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Abstract—Monitoring frequent vegetation destruction events is
important for ecological conservation and environmental manage-
ment. Satellite remote sensing technology is a vital tool for vegeta-
tion monitoring. Compared with the classifier-based methods, the
spectral index-based methods have the advantages of fast speed
and low cost. However, due to the complexity of the background
environment and the spectral diversity of vegetation destruction
events, there is still a lack of universal spectral indices suitable
for various vegetation destruction events, and the existing spectral
indices lack applicability in complex scenes. In this article, we
proposed a new spectral index (called baseline-based vegetation
destruction index, BVDI) using the distance from the red band to
the baseline formed by the green and near-infrared bands to detect
various vegetation destruction events in complex scenes. PROSAIL
simulation data, various possible vegetation change scenes, and
multiple vegetation destruction cases were utilized to evaluate the
performance of BVDI. The results showed that BVDI was superior
to the four developed indices (NDVI, EVI, NDMI, and NBR) in
highlighting vegetation information while suppressing background
information. In addition, BVDI showed strong robustness in cases
of vegetation destruction caused by events such as wildfires, log-
ging, insect infestations, landslides, and floods. Compared with
the two data products (GLADFA and CEMS), the BVDI-based
method provided more detailed spatial information. In addition,
BVDI exhibited broad applicability to other multispectral sensors
(Landsat-8 and Landsat-9). Therefore, BVDI is an efficient and ro-
bust spectral indicator that provides technical support for regional
and even global vegetation monitoring and diagnosis.

Index Terms—Baseline-based vegetation destruction index
(BVDI), Landsat images, natural and human factor, Sentinel-2,
vegetation destruction.
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I. INTRODUCTION

V EGETATION serves as a nexus for the exchange of carbon,
water, and energy between the land and the atmosphere,

offering ecosystem services such as food, fiber, and fuel [1],
[2], [3]. Climate change and human activities exert dual pres-
sures on terrestrial vegetation [4], [5]. Frequent events such as
logging, wildfires, floods, and landslides exacerbated vegetation
destruction [6], [7]. Vegetation destruction refers to the loss of
tree vegetation, which has serious impacts on the function of
ecosystems [8], [9]. According to the World Resources Institute,
global forest coverage shrank by 450 million hectares over the
last two decades, about 10% of the global forest coverage in
2000 [10]. Over the past 20 years, it has been estimated that
the area of terrestrial vegetation loss has doubled [11]. Hence,
accurate detection of vegetation destruction events is valuable
for ecological valuation and environmental management [12],
[13], [14].

The traditional means to obtain the range of vegetation de-
struction relies on time-consuming and costly field surveys
[15], [16]. Remote sensing technology, due to its advantages
of high frequency, large coverage area, and easy access, has
emerged as an indispensable tool for earth observation [10], [15],
[17]. Presently, research on vegetation destruction detection can
be summarized in two groups, including single-image-based
classification and multitemporal image-based change detection.
Among them, the method based on a single image combines
the remote sensing features of vegetation destruction events
with advanced classifiers and has been widely used in various
vegetation destruction events [6], [18], [19], [20], [21], [22]. Cho
et al. [20] realized burned-area mapping based on PlanetScope
imagery using the U-Net semantic segmentation model, with an
F1 score greater than 0.88. Das et al. [23] developed a convo-
lutional neural network model to achieve accurate detection of
deforestation in the Amazon region with an IoU greater than
0.94. However, the accuracy of these methods depends on the
quantity and quality of training samples, and it is difficult to gen-
eralize their clustering rules for different vegetation destruction
scenarios across large areas.

To address this limitation, researchers turned to spectral
index-based change detection methods, which utilize multitem-
poral images to detect vegetation destruction [24], [25], [26],
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[27], [28], [29]. Remotely sensed vegetation indices (VIs) are
widely used in disturbance ecology, such as logging, wild-
fires, landslides, insect infestation, and mining [30], [31], [32],
[33]. Alcaras et al. [28] used Sentinel-2 imagery to develop an
algorithm based on normalized burn ratio (NBR) to monitor
burned areas in northeastern Italy. Based on Sentinel-2 imagery,
Afira and Wijayanto [29] monitored burned areas in Rokan
Hilir Regency Riau, Indonesia, using a normalized difference
vegetation index (NDVI). Peereman et al. [30] used the enhanced
vegetation index (EVI) based on Landsat images to detect
mangrove destruction caused by tropical cyclones on a global
scale. The validity of the spectral index plays a crucial role
in the effectiveness of multitemporal methods for identifying
vegetation destruction events.

Although the multitemporal change detection method based
on the spectral index has yielded satisfactory results in specific
scenarios [23], [34], [35], there are still challenges to accu-
rately detect vegetation destruction events using existing VIs.
First, due to the spectral diversity of vegetation destruction,
it is difficult to find a universal and valid spectral indicator
[36], [37]. Existing VIs were primarily developed for specific
vegetation destruction events and failed to achieve satisfactory
results when applied to different events [38]. For example,
logging and landslide events remove most or even all vegetation
information, exhibiting spectral characteristics similar to bare
soil. Vegetation greenness-based VIs like NDVI outperforms
vegetation water content-based VIs such as normalized differ-
ence moisture index (NDMI) and NBR [39], [40]. However,
after wildfires, an increase in black carbon concentration of
soot and ash absorbs most of the solar radiation, causing the
“darkening” phenomenon. In these instances, NBR performs
better than NDVI [24], [29]. Second, existing VIs often neglect
background interference and can misidentify other nonrelevant
target pixels. For example, rapid urban construction involving
land clearing or shifts in water extent or color can be mistaken for
“true change” in vegetation within short time intervals [40], [41].
To accurately detect vegetation destruction events, the effects
of the background environment must be considered to reduce
misclassification errors [29], [35]. Therefore, it is necessary to
develop a universal spectral index that can be applied to detect
vegetation destruction in various scenarios.

