
11310 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024
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Abstract—The quantification of carbon fluxes (CFs) is crucial
due to their role in the global carbon cycle having a direct impact
on Earth’s climate. In the last years, considerable efforts have been
made to scale CFs from eddy covariance (EC) data to the globe.
In this work, a data-driven approach that exploits a multioutput
Gaussian processes regression algorithm (G-model) is proposed
to jointly estimate gross primary production (GPP), terrestrial
ecosystem respiration (TER), and net ecosystem exchange (NEE) at
a global scale. TheG-model not only provides an estimate of the CFs
but also an uncertainty. Moreover, it derives the three fluxes jointly
preserving their physical relationship. The predictors are selected
from a set of the moderate-resolution imaging spectroradiometer
(MODIS) products available on Google Earth engine. The perfor-
mance of the model revealed high accuracies (R2 reaching 0.82,
0.69, and 0.80 in the case of GPP, NEE, and TER, respectively), and
low root mean square errors (1.55 g m−2 d−1 in the case of GPP,
1.09 g m−2 d−1 for the NEE, and 1.14 g m−2 d−1 for TER) over the
FLUXNET2015 data set at eight-day time scale. The GPP estimates
provided by G-model outperformed the MOD17A2 product, and a
state-of-the-art GPP product (PML_V2) without using meteorolog-
ical forcing data sets. The results reported mean annual amounts of
133.7, 114.8, and 18.9 Pg yr−1 for GPP, TER, and NEE, respectively,
during the 2002–2023 period. The proposed approach paves the
way for the development of multioutput strategies that preserve
the physical relationships among CFs in upscaling processes.

Index Terms—Data-driven, gross primary production (GPP),
machine learning (ML), multioutput Gaussian process regression,
net ecosystem exchange (NEE), terrestrial ecosystem respiration
(TER).

I. INTRODUCTION

CARBON fluxes (CFs) are essential for understanding the
Earth’s carbon cycle and its influence on the climate

system. The estimation of CFs is a measure of how much carbon
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is being exchanged between the surface and the atmosphere.
These exchanges occur via natural processes such as photo-
synthesis, respiration, and decomposition. The three main CFs
are the gross primary production (GPP), terrestrial ecosystem
respiration (TER), and net ecosystem exchange (NEE). GPP
stands for the total amount of carbon that is fixed by plants
through photosynthesis, whereas TER refers to the total amount
of carbon that is released into the atmosphere by the respiration
of plants and other organisms present in the ecosystem. NEE is
the difference between carbon uptake and carbon release by an
ecosystem.

In-situ CFs are obtained from different networks of microm-
eteorological towers that use eddy covariance (EC) technique to
estimate GPP from NEE and TER. Towers operate in many coun-
tries, across America, Europe, and Asia, through the networks
AmeriFlux1 [1], integrated carbon observation system (ICOS)2

[2], AsiaFlux3 [3], or the FLUXNET global network4 [4]. These
measurements are representative of the corresponding EC tower
footprint, which may vary from hectometric to kilometric scales
depending on the site characteristics. At regional and global
scales CFs can be estimated using models that simulate the
carbon cycle adding the influence of several factors such as
vegetation types, soil properties, and climate conditions [5],
[6], [7]. In addition, CFs can also be estimated from polar
and geostationary remote sensing (RS) data such as the mod-
erate resolution imaging spectroradiometer (MODIS) [8] or the
spinning enhanced visible and infrared imager on board the
meteosat second generation [9], respectively, which are based on
production efficiency models (PEMs) based on Monteith logic.
A simple yet effective method to estimate GPP from RS data is
to employ vegetation indices or spectral band combinations as
proxies of GPP [10], [11]. Similarly, solar-induced fluorescence
can be used for inferring GPP [12], [13]. Other approaches link
RS and meteorological data with EC measures by using machine
learning (ML) methods [14], [15], [16], [17], [18], [19]. These
data-driven techniques rely on the relationship between vegeta-
tion properties and CFs to build a single model (one per flux to
be retrieved). The use of a single ML model for every predictive
variable can lead to good independent performances but does
not guarantee that the physical relationship among variables is
respected, leading to nonrobust approaches. Some studies have

