
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024 11419

Field-Scale Precision: Predicting Grain Yield of
Diverse Wheat Breeding Lines Using

High-Throughput UAV Multispectral Imaging
Nisar Ali , Student Member, IEEE, Ahmed Mohammed, Student Member, IEEE,

Abdul Bais , Senior Member, IEEE, Samia Berraies, Yuefeng Ruan, Richard D. Cuthbert, and Jatinder S. Sangha

Abstract—This study explored how to use UAV-based multi-
spectral imaging, a plot detection model, and machine learning
(ML) algorithms to predict wheat grain yield at the field scale.
Multispectral data were collected over several weeks using the
MicaSense RedEdge-P camera. Ground truth data on vegetation
indices were collected utilizing portable phenotyping instruments,
and agronomic data were collected manually. The YOLOv8 detec-
tion model was utilized for field-scale wheat plot detection. Four
ML algorithms—decision tree (DT), random forest (RF), gradient
boosting (GB), and extreme GB (XGBoost were used to evaluate
wheat grain yield prediction using normalized difference vegeta-
tion index (NDVI), normalized difference red edge index (NDRE),
and green NDVI (G-NDVI) data. The results demonstrated the
RF algorithm’s predicting ability across all growth stages, with
a root-mean-square error (RMSE) of 43 grams per plot (g/p) and
a coefficient of determination (R2) value of 0.90 for NDVI data.
For NDRE data, DT outperformed other models, with an RMSE
of 43 g/p and an R2 of 0.88. GB exhibited the highest predictive
accuracy for G-NDVI data, with an RMSE of 42 g/p and an R2

value of 0.89. The study integrated isogenic bread wheat sister lines
and checked cultivars differing in grain yield, grain protein, and
other agronomic traits to facilitate the identification of high-yield
performers. The results show the potential use of UAV-based mul-
tispectral imaging combined with a detection model and ML in
various precision agriculture applications, including wheat breed-
ing, agronomy research, and broader agricultural practices.

Index Terms—Breeding varieties, field scale, machine learning
(ML), plot detection model (YOLOv8), remote sensing, UAV
multispectral imaging, wheat, yield prediction.

I. INTRODUCTION

ONE of the United Nations’ sustainable development goals
is to end hunger by 2030, but current trends indicate that
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the deliverables of this objective are at risk. As of 2022, around
702–828 million people were undernourished, a 150-million
increase since the start of the COVID-19 pandemic [1]. In
addition, forecasts indicate that the global population will exceed
10 billion by 2050 [2]. This presents additional challenges for
producing more food while preserving resources and reducing
crop losses. Wheat, a staple crop that contributes to around
20% of global dietary calories and proteins, is essential in
fulfilling global needs for food [3]. Wheat farmers, however,
face increasing challenges as a result of significant changes
in the climate, demanding the development of wheat varieties
that are resistant to a wide range of environmental conditions,
including rising temperatures and water dearth [4]. Modern
technology could help address some of the challenges that
crop production faces [5]. Unmanned aerial vehicle (UAV)-
based methods have the potential to provide valuable insights
into identifying wheat phenotypes suitable for growing un-
der challenging environmental conditions [6]. The information
generated with the use of this technology could aid in the
development of wheat varieties that are more resilient and
productive, thus helping to address food security challenges
worldwide [7].

The crop yield prediction is important to plant breeders and
farmers; it is usually possible to determine it at the harvest
stage. It is crucial to develop food policies, control food prices,
and improve crop management practices such as fertilizer
application [8]. This is especially important for small- and
medium-sized farms, which make up over 80% of global farm-
lands. Ensuring food security for the people who heavily depend
on these farms is essential due to their widespread distribution
worldwide [9]. This is possible by predicting crop yields before
harvest to make timely crop management decisions and future
marketing plans [10]. For plant breeders, predicting early-stage
crop yields in field plots could help to identify improved lines for
varietal development and to address potential yield constraints,
such as improving genetic gains, generating diversity in genetic
material, or improving factors in crop health, including issues
with poor soil health, etc. [11], [12]. Early prediction of crop
performance for yield to apply intervention measures, including
precise fertilization and management, becomes necessary to
maintain optimal crop yields and safeguard food security
[13], [14].
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Remote sensing technology [15], [16] has made significant
contributions to various fields, such as resource surveys [17],
urban planning [18], national security [19], and agricultural
development [20]. Remote sensing has emerged as an efficient
method of crop yield prediction because of its advantages in
simplicity of data collection, low cost, efficiency, spatial cov-
erage, and short operation cycles [21], [22]. Recent advances
in remote sensing technologies have allowed researchers to use
UAV-based imaging to study the growth and development of
crops, including wheat. By analyzing these images, researchers
can extract detailed information about plants’ morphological and
biological features to determine their performance in different
growth environments. This technique provides vital insights into
how plants grow and develop, which can improve agricultural
practices and crop yields in various growth environments for
crop yield reliability [19], [23], [24].