In the above-mentioned context, the proposed index should
exhibit two main features: 1) expanding the difference between
vegetation and nonvegetation land cover to highlight changes
in vegetation due to different damage events, and 2) narrowing
the intraclass differences between nonvegetation land cover to
reduce the interference of background environmental changes.
To achieve these purposes, we developed a spectral index appli-
cable to multiple types of vegetation destruction using Sentinel-2
multispectral data. We conducted extensive global testing and
validation, involving various vegetation change scenes and di-
verse instances of vegetation destruction, to evaluate the robust-
ness of the proposed index. This assessment involved detailed
comparisons with the four most representative VIs. Our specific
objectives include the following.

1) Developing a new index (BVDI) by analyzing the spectral
curves of Sentinel-2 images.

2) Evaluating the sensitivity of BVDI to vegetation change
and its ability to minimize intraclass variation among
nonvegetation pixels.

3) Verifying the performance of BVDI in highlighting vege-
tation changes and suppressing background environmen-
tal changes.

4) Evaluating the performance of BVDI through compar-
isons with two existing data products.

5) Testing the applicability of BVDI on other multispectral
data.

II. MATERIALS

A. Study Area

The seasonal fluctuations in vegetation can influence the
effectiveness of short-interval vegetation destruction monitoring
[41]. Considering the differences in vegetation phenology and
type across different climatic regions, different study sites were
selected to assess the performance of the BVDI to ensure its ro-
bustness. Taking into account both the representativeness of the
study areas and data availability, we selected several study sites
in multiple regions, including the Canada, United States, Brazil,
Singapore, Pakistan, China, Australia, and Mediterranean coun-
tries such as Spain, Portugal, Tunisia, Italy, and Greece to
conduct our experiments. The geographical distribution of these
study areas is shown in Fig. 1.

B. Data Sources

1) Remote Sensing Data: Sentinel-2 imagery was obtained
from the Copernicus Data Space Ecosystem website.1 These
images were preprocessed using the Sen2Cor plug-in (version
2.11) and Sen2Res plug-in (version 5), both provided by the Eu-
ropean Space Agency. Furthermore, we obtained Landsat-8 and
Landsat-9 imagery from the United States Geological Survey
(USGS) web site2 to evaluate the broad applicability of BVDI.
The ENVI software (version 5.3) was used for preprocessing
the Landsat images, including radiometric calibration and at-
mospheric correction.

2) Standard Spectral Curve: The ECOSTRESS spectrum
library3 is the National Aeronautics and Space Administration
(NASA) and the Jet Propulsion Laboratory (JPL) collaboration
projects, provides spectral reflectance data for over 2000 mate-
rials [42]. This database has found wide application in studies of
vegetation, bare soil, and man-made structures [43]. We obtained
standardized spectral reflectance data from the ECOSTRESS
spectral library for vegetation (trees, shrubs, grasses), artificial
surfaces (concrete, roof tiles, roads), bare soil (Inceptisol, Enti-
sol), and water bodies.

3) PROSAIL Simulation Data: The PROSAIL model com-
bined the PROSPECT and SAIL models to simulate plant
canopy reflectance, linking leaf biochemical content to canopy
structure [44], [45]. PROSAIL model is widely used for retriev-
ing biophysical properties of vegetation in agriculture, forestry,

1[Online]. Available at: https://dataspace.copernicus.eu/.
2[Online]. Available at: https://earthexplorer.usgs.gov/.
3[Online]. Available at: https://speclib.jpl.nasa.gov/.

https://dataspace.copernicus.eu/
https://earthexplorer.usgs.gov/
https://speclib.jpl.nasa.gov/
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Fig. 1. Distribution of the study area.

TABLE I
PARAMETERS OF THE PROSAIL MODEL

and ecology [46], [47]. The code of PROSAIL model was
acquired from the website.4 We referred to the parameter settings
of related studies [48], [49], [50] utilizing PROSAIL model, and
Table I lists the detailed parameters used in this article.

4) Reference Data: The sample points used to calculate the
confusion matrix were chosen by visual interpretation of Google
Earth maps.5 Sample point data for each study site were selected
at a 1:1 ratio of vegetation destruction pixels to background
pixels. In addition, two vegetation products, including Global
Land Analysis and Discovery Forest Alerts (GLADFA) data6

and Copernicus Emergency Management Service (CEMS) data7

were selected for further validation. GLADFA is a global forest
change product developed using Landsat imagery and updated
annually with a spatial resolution of 30 m. The accuracy of forest

4[Online]. Available at: http://teledetection.ipgp.jussieu.fr/prosail/.
5[Online]. Available at: https://earth.google.com/web/.
6[Online]. Available at: https://glad.umd.edu/dataset.
7[Online]. Available at: https://emergency.copernicus.eu/.

loss detection in GLADFA data is 87.0–87.8% globally [8].
CEMS is an emergency map of European hazards (including
wildfires) in vector format. Some studies have noted that CEMS
data have an accuracy of over 90% for burned area monitor-
ing [51]. Specific reference data information is provided in
Table SI.

