhancement network (ExNet) for
RS image CD. Previous research has shown that exchanging
partial features between bitemporal data can improve feature
distribution similarity and aid in domain adaptation to some
extent [41]. However, changer [41] employed tessellation masks
for exchanging bitemporal features, which may jeopardize the
integrity of the change object. To solve the above-mentioned
problem and align the cross-temporal feature distribution, we
implement feature exchange in the following two ways. First,
recognizing that feature distributions are mainly shaped by
their statistical properties [42], [43], we propose a recurrent
exchange mechanism utilizing adaptive instance normalization
(AdaIN) to exchange statistical information between bitemporal

Fig. 1. Motivation of the ExNet. The CCEs are associated with buildings, and
the DCEs are associated with background, and the distance between the DCEs
across temporal represents the domain shift between T1 and T2. The domain
alignment is completed after the DCEs exchange.

features. Second, we identify the existence of domain correlation
embeddings (DCEs) and content correlation embeddings
(CCEs) in bitemporal data. CCEs capture semantic details of ob-
jects that may undergo changes, as shown in Fig. 1 for buildings
in the LEVIR-CD dataset, while DCEs represent background
features with less semantic content but a significant impact on
overall feature distribution. We theorize that differences in DCEs
between bitemporal features contribute significantly to the vari-
ability observed in RS images. To address this, we propose a dy-
namic low-pass filter (DLF) to selectively extract and exchange
DCEs between bitemporal features. In addition, acknowledging
the importance of frequency domain information, we introduce
a frequency separation enhancement module (FSEM) after the
feature fusion step. FSEM comprises an amplitude enhancement
branch and a phase enhancement branch to convert fused features
into the frequency domain and enhance corresponding frequency
representations individually.

The major contributions of this article are summarized as
follows.

1) We address the heterogeneity of bitemporal RS images
by introducing cross-temporal interaction, utilizing bitem-
poral features as content input and domain input, re-
spectively. We align the channelwise mean and standard
deviation of the content input to match those of the domain
input.

2) We propose a novel perspective where DCEs and CCEs
represent the semantics and distribution respectively in
bitemporal features. Specifically, we design a DLF to
partially extract and exchange DCEs. The resulting new
bitemporal features theoretically possess similar feature
distributions.

3) To further enhance fusion features, we introduce an FSEM,
which boosts the amplitude and phase of frequency repre-
sentation. This generates a comprehensive global infor-
mation representation, enabling the extraction of more
accurate change features.

The rest of this article is organized as follows. In Section II, the
related work is introduced. The proposed ExNet is described in
detail in Section III. The settings of all experiments are presented
in Section IV. Section V presents and analyzes the experimental
results. Finally, Section VI concludes this article.
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II. RELATED WORKS

In this section, we briefly review the feature distribution
alignment study and frequency domain study in the previous
works.

A. Deep Learning-Based CD Methods

Currently, deep learning has advanced as an important tech-
nique for CD due to its ability to generate precise CD predictions.
In contrast to traditional methods, deep learning-based meth-
ods can systematically extract spatial, spectral, and temporal
features of bitemporal images in feature space. Consequently,
deep learning-based methods attain superior CD accuracy, and
several methods have been proposed to improve CD accuracy.
Shi et al. [44] proposed a deeply supervised attention metric-
based network, which learns change maps by means of deep
metric learning. Zhang et al. [45] used a CNN to learn the
deep features from RS images and used transfer learning to
compose a two-channel network to generate a multiscale and
multidepth feature difference map for CD. Recently, there has
been a growing focus among researchers on the attention mech-
anism. Jiang et al. [46] proposed an efficient multidimensional
attention-aggregation network, which keeps better feature ag-
gregation while maintaining excellent differential attention abil-
ity. Li et al. [47] proposed a lightweight network, which identifies
changes based on the features extracted by mobile networks
via progressive feature aggregation and supervised attention.
Zhang et al. [48] proposed a multiscale cascaded cross-attention
hierarchical network, which uses a large kernel convolution
formed by stacking small kernel convolutions combined with an
efficient transformer as the backbone network to achieve local
and global feature extraction and fusion.

Due to the strong representation ability of the transformer,
the transformer-based models show comparable or even better
performance as the convolutional counterparts in the CD task.
Zhang et al. [49] introduced a U-shaped Swin-transformer-based
network to improve the model’s global exploration capabilities.
This Siamese network employs a multilevel Swin-transformer
block to construct an encoder and decoder framework, en-
hancing efficient CD. ChengeFormer [50] unified hierarchi-
cally structured transformer encoder with multilayer perception
(MLP) decoder in a Siamese network architecture to efficiently
render multiscale long-range details required for accurate CD.
Zhang et al. [51] analyzed the relation changes in multitemporal
images and proposed a cross-temporal difference attention to
capturing these changes efficiently.

B. Feature Distribution Alignment Study for CD

Effectively addressing the heterogeneity of bitemporal RS
images is a crucial issue in CD. Although deep learning has
offered robust tools for enhancing CD models, many deep
learning-based methods still rely on basic techniques, such as
channel concatenation and pointwise differencing for interacting
across different temporal states.

To enhance the interaction among diverse extracted features,
researchers have suggested alternative fusion methods. For ex-
ample, the channel-shuffle fusion strategy was proposed to
exploit the strengths of different features by shuffling their chan-
nels [32]. Another method involved using a dual-feature mixed
attention-based transformer network that combined fine and
coarse features to handle misjudgments due to oversampling and
ensure synchronized feature extraction and integration of target
information [33]. Nonetheless, we argue that relying solely on
complex model architectures may not adequately address the
heterogeneity of bitemporal features.