1[Online]. Available at: https://ameriflux.lbl.gov.
2[Online]. Available at: https://www.icos-cp.eu/.
3[Online]. Available at: http://www.asiaflux.net.
4[Online]. Available at: https://fluxnet.org/.
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shown that the use of a unique multioutput model could improve
the results when estimating biophysical parameters at the same
time [20], [21]. However, this technique has not been tested
on upscaling global CFs exchange yet, where the balance be-
tween carbon uptake through photosynthesis and carbon release
through respiration leads to net ecosystem exchange GPP-TER
= NEE. Therefore, it is necessary to develop novel machine
learning algorithms that can preserve the physical consistency
across CFs from local to global scales and intercompare the
global estimates derived from various products.

In this framework, the objectives of this article are as follows.
i) To develop a data-driven approach to estimate CFs at a

global scale blending MODIS products and EC data.
ii) To build a single multioutput model able to jointly esti-

mate GPP, NEE, and TER in a robust way.
iii) To validate the estimates against global in-situ data, and

compare with two reference products (MOD17A2H and
PML_V2).

The approach relies on the use of multitemporal MODIS
products from Google Earth engine (GEE) as inputs in a mul-
tioutput Gaussian processes regression algorithm (G-model),
which exploits the covariance among CFs. The rest of this article
is organized as follows. Section II describes in-situ and RS
products, and the proposed multioutput algorithm. Section III
shows the model performance, the explanatory power of the
inputs, the derived global CFs maps, and a comparison with
other products. Section IV discusses the results, and Section V
concludes this article.

II. MATERIALS AND METHODS

A. Tower Data

The approach proposed in this study exploits data coming
from the FLUXNET network. The FLUXNET2015 dataset
was downloaded,5 which allowed the use of data coming from
211 sites globally distributed (see Supplementary Fig. SI). In
particular, we used the dataset update dating from February
6, 2020. The distribution of the flux sites according to the
International Geosphere-Biosphere Programme can be found
in Supplementary Table SI. Daily GPP, NEE, and TER data
were computed for every site from the average of the night- and
day-time partitioning methods present in the FLUXNET2015
dataset [22]. The sign convention used in this study was such that
CO2 flux to the surface was positive so that NEE = GPP-TER,
therefore positive values of NEE stand for vegetation carbon
uptake, and negatives for release. The NEE quality flag was
used to ensure the consistency between GPP, TER, and NEE,
and similarly to other studies, we excluded daily data when more
than 20% of the half-hourly data were based on gap-filling with
low confidence [15], [23]. Finally, daily data were temporally
aggregated (eight days) to match the RS products.

B. RS Products

The biosphere-atmosphere interactions related to photosyn-
thesis are mainly driven by photosynthetically active radiation

5[Online]. Available at: https://fluxnet.org/data/fluxnet2015-dataset/.

TABLE I
MAIN FEATURES OF THE SELECTED MODIS-BASED PRODUCTS

(PAR), as well as environmental and physiological variables,
such as water availability, temperature, chlorophyll content, and
leaf area index (LAI) [24]. On this basis, five MODIS-based RS
products were used to extract the predictors for the regression
method. Overall, eight predictors were selected, namely: PAR
from the MCD18C2 product; day- and night-time land surface
temperature (LSTD, LSTN) from the MOD11A2 product; evap-
otranspiration (ET) and potential ET (PET) from the MOD16A2
product, as well as the water stress factor (Cws) computed as
Cws =