III. METHODOLOGY

As shown in Fig. 2, the workflow of this study consists
of two parts: 1) construct a novel index (named BVDI) and
2) evaluate the performance of BVDI. First, Sentinel-2 and
Landsat multispectral data were preprocessed. Sample points
of various land cover and vegetation destruction events were
selected and their spectral characteristics were analyzed to
develop BVDI. Second, the dual-temporal image difference
method was used to evaluate the performance of BVDI in six
experiments. The evaluation method includes a detailed com-
parison with four representative indexes and two data products

http://teledetection.ipgp.jussieu.fr/prosail/
https://earth.google.com/web/
https://glad.umd.edu/dataset
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Fig. 2. Technical framework for the development and validation of the BVDI index in this study. Note that “Veg.” represents vegetation, “Wat.” represents water
body, “Bar.” represents bare soil, “Art.” represents artificial surface, “Log.” represents logging, “Wild.” represents wildfire, and “Land.” represents landslide.

and a calculation of confusion matrix for quantitative accuracy
evaluation.

A. Design of BVDI

1) Spectral Analysis: Comprehensive spectral analysis is a
prerequisite for the development of effective indicators. Consid-
ering the complexity of the background environment and spec-
tral diversity of vegetation destruction events, we analyzed the
spectral curves of several representative vegetation destruction
events as well as several typical land covers.

Fig. 3 illustrates the spectral curves of four typical land covers.
It is not difficult to see that vegetation exhibited a distinctive
spectral profile. The peaks of vegetation occurred in the green
band and the near infrared (NIR) band, and the troughs in the
red band, which was different from the background environment
(i.e., nonvegetation land cover). Artificial surfaces and bare soil
exhibited similar spectral trends but different spectral values. In
addition, water bodies consistently exhibited the lowest spectral
reflectance in the visible-near-infrared band. Generally, in the
green, red, and NIR bands, the spectral curve shape of vegetation
exhibited a distinct “V-shaped valley” characteristic, whereas
the spectral curve shape of nonvegetation land cover exhibited
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Fig. 3. Spectral profiles of typical land cover types from ECOSTRESS spectral library. (a) Spectral curves of vegetation. (b) Spectral curve of bare soil.
(c) Spectral curves of artificial surface. (d) Spectral curves of water body.

Fig. 4. (a) Spectral profiles of vegetation destruction events based on Sentinel-2 data. (b) Statistical distribution of vegetation destruction events.

a “near-linear” characteristic. This characteristic can be utilized
to highlight vegetation information in the background environ-
ment.

Fig. 4 shows the spectral curves of several representative veg-
etation destruction events. It was easy to see that vegetation de-
struction events had spectral diversity, especially when wildfires
had unique spectral characteristics. Spectral analysis reveals that
logging, landslides and insect infestations lead to destruction
of vegetation structure and reduction of chlorophyll content,
presenting the spectral characteristics of bare soil. Compara-
tively, wildfires resulted in a charcoal-black soil background,
thus absorbing more visible light and peaking in shortwave
infrared (SWIR) band. Interestingly, the spectral curve shape

of various vegetation destruction events also exhibited a “near-
linear” signature in the green, red, and NIR bands. This property
is of great value in detecting diverse vegetation destruction
events.

2) Construction of BVDI: To achieve accurate detection of
vegetation destruction, the proposed index must overcome the
challenges posed by the spectral diversity of vegetation destruc-
tion events and the complexity of background environment.
Therefore, the proposed index should exhibit target sensitivity
and interference insensitivity [24], [28], [52]. In other words, 1)
vegetation sensitivity: effective for vegetation changes caused by
various events; and 2) nonvegetation insensitivity: insensitive
to various changes in the background environment. Spectral
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analysis showed that the green, red, and NIR band are helpful
to detect vegetation destruction events.

Therefore, the construction principle of the BVDI can be
summarized in the following three aspects.

1) Vegetation shows an obvious trough in the red band, which
is conducive to highlighting vegetation information in the
background environment.

2) The spectral curve shape of nonvegetation land cover
(that is, the background environment) in green, red, and
NIR bands exhibits a “near-linear” feature. This feature
reduces the intra-class difference of nonvegetation land
covers, which is essential for suppressing background
environment information.

3) The spectral curve shape of various vegetation destruction
events in green, red, and NIR bands exhibits a “near-
linear” feature, which helps to highlight various changes
in vegetation.

This is the theory behind the applicability of BVDI to the
detection of various vegetation destruction events. Hence, the
depth parameter of the spectral curve shape is proposed to ex-
press the above characteristics. We designed the BVDI utilizing
the distance between the red band and the baseline formed by
the green and NIR bands. The mathematical expression is as
follows:

BVDI = ρ
′
red − ρred (1)

ρ
′
red = ρgreen + (ρnir − ρgreen)× λred − λgreen

λnir − λgreen
(2)

where ρgreen, ρred, and ρnir represent the reflectance value of
the green, red, and NIR band, respectively. λgreen, λred, and λnir

represent the wavelength value of the green, red, and NIR bands,
respectively. The BVDI values for vegetation are much greater
than 0, and the BVDI values for background and vegetation
destruction events are close to 0 (see Figs. 3 and 4). This is
critical for accurate detection of vegetation destruction.