Nonetheless, there are alternative methods that focus on
aligning feature distributions by means of adversarial learn-
ing [29], [52], [53]. For instance, an innovative selective adver-
sarial adaptation-based CD network was developed to capitalize
on previously acquired knowledge from various domains and
accomplish adaptation between multiple source domains and
a target domain employing two domain discriminators [53].
Adversarial learning was also employed to create bitemporal
images displaying varied changes in buildings [25]. Another
strategy introduced two opposing Y-shaped networks to trans-
form bitemporal images, preserving their inherent content char-
acteristics while ensuring consistent style attributes [54]. Mean-
while, some researchers have worked on solving the problem
of heterogeneity of bitemporal feature interactions in CD [55],
[56]. Although these adversarial learning-based CD methods
signify progress beyond mere concatenation and differencing,
they predominantly hinge on comparative operations between
two images. Chen et al. [57] proposed an unsupervised single-
temporal CD framework based on intra- and interimage patch
exchange. We argue that, for the effective alignment of feature
distributions in bitemporal RS images, a simpler yet more robust
method for intertemporal interaction should be investigated,
which serves as the driving force behind our research.

C. Frequency Domain Study in Deep Learning Model

In the field of deep learning, analyzing signals in the frequency
domain is vital for image processing tasks, such as image clas-
sification [58], dehazing [40], and pan-sharpening [59], [60].
In the realm of unsupervised domain adaptation for semantic
segmentation, Fourier transform and its inverse are used for
aligning domains [61]. In addition, a network combining fre-
quency and spatial domains was proposed for comprehensive
information utilization in CD [62]. Integration of wavelet trans-
form into CNN models has been employed to resize feature
maps, increase receptive fields, and reconstruct feature maps
using inverse wavelet transform [63]. Some studies have em-
ployed dual-branch architectures to process amplitude and phase
components separately, which led to the inspiration to improve
these components individually.

Despite the sophistication of dual-branch frequency domain
enhancement structures, their focus remains predominantly on
local information in the frequency domain. We argue that to
enhance frequency domain representation further, it is crucial to
explore global information representation as well.
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Fig. 2. Overview of the proposed ExNet.

III. METHOD

In this section, we propose a feature ExNet, which aims to
address the heterogeneity of bitemporal RS images and extract
accurate change features. We describe the overall flow of ExNet,
including the exchange based cross-temporal interaction (ECI)
and the FSEM. Finally, we discuss the loss function used in our
work.

A. Overall Architecture

The ExNet architecture shown in Fig. 2 processes bitemporal
RS images with three channels each to produce change predic-
tion maps in a single channel. This architecture includes various
components aimed at improving the accuracy of CD.

In the feature extraction phase, a dual-stream encoder with
shared weight parameters captures features from input images,
incorporating spatial and temporal information. Integration of
information from both temporal phases is achieved in the initial
layers by merging outputs of each convolution block.

To handle the inherent heterogeneity in bitemporal RS images,
an exchange of statistical information and DCEs is conducted at
the final convolution block outputs, aligning feature distributions
between the images. This exchange, along with DCE data,
reduces heterogeneity, thereby enhancing CD accuracy.

After feature fusion and distribution alignment, the fused
features are processed in the FSEM with amplitude and phase
enhancement branches. These branches operate on the frequency
representation of fused features to boost change features through
focus on frequency domain information.

Subsequently, a bottom-up decoder is then utilized for extract-
ing change-related features, consisting of three deconvolution
blocks that gradually upsample features while capturing finer
details. This decoding step aids in reconstructing the change
map to match the input images’ spatial resolution.

Finally, the detection head refines the change map to attain
a single-channel output. Deep supervision applied to the three
detection heads enhances the model’s discriminative ability for

Fig. 3. Structure of the ECI.

CD by incorporating intermediate supervision during training,
thereby facilitating more effective learning.

B. Exchange Based Cross-Temporal Interaction

Our method aims to effectively deal with the diversity found
in bitemporal RS images by incorporating two main parts: a
recurrent exchange structure that facilitates the statistical infor-
mation exchange of bitemporal features, and a DLF that enables
the extraction and exchange of DCEs within these features. The
core concept for the cross-temporal interaction, relying on the
exchange mechanism, is depicted in Fig. 3.

The foundation of our method lies in the understanding that
statistical information significantly influences feature distribu-
tion. Therefore, we utilize a style transfer method that utilizes
AdaIN [42], an extension of instance normalization. AdaIN
works by utilizing a content input represented asF1 and a domain
input denoted as F2. Through aligning the channelwise mean
and standard deviation of F1 to those of F2, AdaIN facilitates
the transfer of style between bitemporal features

AdaIN(F1, F2) = σ(F2)

(
F1 − μ(F1)

σ(F1)

)
+ μ(F2) (1)
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where σ(x), μ(x) ∈ RC are the mean and standard deviation,
computed across batch size and spatial dimensions indepen-
dently for each feature channel

μ(x) =
1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

xnchw (2)

σ(x) =

√√√√ 1

NHW

N∑
n=1

H∑
h=1

W∑
w=1

(xnchw − μ(x))2 + ε (3)

where ε is a small constant. In this process, we utilize a scaling
operation to standardize the input content F1 using its standard
deviation σ(F1) and mean μ(F1), followed by a shift using
the standard deviation σ(F2) and mean μ(F2) of the domain
input F2, and vice versa. This method enables us to align the
distributions of features during domain transfer by transfer-
ring channelwise mean and standard deviation statistics. Fig. 3
demonstrates the alternating utilization of F1 as the content
feature and F2 as the domain feature to ensure distribution
alignment of the dual-temporal features. In CD tasks, it is often
the case that images in the later period contain more content,
such as buildings, than images in the earlier period. So we first
transfer the domain of F2 to F1, and then transfer the domain of
F12 to F2, which can better preserve the content in F2.