ET
PET ; the kernel version of the normalized difference

vegetation index (kNDVI) [25] computed from the MCD43A4
red and NIR bands; and LAI from the MCD15A2H product.
KNDVI was selected since generalizes the NDVI and other
indices such as NIRv [25], and its good performance to retrieve
vegetation traits [26]. The GEE platform was used to download
the selected MODIS products over the flux sites from 2002
(when starts the availability of all considered MODIS products)
to 2014 (when ends the availability of the FLUXNET2015
data), thus fitting the coincident temporal range between the
FLUXNET2015 dataset and the RS observations. The final value
of the predictors that were assigned to every tower was the mean
of the pixel values contained in a 500-m radius buffer weighted
by their spatial extension. Other spatial buffers were initially
tested but provided suboptimal results. The quality flag of every
predictor was also used to discard bad-quality pixels. In the
case of the MCD18C2 product, the values were integrated to
obtain a daily-integrated PAR and aggregated to eight-day for
temporal consistency among the rest of the predictors and EC
data. Eventually, two reference GPP products (MOD17A2H, and
PML_V2) were downloaded from GEE with the same afore-
mentioned processing to compare the GPP retrievals. Table I
highlights the main features of the products.

C. Multioutput Gaussian Processes Regression (𝒢-Model)

Gaussian processes (GPs) [32] are statistical techniques that
offer a probabilistic approach for kernel regression methods in
which the likelihood of unobserved latent functions is supposed
to be modeled by a multivariate Gaussian prior. The approach
makes use of a latent function of the inputs f(x) (the RS predic-
tors) plus constant Gaussian noise to estimate the outputs (the CF
of interest) as y = f(x)+εn, εn∼N(0,σ2

n). The latent function
is chosen to be a zero mean GP prior, or (x)∼ GP(0,kθ), where

https://fluxnet.org/data/fluxnet2015-dataset/
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kθ is a covariance function parametrized by θ. The noise power
is given by the hyperparameter σ2

n, and it is assumed that the
noise εn follows a prior Gaussian distribution. Given the GP
priors, samples drawn from f(x) at xi = {x1

i , . . . ,x
B
i }Ni=1 (N is

the number of training samples, and B is the number of predic-
tors) follow a joint multivariate zero-mean Gaussian distribution
defined by the covariance matrix K, where [K]ij = kθ (xi, xj).

The output of the model is computed from the predictive
distribution described by the equations

p (y∗ |x∗, D ) = N
(
y∗
∣∣μGPR∗, σ2

GPR∗
)

(1)

μGPR∗ = k�
∗ (K+σ2

nIn)
−1
y = k�

∗ α (2)

σ2
GPR∗ = σ2 + k∗∗ − k�

∗ (K+σ2
nIn)

−1
k∗ (3)

where D stands for the training dataset (beingx∗ and y∗ the input
and output), k∗ = [k(x∗, x1), . . . ,k(x∗, xN )] is an N×1 vector
and k∗∗ = k(x∗, x∗). The model provides a full posterior proba-
bility from which predictions (μGPR∗) and confidence estimates
(σ2

GPR∗) can be computed. In the single output approach y ∈
R

N×1, the output of interest (e.g., GPP) is computed from the
inputs (eight RS predictors, xi ∈ R

N×8) as

ŷ = f (x) =

N∑
i=1

αikθ (xi,x)+α0 (4)

where αi is the weight assigned to each predictor xi, α0 is
the bias term, and kθ is the covariance function evaluating the
similarity between x and all the N training spectra. For this task,
the automatic relevance determination kernel was selected

K(xi,xj) = νexp

(
−

B∑
b = 1

(
xb
i − xb

j

)2
/2σ2

b

)
+σ2

nδij (5)

where ν is a scaling factor,σn accounts for the standard deviation
of the noise, B is the number of predictors (in our case, B = 8),
andσb can be related to the spread of each predictor b. The model
hyperparameters θ = [ν,σn, σ1, . . . , σb] can be estimated by
maximizing the marginal log-likelihood [32]

logp (y |xi, θ ) = − 1

2
y�(K+ σ2

nIn
)−1

y − 1

2
log
∣∣K+σ2

nIn
∣∣

− N

2
log (2π) . (6)