B. Existing VIs for Vegetation Disturbance Detection

Existing VIs used in vegetation destruction research mainly
include greenness-based VIs (e.g., NDVI and EVI) and water
content-based VIs (e.g., NDMI and NBR) [6], [53]. EVI ef-
fectively improved the phenomenon of vegetation saturation in
NDVI [47], [54]. NDMI and NBR also have good performance in
some vegetation destruction scenarios [5], [55], [56]. Therefore,
the above four representative VIs were selected for detailed
comparison with BVDI. These indices are calculated as follows:

NDVI =
ρnir − ρred

ρnir + ρred
(3)

EVI = 2.5×
(

ρnir − ρred

ρnir + 6ρred − 7.5ρblue + 1

)
(4)

NDMI =
ρnir − ρswir1

ρnir + ρswir1
(5)

NBR =
ρnir − ρswir2

ρnir + ρswir2
. (6)

Here, ρblue and ρswir are the reflectance values of the blue and
SWIR bands, respectively.

C. Dual-Temporal Image Difference Method

Image difference method (7) can intuitively reflect the level
of information change, which is a simple and effective change
detection scheme [57], [58], [59]. This scheme can be used
to assess the ability of indicators to highlight “true change”
and inhibit “pseudo change”. Here, “true change” denotes the
vegetation change information, and “pseudo change” denotes
the nonvegetation change information, including water body,
bare soil, and artificial surface change

DVI = VIPre −VIPost. (7)

Here, VIPre and VIPost represent the VI images before and
after vegetation destruction, respectively.

D. Evaluation Metrics

All the collected sample points were used to generate the
confusion matrix. The ROC curve was used to determine the
optimal threshold for DVI [60], [61]. Specifically, sample points
selected from high-resolution images were employed to calcu-
late the accuracy of each index at different thresholds, which
facilitates the determination of the optimal threshold. Overall
accuracy (OA), producer accuracy (PA), user accuracy (UA),
and F1 score were chosen to quantitatively evaluate the accuracy
of the detection results [8], [60], [61].

IV. EXPERIMENTS

A. Sensitivity Test of VIs to Vegetation Parameters

Using the PROSAIL model, we simulated the spectral re-
flectance under different leaf biochemical contents and canopy
structures to evaluate the sensitivity of the BVDI to vegetation
parameters, specifically chlorophyll content (Cab) and leaf area
index (LAI). We found that all five VIs exhibited positive
correlations with LAI, with BVDI demonstrating the highest
sensitivity to LAI. NDVI exhibited an evident saturation ef-
fect; as LAI increased to four, the increase in NDVI became
insignificant [see Fig. 5(a), (f), (k), and (p)]. The correlation
between NDVI and LAI was lowest, with correlation coeffi-
cients (R2) of 0.76–0.83 at different Cab values. The results
show that NDVI has a saturation phenomenon and asymptotic
signal under high biomass conditions [62]. EVI and BVDI were
highly correlated with LAI with R2 values of 0.96–0.97 and
0.97–0.98, respectively. The correlation between EVI and LAI
decreased with increasing Cab values. The R2 values of NDMI
and NBR with LAI were both greater than 0.85, but they were
less sensitive to the change in vegetation chlorophyll content. In
contrast, BVDI consistently showed a strongly linear correlation
with LAI, with R2 values of 0.97–0.98. These results confirm
that BVDI exhibits the highest sensitivity to vegetation change
compared to the other VIs, which is crucial for vegetation change
detection.
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Fig. 5. Correlation of NDVI, EVI, NDMI, NBR, and BVDI with LAI for chlorophyll content at (A1-A5 ) 10 µg cm−2, (B1-B5) 20 µg cm−2, (C1-C5) 30 µg
cm−2, (D1-D5) 40 µg cm−2, (E1-E5) 50 µg cm−2, (F1-F5) 60 µg cm−2, (G1-G5) 70 µg cm−2, and (H1-H5) 80 µg cm−2.
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Fig. 6. Performance of VIs in (a) Australia: evergreen forest, (b) Brazil: evergreen forest, (c) Canada: shrubland, (d) China: grassland, (e) China: grassland,
(f) China: grassland, (g) Tunisia: deciduous forest, (h) Italy: deciduous forest, and (i) Italy: shrubland.

B. Sensitivity Test of VIs to Background Environments

We chose study sites with different vegetation types and back-
ground environments to illustrate the effectiveness of the BVDI
in highlighting vegetation while suppressing nonvegetation. As
depicted in Fig. 6(a)–(c), all five VIs exhibited similar fluctuation
trends across different vegetation types, including tree, shrub,
and grass. Meanwhile, BVDI exhibited the highest stability (∼0
value) on the water body. In sparse vegetation areas, NDVI, EVI,
NDMI, and NBR demonstrated susceptibility to soil background
effects [see Fig. 6(e) and (f)] and exhibited significant variability
on the water body. In contrast, BVDI had the best performance
in reducing intraclass differences among nonvegetation [see
Fig. 6(d), (g), and (h)]. For example, there were large differences
in EVI values between water bodies and bare soil [see Fig. 6(d)].
In other words, the water body, bare soil, and artificial surface
exhibited similar BVDI ranges (∼0 value). Furthermore, BVDI
showed greater robustness on different types of water body, bare
soil, and artificial surface [see Fig. 6(g)–(i)].