Subsequently, we create the output feature F12 by merging
the content embedding of F1 with the domain embedding of F2.
Likewise, the output feature F21 is formed by combining the
content embedding of F2 with the domain embedding of F1.

Recent studies have shown that exchanging bitemporal fea-
tures partially during feature extraction can make the distribution
between these features more alike, leading to a form of automatic
domain adaptation between the bitemporal domains. Previous
methods involved using tessellation masks to distinguish be-
tween exchange and nonexchange features, conducting feature
exchange separately in the channel and spatial dimensions [41].
However, employing tessellation masks for exchanging bitem-
poral features is viewed as a drastic measure that could poten-
tially jeopardize the integrity of the changed object. Hence, our
goal is to investigate alternative exchange masks that can capture
DCEs representing feature distribution without impacting the
change content. Fig. 1 depicts the presence of DCEs and CCEs
in bitemporal embedding. CCEs typically relate to objects un-
dergoing changes, such as buildings in the LEVIR-CD dataset,
which often contain more semantic information for CD. In
contrast, DCEs usually denote background features with limited
semantic information but are crucial for feature distribution.
Therefore, exchanging partial DCEs of the bitemporal features
facilitates aligning the domain distribution. Consequently, de-
veloping an exchange mask that accurately captures DCEs is
vital. In this section, we present a proposal for a low-pass filter
with a dynamic threshold to extract DCEs from the bitemporal
features formed.

As illustrated in Fig. 3, CCEs generally have higher values
due to their richer semantic content, while DCEs typically show
lower values corresponding to the image background. Building
upon this observation, a reasonable threshold can be utilized

Fig. 4. Comparison of tessellation masks and our DLF. (a) Origin features.
(b) Features exchanged with tessellation masks. (c) Features exchanged by our
filter.

to differentiate between DCEs and CCEs. Moreover, it is rec-
ognized that with an increase in network training iterations,
the network’s reliability enhances, leading to a more precise
differentiation between changing objects and backgrounds. To
leverage this, we introduce a dynamic threshold for distinguish-
ing CCEs and DCEs. Initially, we compute Fdiff by carrying out
point-to-point differencing between F12 and F21. Subsequently,
we determine the threshold T using (4), where features with
low values are classified as DCEs and those with high values as
CCEs. To promote cross-temporal interaction, we interchange
partial DCEs among the bitemporal features, creating new
bitemporal featuresF12 andF21 that theoretically exhibit similar
feature distributions. The fundamental elements of this method
are depicted in Fig. 3, and the threshold is defined as follows:

T = μ(Fdiff)−
(
1− 2× itercur

itermax

)
× σ(Fdiff) (4)

where itercur and itermax are the current and maximum number
of iterations, respectively, the value of the features inFdiff larger
than T are viewed as CCEs and vice versa as DCEs.

As illustrated in Fig. 4, the partial extraction and exchange of
DCEs help maintain the integrity of modified objects and facili-
tate alignment of feature distribution through precise extraction
of DCEs from bitemporal features.

C. Frequency Separation Enhancement Module

Frequency domain analysis plays a crucial and established
role in image signal processing across various applications. It
is valued for its stability, especially when compared to spatial
domain processing. However, traditional methods for CD often
overlook the need to restore distortions that arise in the frequency
domain, a critical aspect for enhancing semantic representation.
To address this gap, we present a new element called the FSEM,
designed to efficiently capture and restore frequency represen-
tations.

In this section, we begin by revisiting the basic principles
of Fourier transformations applied to images. Subsequently,
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Algorithm 1: Exchange Based Cross-Temporal Interaction.

Input: F1, F2 ∈ RH×W×C .
for itercur = 1 to itermax do

Calculate the μ(F1), μ(F2) and σ(F1), σ(F2);
Transfer the domain of F2 to F1, and generate the
F12;

Calculate the μ(F12) and σ(F12);
Transfer the domain of F12 to F2, and generate the
F21;

Calculate the Fdiff by point-to-point differencing,
and calculate the μ(Fdiff) and σ(Fdiff);

Generate the threshold T with (4), bi-temporal
features larger than T are viewed as CCEs and vice
versa as DCEs;

Exchange the DCEs between bi-temporal features,
and generate the new bi-temporal features F12 and
F21.

end for
Output: New bi-temporal features F12 and F21

Fig. 5. Structure of the FSEM module.

we offer a detailed exploration of the structure of our FSEM,
accompanied by thorough explanations.

Given a single channel image x with the Fourier transformer
F (x) converts to the Fourier space as a complex component,
which is expressed as

F(x)(u, v) =
1√
HW

H−1∑
h=0

W−1∑
w=0

x(h,w)e−j2π( h
H u+ w

W v) (5)

whereF−1(x)defines the inverse Fourier transform accordingly.
We separately apply Fourier transform to each channel in FSEM
with the fast Fourier transform (FFT) [64].

In the Fourier space, each complex componentF (x)(u, v) can
be represented by the amplitude component A(x)(u, v) and the
phase component P(x)(u, v), which provides an intuitive anal-
ysis of the frequency components. A(x)(u, v) and P(x)(u, v)
are expressed as

A(x)(u, v) =
√
R2(X(u, v)) + I2(X(u, v))

P(x)(u, v) = arctan

[
I(X(u, v))

R(X(u, v))

]
(6)

where R(x) and I(x) represent the real and imaginary part of
F (x), respectively.

As depicted in Fig. 5, the first step of our method is to apply the
FFT to convert the fusion featuresF into the amplitude and phase

components. The Fourier transform of F can be mathematically
expressed as follows:

A(F ),P(F ) = F(F ). (7)

After extracting the amplitude and phase components using
FFT, we establish two distinct operations to improve the de-
piction of A(F ) and P(F ). Each operation includes a 1× 1
convolution and a subsequent application of the Leaky ReLU
activation function. This process amplifies the distinguishing
characteristics within both the amplitude and phase components
effectively.