The model can be adapted to deal with multioutput regression
problems (G-model) adapting the kernel hyperparameters for a
unique kernel, which is able to deal with all the outputs. In the
G-model we need to optimize the hyperparameters considering
that y ∈ R

N×D instead y ∈ R
N×1 where D is the total number

of outputs (in our case, D = 3). Therefore, a global cost function
summarizing all the cost functions (one per output) into a single
one must be defined. Here, we use a global cost function C just
as the squared sum of the standard model cost function of each
output [32]

C =

D∑
d=1

logp(yd |x )2

=
D∑

d=1

⎛
⎝−1

2
y�
dα−

N∑
j=1

log Ljj − N

2
log (2π)

⎞
⎠

2

(7)

whereLjj is the Cholesky factorization of the covariance matrix
for every output.

D. Algorithm Calibration and Performance

The G-model was created with 14 562 samples obtained
matching the EC data and the RS products at eight-day temporal
resolution. The inputs underwent min-max scaling to transform
them into the 0–1 range, as the predictors exhibited a substantial
range of variation. Employing this technique is highly advisable
to mitigate the risk of suboptimal performance by machine learn-
ing algorithms. A total of 70% of the samples were randomly
selected for training and we assessed the results in the remaining
30% (test set unused during model training). Different random
initializations were conducted and no significant changes in
performance were obtained (not shown for brevity). Root mean
square error (RMSE), mean error (ME), mean absolute error
(MAE), and the coefficient of determination (R2) were com-
puted over the test set to evaluate the accuracy, bias, and the
goodness-of-fit of the model.

In addition, the model behavior was tested by identifying
the most relevant predictors for every estimated flux. This was
achieved by means of a sensitivity analysis carried out through
an added-noise permutation approach [33]. The inputs were
perturbed with Gaussian white noise N(0,σ2), being σ2 the
3% of the perturbed signal amplitude. The noise was added to a
single predictor remaining the rest of the predictors unperturbed,
and repeating this process for every predictor. The predictor
relevance for every flux was computed as the difference between
the accuracy obtained with no perturbation, and the obtained
when the perturbation was applied. Finally, the results were
normalized with respect to the most relevant predictor.

III. RESULTS

A. Assessment of the Model Performance Over Tower Data

Fig. 1 shows the direct validation obtained over the test set.
The outputs of the model preserve the physical relationship
among the three fluxes (see codistributions in Fig. SII). The
accuracy metrics revealed good correspondence between esti-
mations and in-situ measurements. It is worth mentioning the
high R2 values, which reach 0.82, 0.69, and 0.80 in the case of
GPP, NEE, and TER respectively. RMSE was 1.55 g m−2 d−1

for GPP, 1.09 g m−2 d−1 for NEE, and 1.14 g m−2 d−1 for
TER. The NEE and TER predictions revealed low and very
similar MAE and ME (see Fig. 1) whereas GPP exhibits slightly
higher MAE (1.04 g m−2 d−1) and lower ME (0.01 g m−2 d−1).
The same scatterplots showing the biome of every data point
are provided in supplementary material (see Fig. SIII) as well
as the number of validation data for every year and biome
(see Fig. SIV). In addition, Fig. 2(d) and (e) shows the per-
formance of MOD17A2 and PML_V2 products over the same
test set. Note that these products do not provide NEE nor
TER. The RMSEs and MAEs of MOD17A2 and PML_V2 are
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Fig. 1. CFs, (a) GPP, (b) NEE, and (c) TER obtained with the 𝒢-model over the EC validation set. ME, RMSE, and MAE units are g m−2 d−1. GPP estimates of
(d) MOD15A2 and (e) PML_V2 GPP obtained over the EC validation set. ME, RMSE, and MAE units are g m−2 d−1.

Fig. 2. G-model predictor importance for (a) GPP, (b) NEE, and (c) TER.

2.44 g m−2 d−1 and 2.11 g m−2 d−1, and 1.66 g m−2 d−1 and
1.48 g m−2 d−1, respectively. The reported biases regarding EC
data are −0.50 g m−2 d−1 and −0.31 g m−2 d−1 in the case of
MOD17A2 and PML_V2, respectively.