Subsequently, we analyzed the distribution characteristics of
each index and calculated the separation (i.e., the M index)
among all land covers. It is calculated as follows:

M =
|μ1 − μ2|
σ1 + σ2

. (8)

Here, μ and σ represent the mean and standard deviation,
respectively. When the M value exceeds 1, it means that the
two land covers are more easily separated. It also means that the

conversion between the two land covers will present a significant
change value on the dual-temporal difference image.

As illustrated in Fig. 7, high values of all VIs represent veg-
etation information, while low values represent nonvegetation
information. For all five VIs, the M-index between vegetation
and nonvegetation exceeded one, indicating that all VIs can
effectively highlight vegetation change information. However,
NDVI, EVI, NDMI, and NBR were unable to minimize intra-
class differences between nonvegetation. Specifically, on NDVI,
EVI, and NDMI images, the distinction between water bodies
and bare soil was substantial (M-index greater than one). On
NDVI and EVI images, the M-index between bare soil and
artificial surfaces was near or even greater than one. On NBR im-
ages, the M-index between the water body and artificial surfaces
exceeded 0.60. This implies that changes between water bodies
and bare soil, as well as between bare soil and artificial surfaces,
could impact the accuracy of vegetation change detection when
using NDVI, EVI, NDMI, and NBR. In contrast, on the BVDI
image, the M-index between all the nonvegetation was less than
one. The results confirm that BVDI exhibits greater stability
on nonvegetation and remains less sensitive to nonvegetation
changes. This characteristic is critical for the accurate detection
of vegetation changes.

C. Performance in Various Vegetation Change Scenarios

We selected various scenarios in which vegetation changes
to bare soil, artificial surface, and water body to assess the
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Fig. 7. Distribution of typical land covers on VIs based on (a) Sentinel-2 imagery, (b) Landsat-8 imagery, and (c) Landsat-9 imagery. MVW, MVB, and MVA

represent the separation of vegetation from water body, bare soil, and artificial surface, respectively; MWB and MWA represent the separation of water body from
bare soil and artificial surface, respectively; MBA represents the separation of bare soil and artificial surface.

performance of the BVDI. To ensure an objective comparison,
we applied percentage truncation linear stretching to the DVI
results. As shown in Fig. 8, BVDI had the best performance
in highlighting vegetation change information in all scenarios,
while NDMI and NBR had the worst results. As shown in
Fig. 8(a3) and (b2), NDMI and NBR were unable to highlight
changes in low-coverage vegetation, omitting numerous pixels
of vegetation change. For scenes in which vegetation changes to
the water body, NDVI, NDMI, and NBR were not always effec-
tive [see Fig. 8(c)]. Overall, BVDI exhibited strong robustness
across different vegetation change scenes.

Fig. 9 shows the accuracy assessment of the detection results
for all VIs. In all vegetation change scenarios, BVDI outper-
formed NDVI, EVI, NDMI, and NBR, with mean values of
OA and F1 greater than 0.95. For weak vegetation changes and
vegetation changes to water bodies, both NDMI and NBR did not
perform well, with PA values less than 0.70, indicating that these
methods have large omission errors. Furthermore, variations in
light conditions had an impact on the identification results of
NDVI, EVI, NDMI, and NBR. Specifically, the UA value of
NDVI was 0.87 in scenario a4, and the UA values of EVI, NDMI,
and NBR were less than 0.90 in scenarios b3 and b4. Overall,
BVDI demonstrated its ability to effectively highlight various
types of vegetation changes.

D. Performance in Background Change Scenarios

Whether the vegetation change information can be accurately
detected in the context of background environmental changes
provides a basis for determining the applicability of indicators

in complex scenarios. In this section, various background en-
vironmental change scenarios were chosen to demonstrate the
robustness of BVDI.

Fig. 10 shows the results of vegetation destruction detection
in the context of bare soil and artificial surface changes. It is
evident that BVDI outperformed NDVI, EVI, NDMI, and NBR
in highlighting vegetation changes and suppressing changes
in bare soil and artificial surfaces. NDVI was ineffective in
highlighting changes in high-cover vegetation [see Fig. 10(a)
and (b)] and performed poorly in low-cover vegetation areas
[see Fig. 10(c)]. Similarly, NDMI and NBR failed to detect
changes in low-cover vegetation effectively [see Fig. 10(c)].
EVI omitted some pixels where the vegetation becomes bare
soil [see Fig. 10(d)]. In addition, NDMI and NBR misidentified
the change pixels of bare soil [see Fig. 10(f)], artificial surface
[see Fig. 10(i)], and water body [see Fig. 10(j)] as vegetation
change information.