Next, we derive the actual and imaginary segments of the
fusion feature by utilizing the improved amplitude and phase
elements, represented as R(F ) and I(F ), correspondingly.
This process enables us to encompass the details present in the
amplitude and phase components distinctly. The formulation for
this step is as follows:

R(F ) = A(F )× Cos(P(F ))

I(F ) = A(F )× Sin(P(F )). (8)

We combine the real and imaginary parts in a unique way to
create a unified feature representation. This combined feature
representation is then strengthened through the use of a 1 × 1
convolution layer and a Leaky ReLU activation function. This
enhancement allows the model to capture broader global infor-
mation that reflects the input features more accurately.

Finally, a global component separation step is carried out
to extract the global information from the unified feature rep-
resentation. Following this separation, an inverse fast Fourier
transform is applied to convert the combined real and imaginary
components back into the spatial domain. This procedure guar-
antees that the final output consists of spatially relevant features
that encompass the improved global information. The process
can be described as follows:

Fout = F−1(R(F ), I(F )). (9)

Expanding on Fourier theory principles, processing data in
the Fourier space enables us to understand comprehensive
global frequency representations in the frequency domain. In
our methodology, we achieve the isolation and improvement of
frequency representations using two distinct branch structures.
These structural components are carefully designed to enhance
semantic representation in the frequency domain. By treating
amplitude and phase components separately and applying spe-
cific operations to enhance their representations, our method
effectively boosts the semantic representation.

In summary, the frequency spectrum enhancement module
(FSEM) facilitates individual enhancement of semantic rep-
resentation for both amplitude and phase components. This
comprehensive strategy results in the development of a repre-
sentation that is enriched with global information.

D. Loss Function

In RS CD, a common challenge we face is the significant class
imbalance between negative and positive pixels. This imbalance



LIU et al.: EXPLORING THE CROSS-TEMPORAL INTERACTION: FEATURE EXCHANGE AND ENHANCEMENT 11767

often hampers efficient optimization, leading to potential entrap-
ment of the network in local minima of the loss function. To
address this issue and enhance learning from complex scenes,
we propose using a hybrid loss function that combines binary
cross-entropy (BCE) loss and Dice loss. The hybrid loss function
formulation is as follows:

Lhybrid = LBCE + LDice. (10)

To define the BCE loss and Dice loss, we view the predicted
change map Ŷ and the reference map Y as collections of
pixels, denoted as Ŷ = {ŷi, i = 1, 2, . . .N} and Y = {yi, i =
1, 2, . . .N}. Here, ŷi signifies the likelihood of change in the
ith pixel, while yi indicates the reference value in the ith pixel.
In this context, a value of 0 signifies an unchanged pixel, and a
value of 1 represents a changed pixel. The total count of pixels
in the change map is designated as N . The combined objective
function of both loss functions can be expressed as follows:

LBCE = − 1

N

N∑
i=1

yi log2 ŷi + (1− yi) log2 (1− ŷi) . (11)

The Dice loss is an effective option for tackling class imbal-
ance issues and enhancing CD performance. It can be defined
as follows:

LDice = 1− 2
∑N

i=1 yiŷi∑N
i=1 yi + ŷi

. (12)

Due to the utilization of deep supervision in the ExNet, we
compute the hybrid loss for each of the predicted change maps
as follows:

Ltotal =
S∑

s=1

Ls
hybrid (13)

whereS denotes the number of supervised stages,Ls
hybrid denotes

the hybrid loss computed in the sth stage,

IV. EXPERIMENTS SETTING

A. Datasets

To assess the performance and robustness of our ExNet,
we conducted comparative experiments using three challenging
datasets. The first dataset is the season-varying change detec-
tion (SVCD) dataset [65]. The second dataset is the learning
vision and remote sensing laboratory building change detection
(LEVIR-CD) dataset [39]. The fourth dataset is the WHU-CD
dataset [66]. These datasets provide diverse and complex scenes,
allowing for a comprehensive evaluation of the effectiveness of
our ExNet in CD tasks.

The SVCD dataset is specifically designed for general CD
tasks. It consists of 15 998 pairs of bitemporal instances, where
each pair demonstrates distinct appearances caused by seasonal
factors. The images in the dataset have a size of 256× 256 pixels.
The dataset is divided into training, validation, and testing sets,
with 10 000, 2998, and 3000 pairs of instances and correspond-
ing labels, respectively.

The LEVIR-CD dataset comprises 637 image pairs, each
with a size of 1024 × 1024 pixels and a spatial resolution of

0.5 m. To accommodate GPU memory limitations, the images
are uniformly divided into 256 × 256 patches. As a result,
the dataset contains 7120, 1024, and 2048 pairs of patches for
training, validation, and testing, respectively.

The WHU-CD dataset is generated from one pair of aerial
images captured from Christchurch, New Zealand. The spatial
size of the dataset is 32 507 × 15 354, and the spatial resolution
is 0.2 m. The dataset is also divided into small patches with
size 256 × 256 for training, validation, and testing. The dataset
is divided randomly into 5947/744/745 for training, validation,
and testing, respectively.

B. Evaluation Metrics

In our experiments, we assess the models’ performance using
five metrics: Precision, recall, intersection over union (IoU),
Kappa coefficient, and F1-score. These metrics offer a thorough
evaluation of model performance, where higher values signify
better performance.The formulations for these metrics are as
follows:

Precision =
TP

TP + FP
(14)

Recall =
TP

TP + FN
(15)

F1 =
2 · Precision · Recall
Precision + Recall

(16)

IoU =
TP

TP + FP + FN
(17)

OA =
TP+ TN

TP + FP + TN+ FN
(18)

P =
(TP + FP)(TP+FN)+(FN + TN)(TP+TN)

(TP+FP+TN+FN)2

(19)

Kappa =
OA− P

1− P
. (20)

In the evaluation of a model’s performance, TP (true posi-
tives), TN (true negatives), FP (false positives), and FN (false
negatives) are used to represent specific counts. P denotes the
theoretical probability of chance agreement between the ground
truth and predictions.