The UAVs commonly have three types of optical sensors: 1)
red, green, and blue (RGB); 2) multispectral; and 3) hyperspec-
tral [25]. RGB cameras are inexpensive, but they have a limited
number of bands and face challenges in capturing the complete
spectrum of the crop canopy [26]. While hyperspectral sensors
excel at precisely characterizing spectral responses, they are
costly and require complex data processing [27]. Multispectral
sensors have recently gained attention in agricultural remote
sensing due to their affordability and inclusion of important
bands such as red edge and near-infrared (NIR), which are
crucial for detecting various agricultural parameters, such as
vegetation health, chlorophyll content, crop stress levels, crop
biomass, and crop yield estimation [28]. Multispectral imaging
operates within the 400–900 nm wavelength range, covering
bands, such as RGB, red edge, and NIR [29]. Several vegetation
indices (VIs) derived from these bands are often used to evaluate
agricultural biophysical parameters. These VIs give detailed
information about crop growth and how it reacts to stressors
such as diseases, pests, changes in soil moisture conditions and
temperature, and in estimating crop yield [30], [31]. Examples
of these indices include the normalized difference vegetation
index (NDVI) [32], the green NDVI (G-NDVI), the normalized
difference red edge index (NDRE), and the enhanced vegetation
index (EVI) [33], among others. Many researchers have suc-
cessfully evaluated crop features and yield using VIs extracted
from UAV multispectral images, generating useful information
for field application [34], [35].

Accurate crop yield predictions have been demonstrated with
UAVs, combining the VIs and growth stages tailored to specific
research objectives. For example, Zhou et al. [35] forecasted
rice yield using UAV-based RGB and multispectral imagery,
highlighting the reliability of airborne VIs for crop growth and
yield prediction. Similarly, Zhu et al. [36] employed UAVs with
multispectral cameras to capture wheat images at various growth
stages, evaluating nine VIs for yield prediction. The crop pheno-
type analysis identified the heading to grain fill stage transition
as optimal and the enhanced vegetation index without a blue
band (EVI2) as the most effective feature for yield prediction. Fu
et al. [37] used a multispectral camera to capture wheat canopy
images at important growth stages and applied machine learning
(ML) approaches to estimate yield. These authors discovered a

reasonable fit between VIs at jointing, flowering, and grain fill
stages and yield, with NDVI at jointing, NDRE at flowering,
and canopy chlorophyll content index at grain fill stages as the
one providing the best estimates for yield. Shafiee et al. [38]
identified NDVI as the highest predictor of wheat yield. Wan
et al. [39] developed a rice yield prediction model based on
NDVI, normalized difference yellowness index (NDYI), canopy
height, and canopy cover utilizing a UAV platform equipped
with RGB and multispectral cameras. These investigators de-
termined that the initial heading stage was ideal for yield pre-
diction. All these studies demonstrate that the most effective
VIs and growth stages for yield prediction change over the
growth season, restricting extrapolation beyond specified time
points.

In recent decades, process-based and ML models have been
commonly utilized to predict crop yields. Process-based crop
models, such as WOrld FOod STudies [40], decision support
system for agrotechnology transfer [41], and the agricultural
production systems simulator [42], consist of various mathemat-
ical functions that explain the physiological processes during
crop growth. However, the relationships between crop physi-
ological processes and climate, soil conditions, and manage-
ment methods accounted for in process-based models demand
substantial data inputs, calibration of numerous parameters,
and significant time and labor investments, making them more
cumbersome [43], [44].

ML algorithms require less initial information about the un-
derlying distribution and model assumptions [45]. Instead, they
extract them indirectly from the training dataset, making them
useful for various tasks [29], [46], [47], [48]. ML can adapt
to different data types, allowing for a better understanding of
models and the analysis of complex datasets [49], [50], [51],
[52]. These models offer the opportunity to develop crop yield
prediction models using multidimensional data [52]. For exam-
ple, Jeong et al. [53] found that random forest (RF) could predict
crop yield more accurately than multiple linear regression (LR).
Leng and Hall [54] used RF to predict maize yield variation in
the USA and discovered that it outperformed LR. The authors
in [55], [56], and [57] demonstrated that ML models could
estimate field-scale crop yield utilizing various data sources,
guiding in-season management decisions. Moreover, different
crop growth phases respond differently to climatic events; for
example, the reproductive period in wheat is more sensitive
to drought and heat stress due to its direct impact on grain
production [56]. Assessing the contributions of climate and
remote sensing data at different growth stages is crucial for
predicting wheat grain yield [57].

Crop yield assessment in corn, rice, and wheat is generally
shown with fixed VIs at a single growth stage, neglecting the
input of several crop characteristics at different stages that could
add to the grain yield estimation [58]. Optimal combinations
of VIs from multiple growth stages can enhance the capabil-
ity of prediction models [59]. Nevertheless, the stability and
applications of yield prediction models at field scales remain
understudied, emphasizing the need for accurate predictions to
optimize large-scale agricultural management and ensure food
security.
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In this article, we have utilized UAV multispectral imaging of
the experimental field to create RGB images and various VIs. We
have gathered a set of VIs weekly throughout the crop growth
cycle. This approach allows us to overcome the limitations of
relying on fixed VIs at a single growth stage. Weekly VIs help
us to have a dynamic understanding of crop characteristics at
different stages, which aligns with the concept that the optimal
combinations of VIs from multiple growth stages enhance pre-
diction models for crop yield. Additionally, our methodology
addresses the challenges of predicting yield at the field scale
with wheat plots having different breeding lines with variable
yield potential. We aimed to develop accurate prediction models
for wheat grain yield by integrating ML techniques with the
data gathered from UAV-based multispectral imaging. The main
contributions of our work are outlined as follows.