The G-model accuracy metrics were disaggregated per biome
type as shown in Table II. Note that the results over deciduous
needleleaf forests are obtained only over one available site and
may not be representative of this biome. The best results in
all metrics for GPP were obtained over WSA. In the case of
NEE, the best accuracy metrics were observed over EBFs and
deciduous needleleaf forests (for ME and R2), and OSHs (for
RMSE and MAE). The lowest errors for TER were reported over
WSA, whereas the highest correlation was found over EBFs.

B. Sensitivity Analysis

In every permutation, the amount of noise added to the per-
turbed input was 3% of the signal amplitude. Other amounts

ranging from 3% to 9% of the signal amplitude were also tested
and provided the same results regarding inputs’ relevance. Fig. 2
shows the relevance of every predictor for GPP, NEE, and TER
retrievals. The relevance of every predictor was normalized with
the value of the maximum relevance predictor in every case. The
G-model sensitivity analysis revealed the daily integrated PAR
from the MCD18C2 product as the most influential input for
both GPP and NEE estimates. LAI from the MOD15A2 product
proved as the most relevant predictor for TER retrievals.

C. Mean Annual Fluxes

After the completion of the G-model training phase, the
model was effectively applied to derive global GPP, NEE, and
TER maps. Figs. 3–5 show the mean annual predictions and
uncertainties of every flux computed for the 2002–2023 period
along with their latitudinal profiles. The spatial pattern of the
GPP (see Fig. 3, top) and TER (see Fig. 4, top) shows that
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TABLE II
ACCURACY ASSESSMENT PER BIOME IN THE EC VALIDATION SET

Fig. 3. Global average maps for annual GPP (top) and model uncertainty σGPP (bottom) computed for the 2002–2023 period.

the tropics, encompassing regions like Southeast Asia, central
Africa, and South America, exhibit a notable high mean annual
GPP. Conversely, high latitudes, western North America, and
both central Asia and Australia are characterized by consider-
ably lower mean annual GPP and TER. The NEE map (see Fig. 5,
top) presents a similar spatial pattern. It is worth mentioning that

the spatial distribution of the mean annual uncertainty of every
flux is slightly different. The σGPP (see Fig. 3, bottom) exhibits
a relatively consistent latitudinal profile, hovering around a
value of 0.2 kg m−2 yr−1. However, there is a zone between
62 and 65° N where the values are lower (see blueish colors
in the north of the σGPP map). In the case of σTER and σNEE
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Fig. 4. Global average maps for annual TER (top) and model uncertainty σTER (bottom) computed for the 2002–2023 period.

their spatial patterns are similar (see Figs. 4 and 5, bottom).
Their latitudinal uncertainty values are broadly constant around
0.15–0.2 kg m−2 yr−1 with no major variations, however σNEE

presents lower spatial variability (see Fig. 5, bottom).
The results reported global amounts of 133.7, 114.8, and

18.9 Pg yr−1 for GPP, TER, and NEE, respectively, in the
2002–2023 period. Note that those values preserve the rela-
tionship among CFs (NEE = GPP− TER). In the case of
MOD17A2 and PML_V2 products, we found a GPP global mean
of 118.3 Pg yr−1 and 143.6 Pg yr−1, respectively. Note that in
the case of the PML_V2 the period was 2002–2020 due to data
availability.

D. Comparison With MOD17A2 and PML_V2 Products

The GPP estimates were compared with the provided ones by
the MOD17A2, and the PML_V2 products available on GEE.
The comparison was carried out at the site level (see Fig. 6).
The R2 values regarding the MOD17A2 and PML_V2 were
0.63 and 0.70, respectively. The G-model predictions present
a positive bias (0.71 g m−2 d−1) regarding the MOD17A2,
and a negative one with respect to the PML_V2 estimates
(−0.46 g m−2 d−1). Table III shows the comparison per biome
type. The best concordances regarding the MOD17A2 product
have been found over OSHs in terms of RMSE, MAE, and R2,
and over crops in terms of ME. Over closed shrublands have been
found the highest agreement regarding the PML_V2 estimates,
but the lowest R2 has been observed regarding the MOD17A2.