Precision indicates the false alarm rate, showing the propor-
tion of predicted positive instances that are truly positive. On the
other hand, recall represents the missed alarm rate, indicating the
proportion of actual positive instances correctly identified by the
model.

Both precision and recall are crucial in evaluating a model, but
there is often a tradeoff between them. Aiming for high precision
usually results in lower recall, and vice versa. Achieving the right
balance between these metrics depends on the task at hand and
the desired compromise between reducing false positives and
false negatives. It is vital to find the optimal balance based on
the specific objectives of your application.
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C. Implementation Details and Model Design

The model is built using the PyTorch framework and trained
on an NVIDIA GeForce RTX 3090 GPU with 24 GB of video
memory. Standard data augmentation techniques are used on
input image patches to improve the model’s generalization abil-
ities. During training, a batch size of 32 is employed, and the
initial learning rate is fixed at 5e-4 across all datasets, such as
SVCD, LEVIR-CD, and WHU-CD.

The Adam optimizer is employed with a momentum of 0.9
and a weight decay of 0.0001. The optimizer’s parameters β1

and β2 are, respectively, set to 0.9 and 0.99. To adapt the
learning rate dynamically throughout training, the model adopts
the polylearning scheme. The learning rate is adjusted based on
the formula (1− (itercur/itermax))

power × lr, where the power
value is 0.9.

For the LEVIR-CD datasets, the maximum number of iter-
ations (itermax) is 40 000, while for the SVCD and WHU-CD
dataset, itermax is 160 000. These iterations are chosen to ensure
adequate training for convergence and optimal model perfor-
mance. These training configurations and hyperparameters are
meticulously chosen to enhance the training process and maxi-
mize the model’s performance on the respective datasets.

D. Comparative Methods

In this section, We make a comparison to several state-of-the-
art methods, which are listed as follows.

1) FC-EF [36] utilizes an early fusion method, employing a
UNet-based network architecture. It concatenates original
bitemporal images as network input, processing them
through a single-stream convolutional network for results.

2) FC-Siam-Diff [36] implements a feature-difference tech-
nique that extracts multilayer features of bitemporal im-
ages from Siamese networks for difference detection.

3) FC-Siam-Conc [36] follows a feature-concatenation
method, extracting multilayer features of bitemporal im-
ages from Siamese networks for differential detection.

4) SNUNet [35] designs a densely connected deep SNN
with strong feature extraction capabilities. It introduces an
ensemble convolutional block attention module to refine
features.

5) BIT [22] introduces a bitemporal image transformer
within a deep feature differencing-based framework to
model contexts in the spatial-temporal domain.

6) IFN [37] proposes a deeply supervised difference dis-
crimination network for results. It fuses multilevel deep
features with image difference features using attention
modules for change map reconstruction.

7) Changer [41] introduces a new general results architec-
ture incorporating two interaction strategies: Aggregation-
distribution and “exchange.” A comparison is made be-
tween its “ChangerEX” exchange architecture and our
ExNet.

8) ChangeFormer [50] extracts the bitemporal features by
cascaded transformer blocks, and the difference features
were decoded by a lightweight MLP.

V. RESULTS AND DISCUSSION

A. Comparison to State-of-the-Art Methods

To ensure a fair comparison, we reimplemented all compar-
ative methods and replicated the results under the same exper-
imental conditions. Optimal hyperparameters were selected for
each method to maximize the F1 score on the validation subset.

Table I presents the quantitative results across the three
datasets, with the highest values highlighted in bold for each
column. For qualitative results, Figs. 6– 8 depict TP areas in
white, FP areas in red, FN areas in green, and TN areas in black.

The changes observed in the SVCD dataset are more intricate
compared to the other two datasets. While the LEVIR dataset
and LEVIR+ dataset predominantly feature distinct buildings,
such as houses, the SVCD dataset presents challenges as some
altered regions resemble the background, leading to less accurate
inferences.

1) Results on the SVCD Dataset: The quantitative results for
precision, recall, and F1-score for all methods can be found in
Table I. Notably, our proposed ExNet demonstrates superior per-
formance, achieving precision and F1-score values of 97.96%
and 97.23%, respectively. These results unequivocally showcase
the exceptional performance of our CD method.

The performance outcomes on the SVCD dataset highlight
the effectiveness of our method compared to results on the
LEVIR-CD datasets. This difference is primarily due to the
SVCD dataset’s greater disparities in inherent characteristics,
feature distributions, and a higher prevalence of change areas,
making it a more challenging task. In contrast, methods such as
FC-EF, FC-Siam-Diff, and FC-Siam-Conv demonstrate lower
performance, indicating their limitations in the context of results.
While the IFN method shows high recall (97.91%), it is prone
to pseudochange near object boundaries. Similarly, changer
exhibit subpar performance with F1-scores of 93.47%, 93.00%,
90.91%, and 90.93%, indicating their inefficiency in extracting
distinctive features from diverse RS images. In conclusion, these
results confirm that our ExNet excels in capturing frequency
information and effectively identifying features in bitemporal
RS images, resulting in superior CD performance compared to
other methods.

Fig. 6 provides a visual comparison of the SVCD dataset,
demonstrating the effectiveness of our method compared to
other methods. Our technique excels in capturing subtle changes
and accurately representing fine details of ground objects. Con-
versely, FC-EF, FC-Siam-Diff, and FC-Siam-Conv show limita-
tions in extracting change features from diverse bitemporal RS
images using Siamese network-based methods. To address these
challenges, we have developed a feature distribution alignment
method that includes transferring statistical information and
exchanging DCEs.