PA, UA, OA, and F1 values were calculated for the above-
mentioned results, as shown in Fig. 11. We found that BVDI
had the highest detection accuracy in all cases, with OA and
F1 values greater than 0.90. For the cases in Fig. 10(a) and (b),
the UA of NDVI was less than 0.85, while OA and F1 were
both less than 0.90. This suggests that NDVI incorrectly labeled
background change information. For the cases in Fig. 10(c), the
PA for NDVI, NDMI, and NBR was less than 0.70, and the
OA and F1 values were less than 0.85. For Fig. 10(d), (f), and
(j), the PA for EVI was less than 0.82, indicating vegetation
change information was omitted. For the cases in Fig. 10(i) and
(j), the UA of NBR and NDMI was less than 0.85, indicating
that they exhibited large misclassification errors. Overall, BVDI
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Fig. 8. Performance of VIs in different vegetation change scenes. (a1)–(a4) Vegetation changes to bare soil. (b1)–(b4) Vegetation changes to an artificial surface.
(c1)–(c4) Vegetation changes to the water body. The black and white plots represent visualization results of the index difference (i.e., DVI).

performed best in highlighting changes in vegetation and sup-
pressing changes in the background environment.

Fig. 12 shows the results of vegetation destruction detec-
tion in the context of water body changes. In general, BVDI
outperformed NDVI, EVI, NDMI, and NBR in emphasizing
vegetation changes and suppressing water changes. NDVI and
EVI incorrectly highlighted changes from bare soil to the water

body [see Fig. 12(a), (c), and (j)], labeling them as vegetation
change pixels. In addition, NDVI was affected by changes
in watercolor [see Fig. 12(h)]. NDMI and NBR incorrectly
emphasized the changes in water body color [see Fig. 12(a),
(b), (g)–(i)], misidentifying them as vegetation change pixels.
Moreover, NDMI and NBR incorrectly highlighted the change
from water body to bare soil [see Fig. 12(j)]. In addition, NDMI



11300 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 9. Accuracy of the results of VIs under different vegetation change scenes in study sites (or Fig. 8) (a) a1, (b) a2, (c) a3, (d) a4, (e) b1, (f) b2, (g) b3, (h) b4,
(i) c1, (j) c2, (k) c3, and (l) c4.

and NBR omitted a large number of pixels where vegetation
changed to the water body [see Fig. 12(c) and (d)].

Fig. 13 shows the accuracy calculated for the above-
mentioned detection results. Similarly, in all cases, the detection
accuracy of the BVDI was higher than the other four metrics.
For the cases in Fig. 12(c) and (j), the UA of EVI was less than
0.85, which indicates that it misidentified background change
information. For the cases in Fig. 12(h) and (i), the UA of NDVI,
NDMI, and NBR were less than 0.80, and the values of OA and
F1 were less than 0.85. The experimental results revealed that
the BVDI was applicable to diverse vegetation change scenes
and showed robustness in complex background environments.

E. Performance in Real Vegetation Destruction Events

In the context of intense anthropogenic activity and frequent
climate change, logging, insect infestations, and wildfires are
common vegetation destruction events. In addition, landslides,
as a geological hazard, also destroy vegetation growth, espe-
cially in mountainous areas with high-intensity precipitation.
Also, floods caused by extreme rainfall can damage cultivated
land, thus affecting crop growth. To further evaluate the perfor-
mance of BVDI, we selected several real vegetation destruction
events, including wildfire, logging, insect infestation, landslide,
and flood (see Fig. 14).

We calculated the PA, UA, OA, and F1 scores of the results,
as listed in Table II. It is easy to see that BVDI had the best
performance in all vegetation destruction events, with OA and F1

values exceeding 0.90. Although all five VIs effectively detected
vegetation changes caused by loggings, NDVI, NDMI, and
NBR were susceptible to changes in water body [see Fig. 14(a)
and (b)]. As shown in Fig. 14(b), NDVI, NDMI, and NBR
incorrectly identified the pixels of water body change, with
UA values of 0.833, 0.773, and 0.784 and OA values of 0.878,
0.832, and 0.847, respectively (see Table II). EVI omitted some
low-cover vegetation change information [see Fig. 14(a)], with
UA, F1, and OA values of 0.769, 0.839, and 0.823. In the case
of vegetation pest events, NDMI and NBR performed poorly,
missing numerous “true change” pixels [see Fig. 14(c)], with
PA and OA values below 0.75. NDVI also failed to detect
weak changes in high-coverage vegetation [as shown in the
white box in Fig. 14(c)], with PA and OA values of 0.823 and
0.863. Although NDVI, NDMI, and NBR were able to accurately
identify the extent of vegetation destruction caused by landslides
and wildfires, they incorrectly labeled “pseudo-change” pixels
caused by changes in water bodies [see Fig. 14(d) and (e)]. The
UA values of NDVI, EVI, NDMI, and NBR were 0.690, 0.752,
0.772, and 0.784, respectively. For flood events, NDVI and EVI
misidentified background information (e.g., flooded bare land)
with UA of 0.862 and 0.873, respectively [see Fig. 14(g)]. NDM
and NBR showed poor performance in detecting vegetation
destruction caused by flood events, missing numerous vegetation
change pixels, and their F1 scores and OA values were both less
than 0.85. In contrast, BVDI exhibited a distinct advantage in
identifying the extent of vegetation destruction and mitigating
the interference of changes in the background environment,



ZHAO et al.: NOVEL SPECTRAL INDEX FOR VEGETATION DESTRUCTION EVENT DETECTION 11301

Fig. 10. Detection of vegetation changes in the context of changes in bare soil or man-made surfaces. (a) and (b) Topographic shadow changes. (c)–(f) Bare soil
changes. (g)–(j) Artificial surface changes. The black and white plots represent visualization results of the index difference (i.e., DVI).
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Fig. 11. Accuracy assessment of detection results of VIs in study sites (or Fig. 10) (a)–(j) a–j.

including water bodies, bare soil, and light conditions. The ex-
periments confirmed that BVDI is feasible for various vegetation
destruction events and has the best performance in excluding the
interference of background change.