The lowest correspondences regarding the two reference datasets
have been reported over crops.

Fig. 7 shows different maps of the mean annual GPP regard-
ing the reference datasets (ΔGPP = GPPGmodel −reference). In
general, the G-model agrees well with the PML_V2, however,
a slight overestimation of the GPP estimates provided by the
PML_V2 regarding the G-model is reported at high latitudes
(see Fig. 7, top). Fig. 7 (bottom) shows the MOD17A2 esti-
mates systematically underestimate GPP regarding the G-model
(mainly in the tropics) except over some locations.

Finally, Fig. 8 shows the global GPP computed for ev-
ery year during the 2002–2023 period in the case of the G-
model, the MOD17A2, and the PML_V2 product (2002–2020
period). Global GPP provided by the G-model varies from
131.8 Pg C yr−1 to 137.6 Pg yr−1, whereas the MOD17A2
reported lower amounts in the same period (118.1 Pg yr−1 to
119.9 Pg C yr−1). The PML_V2 product showed a range of
128.5–133.9 Pg yr−1 (from 2002 to 2020). The correspond-
ing linear trends in global GPP reported by the G-model, the
PML_V2, and the MOD17A2 are 0.28±0.02, 0.21±0.03, and
0.09±0.02 Pg yr−1 yr−1, respectively.

IV. DISCUSSION

A. Model Performance and Explanatory Variables

The state-of-the-art machine learning approaches that pro-
vide the highest accuracies are based on a combination of RS
observations and meteorological variables as inputs [18], [19],
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Fig. 5. Global average maps for annual NEE (top) and model uncertainty σNEE (bottom) computed for the 2002–2023 period.

Fig. 6. GPP comparison between the proposed approach and (a) the MOD17A2 and (b) the PML_V2 products, respectively. ME, RMSE, and MAE units are
g m−2 d−1.

[20]. Nevertheless, this study exclusively utilized a set of RS
predictors derived from MODIS data into a machine learning
regression method, resulting in a remarkable level of concor-
dance between GPP, NEE, and TER retrievals and in-situ data.
The interactions between CO2 fluxes and RS/meteo variables
depend significantly on ecosystem types and state [34]. A main
advantage of the proposed approach is its potential to obtain
globally those fluxes without a priori knowledge of the pixel
characteristics. The results of the accuracy assessment show an

outperformance of the G-model regarding both MOD17A2, and
PML_V2 GPP products. The highest correlations for GPP and
TER were obtained over WSA, SA, grasslands, (in line with
the results of Joiner et al. [23]), and EBFs. In the case of NEE,
the best correlation was obtained over the deciduous broadleaf
forest, WET, and crops. Crops are the biome where the worst
results were reported in the case of GPP and TER (R2 ≤ 0.58),
however, the model performance in terms of correlation for NEE
over this biome was good (R2 = 0.77). Closed and OSHs are the
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TABLE III
GPP ACCURACY METRICS PER BIOME WITH REGARD TO THE MOD17A2 AND PML_V2 PRODUCTS

Fig. 7. Global difference maps for mean annual GPP regarding (top) PML_V2 product and (bottom) MOD17A2 for the 2002–2020 period.

biomes where the lowest correlations for NEE (R2 ≤ 0.31) have
been found.

The G-model consistently predicted GPP, NEE, and TER
while effectively maintaining their inherent relationship. This
is an important feature of this work since the usual procedure
in machine learning approaches does not exploit the covari-
ance of the CFs when upscaling in-situ data to a global scale.

Tramontana et al. [35] developed an approach for partitioning
CFs preserving the relationship among them using neural net-
works physically constrained, but only applied with in-situ data.