The visualizations indicate that SNUNets and changer en-
counter difficulties in distinguishing shadows, often misiden-
tifying building shadows as false changes. In contrast, our
method surpasses others in detecting various irregularly shaped
modifications in buildings. These visual results support the
effectiveness of our proposed ExNet in capturing interactions
across different time periods and accurately outlining object
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TABLE I
QUANTITATIVE RESULTS ON THE SVCD, LEVIR-CD, AND WHU-CD DATASETS

Fig. 6. Qualitative comparisons on the SVCD dataset. Different colors are used for a better view, i.e., white represents true positives, black represents true
negatives, red represents false positives, and green represents false negatives. Where the less green and red, the better the performance represented.

Fig. 7. Qualitative comparisons on the LEVIR-CD dataset. Different colors are used for a better view, i.e., white represents true positives, black represents true
negatives, red represents false positives, and green represents false negatives. Where the less green and red, the better the performance represented.

boundaries. Furthermore, the underperformance of current
methods on the SVCD dataset highlights the specific difficul-
ties posed by the dataset’s inherent characteristics and feature
distributions. Our ExNet stands out for its ability to handle
frequency information and promote effective feature interaction
in bitemporal RS images, offering a robust solution to these
challenges.

2) Results on the LEVIR-CD Dataset: As displayed in Table
I, our new ExNet model outperforms existing methods signif-
icantly. It particularly shines in recall and F1-score, achieving

90.84% and 91.64%, respectively. In contrast, methods such as
SNUNets face challenges due to the tradeoff between recall
and precision, leading to the identification of false changes.
Changer yields less than optimal results in precision and F1,
with values of 93.05% and 90.68%, mainly due to its strategies
involving spatial and channel exchanges. Noteworthy is that
ExNet delivers more accurate predictions and notably decreases
the occurrence of pseudochanges.

Fig. 7 presents a qualitative comparison using the LEVIR-CD
dataset, showcasing the superior performance of our proposed
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Fig. 8. Qualitative comparisons on the WHU-CD dataset. Different colors are used for a better view, i.e., white represents true positives, black represents true
negatives, red represents false positives, and green represents false negatives. Where the less green and red, the better the performance represented.

method compared to existing ones. The challenge lies in ac-
curately delineating pixels near edges where ground objects are
small and have intricate features in RS images. The performance
is further affected by the smaller size of the feature map in the
multilayer feature extraction structure. While some methods
aim to enhance edge detection by utilizing edge structures,
they tend to create false changes near edges. In contrast, our
method addresses this by incorporating feature alignment using
two strategies: statistical information and DCEs through feature
exchange. The visualizations in Fig. 7 illustrate that our method
yields more refined results and achieves more precise object edge
predictions. In addition, our method proves to be more resilient
to shadow effects compared to others that often generate false
changes due to shadow interference. In regions with densely
distributed changes, our method excels in capturing details of
minor changes effectively.

3) Results on the WHU-CD Dataset: The quantitative results
for precision and F1-score for all methods are presented in
Table I. Our ExNet model demonstrates superior performance
with recall and F1 values of 92.56% and 94.02%, respectively.
Although ChangeFormer exhibits the highest recall at 95.20%,
its precision and F1 scores are comparatively low. Notably,
ExNet strikes a better balance between precision and recall,
resulting in higher overall performance and F1 scores compared
to most benchmark algorithms.

Fig. 8 presents a qualitative comparison on the WHU-CD
dataset, showcasing the superiority of our ExNet model over
existing methods. Specifically, ExNet stands out in accurately
detecting building edges, thanks to the FSEM that supplements
missing frequency domain information. Conversely, FC-EF,
FC-Siam-Diff, FC-Siam-Conv, and IFN show more pronounced
false detections, primarily due to ineffective cross-temporal
interaction. By incorporating ECI and extracting frequency do-
main information through FSEM, ExNet ensures consistency
in objects and enhances CD along object boundaries. This
enhanced performance highlights ExNet’s effectiveness in man-
aging complex cross-temporal interactions.

The consistent and robust performance of ExNet demon-
strates its strong suitability for various CD tasks, including
general-purpose and building change detection. In addition, our
method shows resilience when dealing with datasets containing
a considerable number of negative samples or when operating

with limited sample sizes. This resilience can be credited to
the efficient cross-temporal feature interaction and the accurate
frequency domain information extraction by the FSEM. In con-
clusion, these results indicate that ExNet provides a dependable
and potent solution for a wide range of CD tasks, enabling it to
effectively address challenging real-world situations.

B. Complexity Analysis

In order to ensure a fair comparison of model efficiency, we
assess the complexity of ExNet and other comparison methods
based on the number of parameters (Params) and floating-point
operations (FLOPs). Table I presents a detailed comparison of
various networks in terms of Params and FLOPs. Our ExNet
demonstrates superior performance while maintaining a rea-
sonable number of parameters and FLOPs when compared to
alternative methods. It is crucial to highlight that our model’s im-
provement of frequency domain information significantly raises
computational complexity, resulting in a higher FLOPs count.
Conversely, simpler architectures such as FC-EF, FC-Siam-Diff,
and FC-Siam-Conv have fewer Params and FLOPs. Nonetheless,
they struggle to effectively address changes caused by scale
variations, leading to subpar performance. In conclusion, our
assessment suggests that ExNet strikes a favorable balance
between model complexity and performance, positioning it as a
practical choice for bitemporal RS image CD tasks. The results
of the GPU inference time of the proposed method and the
comparison methods are shown in Table II. The results in the
table are obtained by calculating the average value of GPU
inference time for all samples in the LEVIR-CD test dataset.