1) Data collection and imaging: Gather UAV multispectral
imaging data at the field scale, capturing dynamic changes
in crop characteristics throughout wheat growth and de-
velopment.

2) Utilization of multispectral images: Utilize UAV multi-
spectral images to generate various VIs weekly, addressing
limitations associated with fixed VIs from a single growth
stage.

3) Enhancing prediction models: Assessing the best ways
to combine VIs from different stages of growth to im-
prove models that predict wheat grain yield, focusing on
field-scale experiments with breeding lines having diverse
agronomic characteristics.

4) Detection and analysis: Employ the YOLOv8 detection
model to accurately identify wheat plots within the field,
enabling precise crop health and vegetative analysis.

5) ML integration: Integrate ML algorithms, decision tree
(DT), RF, gradient boosting (GB), and extreme GB (XG-
Boost) with data from UAV-based multispectral imaging to
develop accurate prediction models for wheat grain yield.

II. MATERIALS AND METHODS

This section outlines the experimental setup, data collection
procedures, and analytical approaches used in this research
to evaluate the dynamics of yield prediction with UAV-based
multispectral imaging, a wheat plot detection model, and ML
algorithms.

A. Study Area and Field Information

A panel of 30 bread wheat [Triticum aestivum L.] lines includ-
ing near isogenic sister lines (NILs), wheat parents and check
cultivars, have been made at Swift Current Research and Devel-
opment Centre, Swift Current, SK. The NILs were developed
from an elite spring wheat breeding population named “B1018”
(BW928/BW431/Carberry). The NILs that differ in wheat grain
yield and protein concentration were derived from the F6 family
and are homozygous, with an average of over 95% similarity in
genetic background. There is, thus, substantially reduced genetic
variation in associating genotypes with phenotypes. This bread
wheat panel was used as a platform for this phenomics study.
These lines were seeded in yield plots that are commonly used

by wheat breeders for evaluating advanced lines and selecting
genotypes with good agronomics, quality, and disease-resistance
packages for advancing as varieties. Field plots were seeded in
May 2023 using a randomized complete block design with three
replications at Agriculture and Agri-Food Canada’s research
farm in Indian Head, Saskatchewan. The field plots were seeded
under rainfed conditions without any application of irrigation.
Each plot measured approximately 10 feet in length and 4 feet
in width and was seeded with 1200 seeds in four rows with a
gap of 0.75 feet between rows. The gap between plots was filled
by seeding two rows of winter wheat. Standard field practices
were followed for fertilization, weed, disease, and pest control
to minimize other factors in yield limitations. Wheat lines were
evaluated for wheat grain yield, protein, and other agronomic
characteristics. The wheat grain yield was calculated in grams
per plot using a conversion factor. The geographical location of
the experimental field is shown in Fig. 1.

B. Data Collection

In this study, we employed the MicaSense RedEdge-P Camera
and DJI M300 RTK drone to acquire all image data. The MicaS-
ense RedEdge-P Camera is a specialized six-band multispectral
sensor designed for agricultural and environmental monitoring
applications. It captures images of a given area across six distinct
spectrum bands: 1) blue, 2) green, 3) red, 4) red edge, 5) NIR,
and 6) panchromatic. The panchromatic band of the RedEdge-P
Camera, boasting a resolution of 2464 × 2056, covers the entire
visible spectrum and offers higher spatial resolution compared
to the other bands, which have a resolution of 1456 × 1088.
This feature allows for more detailed and precise imaging of
the captured region. For each shot taken by the camera, six files
are generated, each containing information captured by one of
the six bands. The images are stored in a 16-b TIFF format,
ensuring high precision in the recorded data. We collected data
over several weeks, gathering approximately 500 aerial images
each week from 42 feet above the wheat plots in the field using
a UAV.

To ensure the reliability of the UAV-based multispectral data,
we implemented specific control measures. Data collection
occurred between 11:00 A.M. and 1:00 P.M. on a sunny day.
Additionally, we maintained the sensors in a vertical position
and conducted calibration of the multispectral sensors before
each flight. We employed the agisoft metashape software [60],
[61] to generate an orthomosaic of the wheat field and used the
geographic information system application [62], [63] for further
processing.

1) Yield Ground Truth Data: Ground truth data for agro-
nomic and physiological traits were collected on wheat lines
between May 15 and August 22, 2023. The wheat grain yield
data were collected after the harvesting for individual plots
was completed with a plot harvest combine, and the grain was
dried to 13.5% moisture content. Grain yield from all three
replicated plots of a wheat line was measured individually using
a digital weighing balance (Sartorius, 0.001g sensitivity) and
the yield was expressed in grams per plot. We used ground
truth data, multispectral images, and postharvest wheat grain
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Fig. 1. Illustration of the geographical context and specific locations of the study site in Saskatchewan, Canada, focusing on the Indian Head Agricultural Research
Foundation. Panel (a) provides an overview of Saskatchewan within the map of Canada, highlighting its regional placement. In (b), a closer examination zooms in
on the Indian Head Research Farm in Saskatchewan, offering a more detailed view of the study area. Finally, panel (c) presents a mosaic of the experimental field,
providing a visual representation of the terrain and landscape under investigation and further contextualizing the region where the UAV imaging took place.

yield for the analysis and prediction models reported in this
study.