The selection of the RS predictive variables is based on the
main drivers of photosynthesis, transpiration, and respiration
processes. In this regard, MODIS products that are related to wa-
ter, radiation, temperature, and ET were selected. The ranking of
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Fig. 8. Trends for mean annual GPP obtained by the G-model and the
MOD17A2 for the 2002–2023 period, and the PML_V2 for 2002 to 2020.

the explanatory variables highlighted PAR as the most influential
predictor of GPP estimates as expected according to Monteith
logic [36]. However, the vegetation index kNDVI has also a
great influence, which suggests that it might be connected with
the light use efficiency (LUE). In fact, Wu et al. [37] proposed
a GPP approach incorporating vegetation indices for LUE and
the fraction of absorbed PAR (FAPAR) estimation. In literature,
different authors have shown the usefulness of vegetation indices
as proxies of both LUE and FAPAR [38], [39].

The relevance analysis for TER estimates revealed LAI as
the most important variable. LSTN, ET, PET, and Cws also
revealed as important factors for TER. In the case of NEE, the
main explanatory variables were the two most relevant for GPP
and TER, i.e., PAR and LAI. Globally, the temperature is an
influencing factor on the three fluxes: the diurnal temperature
slightly affects GPP (i.e., photosynthesis), probably through the
LUE in case of thermal stress (similar to the role of ET in
case of water stress), and night temperature affects respiration
process and, to a lesser extent, the NEE. Respiration provides
the energy for a plant to acquire nutrients and to produce and
maintain biomass. The total plant respiration can be split into
three functional components: growth respiration, maintenance
respiration, and the respiratory cost of ion uptake [40]. The
maintenance respiration is expected to be greater in productive
ecosystems and then to be positively correlated with LAI, with
rather high relevance in respiration estimation as shown in
Fig. 3. Maintenance respiration depends also on environmental
stresses: for a given ecosystem it increases with temperature and
drought. However, plants from hot environments have lower
respiration rates at a given temperature than plants from cold
places [40]. In any case, temperature and water balance are both
rather relevant variables in respiration processes.

B. Global Estimates

GPP estimates at the site level provided by the G-model are
highly correlated with both MOD17A2 and PML_V2 estimates
(R2 = 0.63 and R2 = 0.71). One factor that explains the high
correlation is the use of similar inputs in the approaches. The per
biome type comparison found the best agreements over OSHs in

the case of MOD17A2, and over closed shrublands in the case
of PML_V2. It is worth mentioning that the worst consistencies
between products were obtained over crops in both cases. The
spatial distribution of the GPP is consistent with the MOD17A2,
and PML_V2 products. The major concentrations of GPP and
TER are located in the tropics and decrease to high and low
latitudes. In particular, the highest vegetation density areas
(associated with high carbon uptakes) are distributed around
the equator due to the presence of the intertropical convergence
zone, a band of cumulus convection with a high average annual
precipitation [41]. The lowest values are found over arid regions
(such as Sahara and Arabian deserts in the North hemisphere
and Atacama and Kalahari in the South hemisphere), which are
located in the subtropical high-pressure belts centered around
±30° latitude.

TheG-model provided a global GPP (133.7 Pg yr−1) similar to
the one reported by other studies. For instance, Zhang et al. [42]
reported an average global annual GPP around 125 Pg yr−1 for
the VPM and FluxCom products. Joiner et al. [23] revealed
an annual GPP value of around 140 Pg yr−1. Jung et al. [18]
found a mean global GPP of 111 Pg yr−1 for FluxCom-RS,
120 Pg yr−1 for FluxCOM-RS+METEO product, and a range
of 83–172 Pg yr−1 for TRENDY v7 models. Dong et al. [43]
carried out an inter-comparison of global GPP annual mean
provided by PEM models, which reported a range of variation
of 125–165 Pg yr−1. In addition, Badgley et al. [10] reported
a range of 131–163 Pg yr−1 using the NIRv as a proxy for
GPP. Recently, Li et al. [44] reported 125.74 Pg yr−1 as a mean
value for the 1982–2019 period, and Tagesson et al. [45] found
121.8 Pg yr−1 over the 1982–2015 period. The TER and NEE
budgets found in this study (114.8 Pg yr−1, and 18.9 Pg yr−1,
respectively) are closer to the ones reported by Zeng et al. [46]
(TER ranging from115 to 121 Pg yr−1, and NEE ranging from
20 to 22 Pg yr−1). In addition, Li et al. [44] found 109.3 Pg yr−1