C. Ablation Study

The ablation study results are presented in Table III, which
is intended to confirm how well each component of the ExNet
performs, such as the ECI and FSEM. Two different sets of
ablation experiments were carried out on the LEVIR-CD and
WHU-CD datasets to provide a thorough demonstration of each
module’s effectiveness.

1) Ablation for ECI: The ECI’s efficacy is evaluated through
the gradual integration of AdaIN and DLF elements. The pri-
mary goal of ECI is to tackle the diversity present in bitemporal
RS images by aligning feature distributions. The experimental
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TABLE II
INFERENCE TIME OF THE PROPOSED METHOD AND THE COMPARISON METHODS

TABLE III
ABLATION STUDY ON THE LEVIR-CD AND WHU-CD DATASET

TABLE IV
METRIC VALUES WITH COMPARED EXCHANGE MODULES ON THE LEVIR-CD AND WHU-CD DATASETS

results unequivocally highlight the positive influence of ECI
on classification accuracy. More specifically, there is a 0.14%
enhancement in the F1-score for the LEVIR-CD dataset and a
0.63% increase for the WHU-CD dataset. These enhancements
underscore the significant role of ECI in harmonizing feature
distributions in bitemporal RS images, ultimately resulting in
improved performance in CD tasks.

Importantly, it is significant to highlight that ECI manages
to improve performance without substantially increasing the
number of parameters and FLOPs. This highlights the advan-
tage of ECI in improving ExNet’s capability to match feature
distributions in bitemporal RS images without a notable rise in
computational complexity. In general, these results confirm the
crucial contribution of ECI in enhancing ExNet’s efficiency in
handling the diversity of bitemporal RS images and improving
feature distribution alignment, ultimately leading to enhanced
CD performance.

To demonstrate the superiority of ECI over the exchange
modules utilized in changer, we have integrated spatial exchange
(Spex) and channel exchange (Chex) into the ExNet model. The
results of our experiments, outlined in Table IV, unequivocally
show that our feature exchange strategy surpasses the method
employed in changer. This further supports our earlier claim that

utilizing tessellation masks for exchanging bitemporal features
may significantly impact the integrity of altered objects. In con-
trast, our method, which focuses on the selective extraction and
exchange of DCEs, ensures the preservation of object integrity
while aligning feature distribution. The precise extraction and
exchange of DCEs from bitemporal features enable efficient
feature exchange, resulting in enhanced performance compared
to changer. These results highlight the effectiveness of our ECI
and our method for addressing the heterogeneity of bitemporal
RS images. Through the careful extraction and exchange of
DCEs, our technique achieves feature distribution alignment
without compromising the integrity of altered objects, ultimately
enhancing CD performance.

In the proposed ExNet, the introduction of DCEs and CCEs
in the bitemporal embedding aims to align feature distributions.
CCEs carry more semantic information related to changing
objects, whereas DCEs pertain to the background and play a cru-
cial role in feature distribution. Experimental evaluations were
carried out to assess the impact of different exchange times (1, 2,
3, and 4) on cross-temporal interaction. The results presented in
Table V, suggest that increasing the number of exchanges does
not enhance performance; instead, it leads to a decline in the F1
score. This decrease is attributed to inaccurate DCE exchanges,
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TABLE V
METRIC VALUES WITH DIVERSE SETTING OF EXCHANGE TIMES ON THE LEVIR-CD AND WHU-CD DATASETS

TABLE VI
METRIC VALUES WITH DIVERSE SETTING OF THRESHOLD T ON THE LEVIR-CD AND WHU-CD DATASETS, σ, μ ARE THE MEAN AND STANDARD DEVIATION, w

IS THE DYNAMIC WEIGHT

which can confuse bitemporal features, affecting CCE represen-
tation and overall model performance. Interestingly, results show
that exchanges at odd times (1 and 3) generally outperform those
at even times (2 and 4), indicating that odd exchanges effectively
align feature distributions, while even exchanges tend to restore
original distributions. Consequently, based on these results, we
opted for a single exchange in our experiments to balance feature
alignment and preserve original representations. This choice
allows for capturing DCEs accurately, thereby enhancing the
model’s performance in CD tasks.

In the ExNet model, the parameterT is crucial for defining the
range of DCEs for feature distribution alignment. To enhance the
extraction of DCEs and optimize bitemporal feature distribution
alignment, we introduce a dynamic threshold strategy linked to
the training iterations. To determine the best value for T , we
experiment with various values of T and present the results in
Table VI, where σ and μ denote the standard deviation and mean
of the DCEs, respectively, and w represents the dynamic weight
in (4). Our experiments show that the configuration specified in
(4) yields the highest performance, indicating that the dynamic
weight effectively adjusts to the boundaries between DCEs and
CCEs. By dynamically adapting the threshold based on the mean
and standard deviation of the DCEs, we can better identify
the DCEs that require exchange, thereby enhancing feature
distribution alignment. Consequently, in the ExNet model, we
employ the dynamic threshold T = μ− wσ to determine the
exchangeable DCEs. This dynamic threshold method improves
the model’s capacity to accurately select and exchange relevant
DCEs, resulting in enhanced performance in CD tasks.

2) Ablation for FSEM: To enhance the frequency representa-
tions of bitemporal RS images effectively, we introduce a FSEM
within the ExNet model. The FSEM improves the amplitude
and phase components of fusion features independently and
then boosts the combined real and imaginary parts. To assess

the FSEM’s effectiveness, we conduct ablation experiments by
gradually eliminating the convolutional branches in the module.
The results in Table III indicate that the FSEM enhances the
model’s performance on both the LEVIR-CD and WHU-CD
datasets. Specifically, the F1 score on the LEVIR-CD dataset
increases by 0.21%, while on the WHU-CD dataset, it rises
by 1.64%. As shown in Table III, the convolutional branches
(conva, convp, and convc) contribute to the performance en-
hancement with a slight rise in model complexity. Notably,
convc, involving concatenation and doubling feature dimen-
sions, significantly increases model complexity. Our rationale
for integrating the FSEM is that frequency domain information
offers better stability for CD tasks. Separating and enhanc-
ing global and semantic representations individually can lead
to improved performance. By enabling the model to capture
and restore frequency representations effectively, the FSEM
enhances the ExNet model’s discriminative power and overall
performance in CD tasks.