2) VIs Ground Truth Data: Ground truth data for reflectance
spectra and VIs were collected weekly from June 24th (booting
stage) to August 15th (physiological maturity stage). Using two
portable devices, a GreenSeeker fitted with NDVI sensors and
the FieldSpec 2 instrument with a spectral range of 350–1100 nm
(ASD Malvern Panalytics), we gathered multiple VIs, including
NDVI, NDRE, and G-NDVI, from each replicated plot of all
the 30 wheat lines at weekly intervals. For both instruments,
each plot was scanned between 11:00 A.M. and 1:00 P.M. on a
sunny day by keeping the sensors vertically at a fixed distance
above the canopy, following the method outlined in [64]. This
approach aimed to provide precise ground truth data, which
was then compared with calculated UAV multispectral data for
yield prediction. The equations for these indices are reported in
Table I.

3) UAV-Based RGB and VIs Data: The UAV-based multi-
spectral imaging bands, such as RGB, red edge, and NIR, were
essential in our study. The bands were used to create RGB
images and VIs data, including NDVI, NDRE, and G-NDVI.
The VIs offer valuable information on vegetation characteristics
and health, enabling detailed vegetation analysis and helping in
predicting yield.

TABLE I
VEGETATION INDICES EQUATIONS

C. Methodology

Fig. 2 provides the complete framework for the approach used
in this study for wheat grain yield prediction. The framework
consisted of three stages. To begin with, UAV was utilized for
multispectral imaging to collect data, leading to the generation of
RGB and VIs images. The RGB images facilitated the detection
of field-scale wheat plots while VIs were utilized to create binary
masks. The coordinates of detected RGB wheat plots were then
overlaid onto the binary masks of VIs. In the second stage,
NDVI, NDRE, and G-NDVI were calculated for each detected
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Fig. 2. Conceptual framework of the wheat grain yield prediction model, which includes data from the NDVI, NDRE, and G-NDVI. The model is structured
to utilize deep learning specifically for wheat plot detection while employing ML techniques for yield prediction. The model’s integration of these diverse data
sources and analytical approaches aims to improve the accuracy and robustness of yield predictions, demonstrating an effective approach that leverages the abilities
of both deep learning and ML methodologies in agricultural forecasting.

plot. Finally, ML techniques were implemented in the third stage
to predict wheat grain yield based on the calculated indices.

1) Wheat Plot Detection: The research methodology in-
volved utilizing UAV multispectral data, which were initially
processed to generate RGB images. A band registration and
alignment technique was applied to enhance the accuracy of
the RGB images. In our research, we adopted a methodol-
ogy inspired by a study [65] that developed a technique for
aligning multispectral bands captured by separate sensors. The
process revolved around leveraging image intensity to achieve
alignment. Initially, a pair of images, a similarity metric, an
optimizer, and a transformation type were specified for the
iterative alignment process. The similarity metric evaluated
alignment accuracy by generating a scalar value indicative of
image similarity while the optimizer fine-tuned alignment by
minimizing or maximizing this metric. The transformation type
delineated the geometric relationship between the images. Com-
mencing with an internally determined transformation matrix,
the moving image was aligned to the fixed image using bilinear
interpolation. To find the best calibration parameters through
experiments, images were paired with a reference band, such
as Band 2 (Green, with a center wavelength of 560 nm and
a bandwidth of 27 nm). The study highlighted the efficacy of
the “rigid” transformation type in producing optimal alignment
results.

The computer vision annotation tool [66] was used to label
wheat plots in RGB images for annotations. Following the pre-
processing steps, a YOLOv8 deep learning model (YOLOv8n)
was employed to detect wheat plots within the RGB images. The
dataset comprised 1000 RGB images, divided into a 70:20:10
ratio for training, testing, and validation purposes. The model
consisted of 225 layers and 3 011 043 trainable parameters.
The computational load of the model is 8.2 GFLOPs. During
training, the AdamW optimizer was employed with a learn-
ing rate of 0.002 and momentum of 0.9, utilizing distinct

parameter groups for weight and bias decay. The model’s train-
ing, testing, and validation were conducted utilizing Google
Colab GPU resources, ensuring computational efficiency and
robust performance evaluation. This approach aimed to optimize
the detection accuracy of wheat plots in the UAV multispectral
imagery. An example of the detected wheat plots is reported in
Fig. 3.

2) VIs Binary Masks: Various indices, including NDVI,
NDRE, and G-NDVI, were generated weekly using UAV multi-
spectral data. After computing these indices, the next step was to
create binary masks for each index. This binary mask generation
helped identify spatial patterns and variations in vegetation
health over time. The repeated weekly generation of VIs and
their associated binary masks was a dynamic tool for monitoring
crop growth’s temporal dynamics, providing important insights
into its growing health. The NDVI image and its corresponding
binary mask are shown in Fig. 4.

3) Mapping: The study proceeded to the mapping phase fol-
lowing the successful detection and the creation of binary masks
for NDVI, NDRE, and G-NDVI. The RGB-detected coordinates
of wheat plots were overlaid on the VIs binary masks. This
mapping ensured that the subsequent calculations of NDVI,
NDRE, and G-NDVI were limited to the detected wheat plots.
This targeted approach was used to derive accurate and focused
VI values inside the wheat plots, avoiding the computation of
indices for areas surrounding or beyond the wheat plots. The
mapping process is demonstrated in Fig. 5.