F. Visual Comparison With Related Products

Six wildfire events in Mediterranean countries were selected
to visually compare the BVDI-based results with two data prod-
ucts. Note that the CEMS data in Fig. 15(e) and (f) is not shown
because they are not available. For high-coverage vegetation
areas, the BVDI-based results were highly consistent with the
GLADFA and CEMS data [see Fig. 15(a), (e), and (f)]. However,
for low-coverage vegetation areas, the results were significantly
different [see Fig. 15(b)–(d)]. The CEMS data focused on the
actual burned area and therefore also identified the burned area
of nonphotosynthetic vegetation (including dry matter), thus
overestimating the extent of vegetation destruction. This may be
related to the purpose of the CEMS data. CEMS data is primarily
used for postdisaster emergency management to assess more
comprehensive disaster impacts. The GLADFA data omitted
some vegetation change information, thus underestimating the
extent of vegetation destruction [see Fig. 15(c) and (d)]. This
may be caused by the low time-space resolution of the data
used to develop GLADFA. The coarse spatial resolution may
miss smaller patches of vegetation destruction, while the coarse
temporal resolution fails to distinguish partial vegetation recov-
ery after disasters. Overall, BVDI is an effective indicator for
identifying vegetation changes, focusing on vegetation changes
caused by various disasters.

V. DISCUSSION

A. Cross-Sensor Applicability of BVDI

Frequency monitoring is essential for vegetation restoration
and postdisaster management [63]. Combined use of Landsat
and Sentinel imagery allows global observation every 2–3 days
[10], [64]. To ensure the objectivity and reliability of the con-
clusions, two rules should be followed. First, two vegetation de-
struction cases were chosen to assess the cross-sensor applicabil-
ity of BVDI. These cases include man-made urban construction
(see Fig. S2) and natural wildfire events (see Fig. S3). Second, we
tested all combinations of remote sensing data sources to assess
the robustness of BVDI. When using a combination of Sentinel
and Landsat data, we employed a nearest-neighbor method to
resample Landsat imagery to 10 m. Based on our previous spec-
tral analysis (see Section III-A), we observed consistent spectral
trends in Landsat and Sentinel-2 imagery across several land
cover types. This provides a theoretical basis for the application
of BVDI to other sensors.

The DVI results and detection results using different image
pairs are shown in Figs. S2 and S3. It is not difficult to see
that DVI calculated using various image pairs effectively high-
lighted areas of vegetation destruction. In the urban construction
scenario, the BVDI-based method achieved satisfactory results,
with average PA, UA, F1, and OA values of 0.943, 0.952, 0.947,
and 0.948, respectively (see Table SII). Similarly, for wildfire
scenarios, the F1 and OA values of the BVDI-based method
were greater than 0.90 (see Table SII). This study shows that
satisfactory detection results were obtained using both Landsat
and Sentinel-2 imagery. In general, it is competitive to detect
vegetation destruction using BVDI on Landsat images. BVDI
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Fig. 12. Detection of vegetation changes in the context of water body changes. (a)–(d) Bare soil changes to water body. (e), (f), and (j) Water body changes to
an artificial surface. (g)–(i) Water color changes. The black and white plots represent visualization results of the index difference (i.e., DVI).
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Fig. 13. Accuracy assessment of detection results of VIs in study site (or Fig. 12) (a)–(j) a–j.

Fig. 14. Performance of VIs on vegetation destruction events. (a) Logging in Nanchang, China. (b) Logging in California, USA. (c) Locust infestation in Punjab,
Pakistan. (d) Landslide in Guizhou, China. (e) Wildfire in Bizerte, Tunisia. (f) Wildfires in Montana, USA. (g) Floods in Magnesia, Greece.
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TABLE II
DETECTION ACCURACY IN SEVERAL VEGETATION DESTRUCTION CASES

exhibits robustness across various multispectral imagery as long
as green, red, and NIR bands are available.

B. Advantages of BVDI

Accurate detection of vegetation damage events is crucial
for ecological restoration [32], [33], [35]. Nevertheless, the
application of existing spectral VIs on large scales remains chal-
lenging. Therefore, we proposed a novel index called (BVDI)
by analyzing the spectral characteristics of various land covers
and multiple vegetation destruction events. The experiments in
Section IV proved that the BVDI-based method is effective
in detecting vegetation change information in complex scenes,
and exhibits robustness across multiple vegetation destruction
events. The strengths of BVDI can be summarized in the fol-
lowing aspects.