for TER, and 16.28 Pg yr−1 for NEE, and Tagesson et al. [47]
reported 105.6 Pg yr−1 for TER in the 1982–2015 period. These
values are lower than those found in our study. The range of
variation of the values reported in the literature indicates a sig-
nificant level of uncertainty persists across different approaches.

The 2002–2023 temporal analysis provided a GPP trend
(0.28±0.02 Pg yr−1 yr−1) similar to other studies. Tagesson
et al., [45] found a trend of 0.27±0.02 Pg yr−1 yr−1 in the
1982–2015 period, Guo et al. [19] and Zeng et al. [46] reported
021 Pg yr−1 yr−1 and 0.49 Pg yr−1 yr−1 both computed during the
1999–2019 period. The inter-comparison conducted by Dong
et al. [43] reported a range of global GPP trends of different
products, which varies from −0.22 to 0.51 Pg yr−1 yr−1 over
different periods.

C. Model Uncertainty

Although the results show a good level of agreement regarding
in-situ data and other products, there exist sources of uncertainty
that propagate into the model. The spatial mismatch between the
footprint of the EC towers and the RS data spatial resolution is
a source of uncertainty in CF retrievals. Uncertainties in the EC
covariance data (modeled by the noise parameter σ2

n), and in the
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RS-based products can propagate into CFs retrieval [48], [49],
[50]. In addition, the different spatial resolutions of the model
inputs may also affect the stability of the predictions [51].

The G-model provides not only a joint estimate of GPP,
NEE, and TER but also an uncertainty (or confidence interval)
for the retrievals. Note that the uncertainty of the predictive
mean estimate does not depend on the value of the predictive
mean but accounts for the similarity of the new inputs (x∗)
regarding the inputs trained in the model (xi). Therefore, high
uncertainties would be obtained in scenarios where the behavior
of the inputs is not accounted for during model training. The
latitudinal profiles of the uncertainties are quite constant and
do not follow the latitudinal variation of the GPP, NEE, and
TER. This decorrelation between predictions and uncertainties
suggests that the uncertainties are not influenced by the value of
the prediction.

V. CONCLUSION

This study developed a data-driven approach using a multi-
output regression method that is able to predict GPP, TER, and
NEE at the same time. The G-model estimates the three fluxes
jointly also conserving their physical relationship, which is one
of the drawbacks of the classic machine learning algorithms. The
predictors of the model came from five MODIS products, which
resulted in eight explanatory variables. Among them, the PAR
and kNDVI were identified as the most relevant inputs for GPP,
whereas the LAI and LSTN were the most influential for TER re-
trievals. PAR and LAI were also the most important for the NEE.
The model was well calibrated at tower level and successfully
upscaled to globe. At tower level, the best results were obtained
for GPP (R2 = 0.82), followed by TER (R2 = 0.80), and NEE
(R2 = 0.69). The RMSE was 1.55 g m−2 d−1 in the case of GPP,
1.09 g m−2 d−1 for NEE, and 1.14 g m−2 d−1 for TER. These
results, obtained from only MODIS-based inputs, outperformed
MOD17A2H and PML_V2 products. At a global scale, the
spatial distribution of the derived maps agreed with MOD17A2H
and PML_V2. The results provide a mean annual GPP value of
133.7 Pg yr−1 and a global trend of 0.28 Pg yr−1 yr−1 for the
2002–2023 period that fall within the range reported by other
works. However, further studies are needed to better understand
the spatial and temporal patterns of global CFs that help to reduce
uncertainties among approaches.
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