In the conducted experiments, we applied the FSEM after
each of the three stages of feature fusion in the ExNet model. The
purpose of FSEM is to create global information representations
and improve the semantic representations of the fusion features.
To examine the effect of FSEM at different stages, we systemati-
cally removed FSEM from each stage and evaluated the model’s
performance. The results, detailed in Table VII, unequivo-
cally illustrate that incorporating FSEM results in performance
enhancements across all scenarios. This highlights the pivotal
role of FSEM in generating global information representations
and enhancing semantic representations at each fusion feature
stage. The results underscore the importance of FSEM in cap-
turing and restoring frequency representations in bitemporal RS
images. By integrating FSEM at each stage, the ExNet model
effectively utilizes frequency separation and enhancement ben-
efits throughout the entire feature fusion process. This holistic
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TABLE VII
METRIC VALUES WITH DIVERSE SETTING OF FSEM ATTACHED STAGES ON THE LEVIR-CD AND WHU-CD DATASETS

TABLE VIII
METRIC VALUES WITH DIVERSE SETTING OF LOSSES ATTACHED STAGES ON THE LEVIR-CD AND WHU-CD DATASETS

TABLE IX
METRIC VALUES WITH DIVERSE SETTING OF LOSS FUNCTION ON THE LEVIR-CD AND WHU-CD DATASETS

Fig. 9. Illustration of DCEs and CCEs. Red denotes higher feature values and
blue denotes low values.

inclusion of FSEM ensures that the model accurately captures
and utilizes global and semantic information, ultimately leading
to enhanced performance in CD tasks.

D. Discussion of DCEs and CCEs

In this study, we introduce an innovative method for handling
cross-temporal feature interaction within the CD framework.
Our analysis reveals that feature embeddings can be categorized
into DCEs and CCEs. Fig. 9 illustrates that CCEs are linked to
objects prone to change, such as buildings in the LEVIR-CD
dataset, and encompass more semantically relevant informa-
tion regarding alterations. Conversely, DCEs depict background
characteristics, playing a significant role in the overall feature
distribution while containing limited semantic details. Building
on this result, our objective is to effectively extract and exchange
DCEs to tackle the diversity present in RS images. To accomplish

this, we devise a low-pass filter mechanism with an adaptive
threshold. This thresholding procedure distinguishes features as
DCEs if they possess low values, and as CCEs if they exhibit high
values, enabling a clear separation of DCEs and CCEs within
the feature embeddings.

To validate our method, we conducted multiple experiments
and presented the results in Tables III, IV and V, IV. The
results of these experiments offer substantial evidence in sup-
port of our theory, showcasing the efficacy of the proposed
method. Through precise extraction and exchange of DCEs, our
methodology effectively tackles the heterogeneity observed in
RS images and enhances the performance of CD. The process of
segmenting feature embeddings into DCEs and CCEs, followed
by the extraction and interchange of DCEs, provides a practical
and efficient means for cross-temporal feature interaction. This
method not only retains the semantic information pertinent to
CD but also effectively deals with the challenges arising from
the diverse nature of RS images.

E. Discussion of Multilevel Loss

In this article, we present a hybrid loss function that merges
BCE loss with Dice loss for CD. The hybrid loss aims to capture
both pixel-level similarity and object-level overlap between
predicted and actual change maps effectively. To assess the
hybrid loss’s efficacy, we perform experiments on models trained
at various decoder stages, detailed in Table VIII. The findings
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reveal that employing the hybrid loss throughout all stages yields
the most optimal performance. This implies that integrating
the hybrid loss at each decoder stage enhances CD accuracy.
Moreover, we compare models trained solely with BCE loss or
Dice loss, outlined in Table IX. The results demonstrate that
utilizing Dice loss outperforms using BCE loss alone. Further-
more, models trained exclusively with BCE or Dice loss exhibit
inferior CD performance compared to those incorporating the
hybrid loss. From these outcomes, we infer that the hybrid loss,
combining BCE and Dice losses, proves beneficial for CD. By
fusing pixel-level and object-level details, the hybrid loss boosts
the model’s capacity to precisely detect changes in input data.
Hence, we opt to apply the hybrid loss after every decoder stage
in our experiments.

VI. CONCLUSION

In this article, we investigate the cross-temporal feature in-
teraction to address the heterogeneity present in bitemporal RS
images. We posit that this heterogeneity can cause shortcomings
in CD models. To tackle this issue, we suggest categorizing
the bitemporal features into CCEs and DCEs to capture the
semantics and distribution of the features, respectively. To align
the features, we utilize two methods. First, we employ AdaIN to
harmonize the style of the bitemporal features by aligning them
based on their statistical characteristics. Second, we partially ex-
tract and exchange the DCEs to facilitate the alignment of feature
distributions. Furthermore, we introduce an FSEM to enrich the
frequency domain information within the combined features.
The FSEM comprises an amplitude enhancement branch and a
phase enhancement branch to enhance the amplitude and phase
components independently, thereby refining the representation
of frequency information in the features. The proposed ExNet
undergoes evaluation on three prominent CD datasets and is
benchmarked against cutting-edge methods. The experimental
outcomes illustrate the effectiveness and efficiency of ExNet in
achieving precise CD.
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