4) VIs Calculations: After the mapping process, VIs values
were calculated for each identified wheat plot using (1). Using
this equation for each detected wheat plot in the image resulted
in the precise computation of VIs values tailored to each plot,
as depicted in Fig. 6. The study used this method to obtain
accurate and localized insights into the vegetation health of
individual wheat plots, as the calculation was limited to the
specified regions, resulting in a more nuanced understanding
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Fig. 3. Detection of wheat plots using the YOLOv8 detection model with UAV-based RGB images. YOLOv8 is used to identify and delineate individual wheat
plots in aerial images autonomously. Using UAV RGB-based images provides high-resolution spatial information, allowing for accurate detection of wheat plots.

Fig. 4. NDVI image and its corresponding binary mask. The NDVI image, derived from multispectral data, captures the normalized difference in vegetation
health, allowing for a visual representation of vegetation density and health across the observed area. The NDVI image is used to generate the accompanying
binary mask, which categorizes pixels into binary classes (such as vegetation and nonvegetation). This binary mask is a segmentation tool that helps to delineate
and identify specific features or regions of interest in the NDVI image.

Fig. 5. Mapping the coordinates of wheat plots detected by the YOLOv8 model to the corresponding binary mask derived from the same image. This mapping
is undertaken with the specific objective of isolating and delineating the detected wheat plots within the image. The rationale behind this mapping is to facilitate
precise computation of VIs strictly within the confines of the identified plots, excluding areas outside them. This targeted approach ensures accurate and focused
analysis, allowing for a more nuanced assessment of vegetation health and yield estimation within the detected wheat plots.
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Fig. 6. VIs calculation for each identified plot in the captured image. The goal
is to calculate VIs within the detected plots, laying the foundation for subsequent
utilization in yield prediction analysis. This method allows a targeted and plot-
specific assessment of vegetative parameters, resulting in a more nuanced and
accurate crop yield prediction model based on the derived VIs.

of the dynamic agricultural landscape under investigation.

veg_index =

∑
(V ×M)

w × h
(1)

where V is the original VI image, M is the binary mask corre-
sponding to the VI image, and w × h is the width and height of
that specific detected wheat plot, respectively.

5) Models Development: We selected four ML-based algo-
rithms, including DT [67], RF [68], GB [69], and XGBoost [70],
due to their consistent utilization and demonstrated effectiveness
in predicting wheat yield in multiple research studies. The
selection of these models was based on their well-documented
success in the literature, ensuring a comprehensive approach to
yield prediction. DT is a fundamental ML model that recursively
splits the data into subsets based on features, aiming to predict
the target variable. Each split maximizes the homogeneity of
the subsets regarding the target variable, thus forming a treelike
structure of decisions [71]. RF, an ensemble method, harnesses
the power of multiple DTs. By training several trees on random
subsets of the data and features, RF mitigates overfitting and
enhances predictive performance [72]. GB is another ensemble
technique that sequentially builds a set of weak learners, typi-
cally DTs, to minimize the overall error. It iteratively corrects the
mistakes of the preceding models, focusing on the instances that
were poorly predicted. XGBoost further optimizes GB by em-
ploying a scalable and efficient algorithm. XGBoost integrates
regularization techniques and parallel computing to boost model
performance and speed [73].

The next step involved training the models using three distinct
datasets: one for NDVI values, another for NDRE, and the last for
G-NDVI. Each dataset was partitioned into training and testing
sets, with 70% of the data allocated for training and 30% for test-
ing. This partitioning ensured that the models learned patterns
from the training data while allowing for an unbiased evaluation
of their performance on unseen data during testing. The models

were trained using separate datasets that were designed for each
VI. This approach facilitated the evaluation of the predictive
capacities of each model concerning distinct VI features. By
employing this approach, we acquired a deeper understanding
of how each model utilized the unique characteristics of NDVI,
NDRE, and G-NDVI datasets to make precise predictions related
to wheat grain yield.

6) Models Evaluation: Two metrics were used to evaluate
the performance of the models: 1) the root-mean-square error
(RMSE) and 2) the coefficient of determination (R2). The pro-
portion of the dependent variable’s variance that can be predicted
from the independent variables is measured byR2. It has a range
of 0 to 1, where 1 indicates a perfect fit and 0 means that the
model does not explain the target variable’s variability in any
way beyond the mean. R2 is determined by using

R2 = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − ȳ)2
(2)

where yi represents the actual wheat grain yield values, ŷi
represents the predicted wheat grain yield values, ȳ represents
the mean of the actual yield values, and n represents the number
of observations in the dataset.

RMSE, on the other hand, is a measure of the average devi-
ation between predicted and actual values. It provides a mean-
ingful interpretation of the model’s predicted accuracy using the
same units as the target variable. The RMSE is calculated as the
square root of the average of the squared differences between
predicted and actual values and is reported in

RMSE =

√
1

n

∑n

i=1
(yi − ŷi)2. (3)

III. RESULTS

In this section, we presented the outcomes of our study into the
predictive capabilities of ML algorithms concerning wheat grain
yield using three distinct VIs: 1) NDVI, 2) NDRE, and 3) G-
NDVI. Our analysis employed four prominent ML algorithms:
1) DT, 2) RF, 3) GB, and 4) XGBoost. The dataset of each
index was further categorized into three subsets, each capturing
different stages of wheat growth: all-week data, heading to the
mid-dough stage data, and mid-dough to the hard-dough stage
data.