First, BVDI makes full use of the three bands that exhibit
the highest sensitivity to leaf biochemical content and canopy
structure of vegetation, so it is highly sensitive to vegetation
changes. Using the PROSAIL model, we analyzed the local
sensitivity of spectra to changes in leaf biochemical content
and canopy structure of vegetation (see Fig. 16). Vegetation
displayed a small reflectance peak in the green band and a

small absorption valley in the red band. With the increase of
Cab, the reflectance of vegetation in the green band decreases
while absorption in the red band increases. Moreover, vegetation
exhibits a large reflection peak in the NIR band, and the reflection
in the NIR band increases as the LAI of the vegetation increases.
We found that the green and red bands are the two most sensitive
to Cab, while the NIR band is highly sensitive to LAI. These
observations align with prior research [44], [65]. Furthermore,
BVDI consistently demonstrates a strong linear correlation with
LAI at different Cab values, with R2 values of 0.97–0.98 (see
Fig. 5). The results confirm that BVDI is sensitive to vegetation
changes and does not exhibit a saturation effect. This is a crucial
prerequisite for accurate detection of vegetation destruction.

Second, BVDI narrows differences between nonvegetation
land cover and reduces the influence of background environmen-
tal changes. Mitigating the impact of background environmental
changes is a critical challenge for accurately detecting vegetation
changes. The “pseudo change” caused by the color change of wa-
ter bodies and interconversion of water bodies and bare soil can
easily be mistaken for “true change” in vegetation (see Fig. 12).
NDVI, EVI, NDMI, and NBR were all susceptible to background
environmental changes. Based on spectral analysis, it observed
that in green, red, and NIR bands, vegetation exhibited a distinct
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Fig. 15. Recognition results of GLADFA, CEMS, and BVDI-based method. (a) Portugal on July 25 2020. (b) Italy on July 25 2020. (c) Spain on July 18 2022.
(d) Greece on August 10 2022. (e) Portugal on July 20 2020. (f) Portugal on August 6 2020.

“V-shaped valley” characteristic, while nonvegetation land cov-
ers and vegetation destruction events displayed a “near-linear”
trend (see Figs. 3 and 4). Using this principle, we proposed
BVDI. In the BVDI image, vegetation exhibits high values,
while nonvegetation land covers and vegetation destruction

events cluster around the 0 value. Through the experiments in
Section IV, we proved that the BVDI has significant advantages
when the background environmental changes.

Third, BVDI is an effective indicator for multispectral sen-
sors such as Sentinel-2 and Landsat. The synergistic use of
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Fig. 16. Simulation of spectral profiles with different Cab and LAI using the
PROSAIL model.

multiple sensors is of great value for vegetation monitoring
at high frequency. We found that several typical land covers
showed consistent spectral trends in Landsat and Sentinel-2
imagery (see Fig. S1). BVDI proved to be a reliable indicator
of vegetation destruction detection in Landsat-8, Landsat-9, and
Sentinel-2 imagery (see Fig. 7). We demonstrated this advan-
tage using the man-made urban construction cases and natural
wildfire events (see Figs. S2 and S3). Landsat-8, Landsat-9, and
Sentinel-2 are the most commonly used satellite sensors that
provide systematic global land surface observations [41], [64].
Overall, BVDI can be effectively used for vegetation monitoring
in different global regions, offering great promise for large-scale
and high-frequency vegetation destruction detection.

C. Limitations of This Workflow and Future Improvements

Despite the above advantages, this study has some limitations
and possible improvements. First, BVDI was developed utilizing
bands sensitive to vegetation leaves and canopy, characterized
by shorter wavelengths that are susceptible to the influence of
thin clouds and cloud shadows [see Fig. 14(e)]. Previous studies
have indicated that the SWIR band exhibits more sensitivity
to vegetation water content, offering valuable information for
vegetation change monitoring [24], [66], [67], [68]. Moreover,
considering the longer wavelength of the SWIR band, which
reduces the effect of cloud cover, its incorporation will be con-
templated in future enhancements. Second, due to the absence
of available field investigation data, instances of vegetation
infestations involving pests like the spruce beetle and birch
moth were not encompassed in this study. Some studies [67],
[69], [70] have reported the substantial harm inflicted by these
pests on vegetation ecosystems. Further exploration is required
to assess BVDI’s performance in these scenarios. Third, the
image difference method may recognize field operations as vege-
tation destruction. To address this, additional prior knowledge is
essential for eliminating such interference, which may involve
utilizing historical contemporaneous images [8], [41]. In the
future, we will also explore the ability of BVDI for real-time
vegetation monitoring using time-series data.

VI. CONCLUSION

In this study, we proposed a baseline-based vegetation de-
struction index (named BVDI) using the red, green, and NIR

bands of Sentinel-2 imagery to achieve accurate detection of
multiple vegetation destruction events. We assessed the effec-
tiveness of BVDI through the dual-temporal image difference
method and conducted a detailed comparison with four classical
VIs. Using the simulation data of the PROSAIL model, we found
that BVDI exhibited a strong linear correlation with LAI under
different chlorophyll contents. BVDI demonstrated effective-
ness and robustness in various vegetation change scenarios, es-
pecially underwater changes, which was better than the existing
VIs. Experiments on loggings, insect infestations, landslides,
wildfires, and floods further proved the robustness of BVDI,
with OA values of 0.923–0.963 and F1 scores of 0.924–0.963.
To conclude, BVDI is a robust spectral metric suitable for various
vegetation destruction events, with significant advantages under
complex background environmental changes. We believe that
this study is valuable for regional and even global vegetation
monitoring and diagnosis.
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