Dividing the dataset into three different stages in our study
offered several potential benefits. It provided stage-specific in-
sights into the predictive capabilities of ML algorithms and
the effectiveness of various VIs at different points in the crop
growth cycle. It enabled a more granular evaluation of model
performance across different growth stages, allowing us to assess
how well the algorithms performed at each stage and identify any
variations or challenges encountered as the crop matured. This
approach helped in optimizing model selection by determining
which algorithms and VIs were most effective at different stages,
guiding the selection of the most suitable models for accurate
yield prediction.
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Fig. 7. Use of LR with three VIs: 1) NDVI, 2) NDRE, and 3) G-NDVI. This analysis compares UAV-based calculated VIs to ground-truth VIs data obtained from
handheld devices. Each subplot in the figure represents one VI and presents the results of an LR model applied to model the relationship between the calculated
VIs and the corresponding ground truth data. These LR models aim to capture and quantify the relationship between the calculated and ground truth VIs, providing
insight into the degree of correlation.

A. LR Analysis

We used LR analysis to evaluate the correlation between VIs
obtained from UAV and ground truth data acquired from hand-
held devices in the field. Our study focused on three different
VIs: 1) NDVI, 2) NDRE, and 3) G-NDVI. The performance of
the LR model was evaluated by using the R2 metric and the
mean-squared error (MSE). We aimed to investigate whether
the calculated UAV-based VIs could reliably predict wheat grain
yield. The results of LR established strong correlations between
the calculated VIs and the ground truth data. About NDVI,
the model showed an R2 value of 0.988% and a low MSE
of 0.00039. In the same way, the NDRE dataset exhibited an
MSE of 0.00044 and an R2 value of 0.986%. In addition, the
G-NDVI model exhibited a significant R2 value of 0.983% and
an MSE of 0.0005. The findings underscore the strength of the
LR approach in capturing the correlation between UAV-based
calculated VIs and ground truth data. This analysis highlights
the potential utility of indices obtained from UAV in predicting
wheat grain yield with precision, as depicted in Fig. 7.

B. NDVI Data Performance

Based on the analysis of the NDVI datasets across different
growth stages, it was evident from the results reported in II that
RF outperformed other models at each stage of crop growth.
For all-week data, RF achieved an RMSE of 43 grams per plot
(g/p) and an R2 value of 0.90, indicating its predictive accuracy
compared to other models. During the heading to the mid-dough

stage, RF had the lowest RMSE of 39 g/p and the highest R2

value of 0.89, indicating its efficacy in capturing crop dynamics
at this important growth stage. However, at the mid-dough to
the hard-dough stage, RF maintained competitive performance
but had a larger RMSE of 61 g/p and an R2 value of 0.73 than
in previous stages. Nonetheless, RF emerged as the preferred
model for analyzing NDVI data, particularly during the early
to medium stage of crop growth, when its ability to predict was
most pronounced. The results of the testing stage for each model
are presented in Table II.

C. NDRE Data Performance

The NDRE dataset was divided into subsets, and each ML
model performed differently at different crop growth stages.
While RF and DT competed across all subsets, GB and XG-
Boost produced more variable results. For the all-week data
subset, XGBoost was the most effective model, with an RMSE
of 42 g/p and an R2 value of 0.87, indicating higher predic-
tion accuracy. Conversely, at the heading to the mid-dough
stage, DT had the lowest RMSE of 43 g/p and the highest
R2 value of 0.88, demonstrating its usefulness in capturing
crop dynamics. In the mid-dough to the hard-dough stage, RF
maintained performance with an RMSE of 54 g/p and an R2

of 0.81 while DT performed well with an RMSE of 52 g/p and
an R2 of 0.84. GB and XGBoost, on the other hand, showed
comparable predictive accuracy during this stage, with larger
RMSE values and lowerR2 values than RF and DT, respectively.
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TABLE II
WHEAT GRAIN YIELD PREDICTION PERFORMANCE ON NDVI DATA

TABLE III
PERFORMANCE OF WHEAT GRAIN YIELD PREDICTION ON NDRE DATA

TABLE IV
G-NDVI DATA WHEAT GRAIN YIELD PREDICTION PERFORMANCE

The findings for the NDRE data of each model are reported in
Table III.

D. G-NDVI Data Performance

Analyzing the G-NDVI dataset revealed significant perfor-
mance trends among the evaluated ML models at various crop
growth stages. GB outperformed other models on the all-week
data subset, with an RMSE of 42 g/p and an R2 value of 0.89,
showing good prediction accuracy. During the heading to the
mid-dough stage, DT had the lowest RMSE of 43 g/p and
a decent R2 of 0.84, demonstrating its ability to capture the
heading to the mid-dough stage crop changes. RF performed
well from the medium to harvesting stage, with the lowest RMSE
of 42 g/p and anR2 of 0.86, indicating its reliability in predicting

crop yield throughout this important growth stage. However, DT
performance dropped at this stage, with a higher RMSE of 56 g/p
and a lower R2 of 0.81. While XGBoost performed consistently
across all subsets, its predictive accuracy was marginally lower
than that of GB and DT. Notably, XGBoost performed well in
the heading to the mid-dough stage, with an RMSE of 48 g/p
and an R2 of 0.88. The results are discussed in detail for every
model in Table IV.

E. Observations

Here, we presented our observations on the performance of
these models at various stages of wheat growth.

Upon evaluation of the NDVI dataset, it was clear that all
models performed well at two important stages: 1) all-week data
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Fig. 8. Performance trends of the best models using the R2 and RMSE metrics on subsets of NDVI, NDRE, and G-NDVI data. The line graphs depict the models’
comparative efficacy in capturing and predicting variations within the NDVI, NDRE, and G-NDVI data.

and 2) the heading to the mid-dough stage data. The models pre-
dicted wheat grain yield throughout these stages, as evidenced
by their low RMSE and high R2 coefficient values. However,
there was a decrease in performance throughout the mid-dough
to the hard-dough stage data, demonstrating a relative deficiency
in predicting wheat production in the later stages of growth when
the grain is maturing and the chlorophyll reduces due to ongoing
senescence activities.

Contrary to the observed decline in performance during the
mid-dough to the hard-dough stage data in the NDVI dataset, the
models performed consistently across all stages in the NDRE
dataset. Notably, the models outperformed the NDVI dataset
regarding prediction during the later wheat growth stages. This
result demonstrated that NDRE data might be used to pre-
dict wheat grain yields precisely, particularly during advanced
growth phases when the vegetation contrast is more detectable
with multispectral data.

The G-NDVI dataset revealed promising results across all
stages of wheat, with the models demonstrating high predictive
accuracy. The models’ performance in the later stages was
notable, highlighting the potential utility of G-NDVI data for
predicting wheat grain yield throughout later growth stages.
These findings suggested that while NDVI may be useful for
early-stage predictions, G-NDVI emerged as a good choice for
predicting yield later in the growth phase.

Our findings highlighted the varied performance of prediction
models across diverse datasets and growth stages. Although
each dataset had several advantages, choosing the right dataset
depended on the precise requirements of the prediction task
and the stage of wheat growth under consideration. Graphical
representations were used to highlight and clarify the identified
trends. Fig. 8 shows the models’ performance trends across
different datasets and growth stages.

Based on the results obtained for wheat grain yield prediction
using different models across various stages, RF consistently
performed well across all stages for NDVI, NDRE, and G-NDVI

data. For NDVI data, RF yielded the lowest RMSE of 43 g/p with
an R2 value of 0.90 across all-week data, whereas, for NDRE
and G-NDVI, it achieved the lowest RMSE of 50 g/p and 53 g/p,
respectively, for all-week data. Interestingly, at the heading to
the mid-dough stage, RF maintained competitive performance
across all datasets. However, the GB model generally exhibited
higher RMSE values at the mid-dough to the hard-dough stage,
indicating reduced predictive accuracy compared to other stages.
In the case of the G-NDVI, the mid-dough to the hard-dough
subset, RF also showed promising results. Overall, RF emerged
as a robust model for wheat grain yield prediction.

IV. DISCUSSION

Our research illustrated the effective utilization of UAV-based
multispectral imaging, a wheat plot detection model, and ML
algorithms to predict wheat grain yield at a field scale. Our find-
ings indicated that using ML models in combination with various
VIs datasets could accurately predict wheat grain yield within
specific field plots (field scale). Wheat breeders commonly use
these wheat yield plots during the evaluation of a large number
of lines to assess grain yield and other agronomic traits [74].
The development of a high-throughput yield prediction model
at the field plot scale is highly useful in varietal development
programs.

The use of UAV-based multispectral imaging, a plot detection
model, and ML algorithms was useful in predicting wheat grain
yield at the field scale. Earlier studies mostly focused on es-
timating wheat yields at larger geographic scales, such as the
county level. Han et al. [75] used RF, SVM, and Gaussian
process regression (GPR) approaches to achieve R2 values
greater than 0.75 for county-level yield predictions. Similarly,
Wang et al. [76] used convolution neural networks (CNN) and
long short-term memory (LSTM) to predict winter wheat yields,
with good performance metrics (R2: 0.74, RMSE: 721 kg/ha).
Cao et al. [77] used RF and three deep learning models (CNN,
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Fig. 9. Figure presents two plots: One displaying the average yield across all varieties while the other illustrates average values of VIs, including NDVI, NDRE,
and G-NDVI.

LSTM, and deep neural networks) to estimate wheat yields
across 629 counties from 2011 to 2015. They achievedR2 values
greater than 0.85 and RMSE less than 768 kg/ha. From 2011 to
2013, their field-scale projections ranged from R2: 0.48 to 0.71
and RMSE: 956 to 1620 kg/ha at 87 sites. Notably, predicting
yields at the field scale was more difficult due to varied envi-
ronmental conditions, even within the same county, demanding
better resolution datasets [78]. Our RF model, conducted at a
field scale, yielded comparable predictive outcomes to previous
county-level studies. These yield plots are highly important for
the wheat breeders to determine the agronomic performance
in multienvironment trials before selecting lines for cultivar
release. The automated detection of yield with our method could
help to assess accurate yield in hundreds of lines in a short time.

Among the ML models evaluated for wheat grain yield pre-
diction, RF emerged as the top performer across different growth
stages, maintaining high predictive accuracy [79], [80], [81]. The
RF model based on NDVI data demonstrated good performance,
with an RMSE of 43 g/p and an R2 value of 0.90, indicating its
effectiveness in capturing wheat grain yield dynamics through-
out the growth cycle. In contrast, the DT model outperformed
others when utilizing NDRE data, achieving an RMSE of 43 g/p
and an R2 of 0.88, indicating its fit for specific growth stages.
G-NDVI data, when analyzed with GB, exhibited the highest
predictive accuracy, yielding an RMSE of 42 g/p and an R2

value of 0.89. These findings highlight the importance of using
appropriate models, and VIs adapted to different growth stages
for accurate yield prediction, with RF generally performing well
across various conditions.

We observed that wheat grain yield prediction models
performed differently across stages and VIs datasets [82], [83].
For the NDVI dataset, models performed well throughout the
all-week and the heading to the mid-dough stages, predicting
wheat grain yield with low RMSE and high R2 values [84].
However, their performance dropped from the mid-dough
to the hard-dough stage, indicating difficulties in predicting
yield during later growth stages. Models utilizing the NDRE
dataset, on the other hand, outperformed the NDVI dataset
during later growth stages. This indicated that NDRE data
may be more accurate for predicting wheat grain yield in
mature growth stages. Moreover, the G-NDVI dataset provided
positive results across all stages, showing its potential use
in predicting yield in later growth stages. These findings
underscore the importance of considering the stage-specific
performance of VIs in wheat grain yield prediction, with NDRE
and G-NDVI emerging as valuable choices for later growth
stages.

The importance of VIs in this study cannot be overstated. The
VIs change with crop growth stages, and it is more prominent
from the anthesis to the physiological maturity stage [85]. We
found wheat growth dynamics by using three different indices:
NDVI, NDRE, and G-NDVI. Each index provided different
perspectives on crop health and development, allowing for pre-
cise predictions of yield outcomes. Our findings highlighted
the importance of combining multiple indices for an in-depth
knowledge of crop dynamics in the context of precision agri-
culture. We captured complex changes in wheat growth patterns
across different stages of development by combining many VIs.
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This underlines the need to consider stage-specific performance
metrics when selecting appropriate yield prediction indices.

For this study, 30 bread wheat plants that were genetically sim-
ilar were used. These plants were called isogenic sister lines and
came from a spring wheat breeding population called “B1018”
(BW928/BW431/Carberry). These sibling lines demonstrate
disparities in both grain yield and protein concentration. Breed-
ers specifically used these uniform, replicated yield plots to
assess the performance of advanced wheat lines in comparison
to check varieties. The overarching objective was to identify
and choose lines that displayed desirable agronomic features for
improved grain yield, high grain protein for en-use quality at-
tributes, and canopy-reflectance-based differences in indices for
estimating nitrogen use efficiency. Significantly, out of these 30
lines, Line # 6 exhibited high-yield performance in all replicated
plots. To enhance understanding of our analysis, we included
visual depictions of the mean yield and the mean values for
NDVI, NDRE, and G-NDVI for different weeks in Fig. 9.

The ML algorithms evaluated in the study, including RF, DT,
GB, and XGBoost, demonstrated strong predictive capabilities
across different growth stages and vegetation indices. These
algorithms showed high accuracy in predicting wheat grain
yield, with RF consistently performing well. The use of various
vegetation indices such as NDVI, NDRE, and G-NDVI provided
valuable insights into crop health and development, enhancing
the accuracy of yield predictions. However, potential limitations
include the need for further validation across diverse environ-
mental conditions and crop varieties to ensure generalizability.
Additionally, the study’s reliance on UAV-based multispectral
imaging may pose challenges related to data acquisition and
processing, requiring careful calibration and validation proce-
dures. Future work should focus on integrating higher-resolution
datasets, expanding the geographic scope of the study, and
exploring the use of additional ML models to further enhance
prediction accuracy.

V. CONCLUSION

Our study investigated the integration of UAV-based multi-
spectral imaging, a plot detection model, and ML methods for
predicting wheat grain yield at the field scale. This approach
offers valuable insights into precision agriculture applications,
especially in wheat breeding and agronomy research. Utiliz-
ing the MicaSense RedEdge-P Camera and various models,
including YOLOv8, RF, DT, GB, and XGBoost, we obtained
significant insights into crop health and development, enhancing
the accuracy of yield predictions. Notably, the RF algorithm
demonstrated excellent performance, particularly during the
heading to the mid-dough growth stages.

The effectiveness of our approach was further validated by
LR analysis, highlighting strong correlations between calculated
VIs and ground truth data. Our findings underscored the variabil-
ity in model performance across datasets and growth stages, em-
phasizing the importance of selecting appropriate models and VI
datasets tailored to specific wheat growth stages. We were also
able to compare wheat varieties with different agronomic traits,
such as differences in grain yield, by combining isogenic sister

lines from a spring wheat breeding population. This approach fa-
cilitated the identification of high-yield performers, showcasing
the potential of our methodology in selecting promising wheat
cultivars for cultivation.

Our study emphasizes the significance of precision agricul-
ture methods in improving crop management strategies and
increasing agricultural productivity. By integrating UAV-based
multispectral imagery, a wheat plot detection model, ML algo-
rithms, and comprehensive datasets, we offer valuable insights
into optimizing wheat grain yield production and informing
agricultural decision-making. Our research has implications for
agricultural stakeholders, providing farmers and breeders with
the necessary resources to make informed choices and adapt to
changing environmental conditions.
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