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SRC-Net: Bitemporal Spatial Relationship
Concerned Network for Change Detection
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Abstract—Change detection (CD) in remote sensing imagery is
a crucial task with applications in environmental monitoring, ur-
ban development, and disaster management. CD involves utilizing
bitemporal images to identify changes over time. The bitempo-
ral spatial relationships between features at the same location at
different times play a key role in this process. However, existing
change detection networks often do not fully leverage these spatial
relationships during bitemporal feature extraction and fusion. In
this work, we propose SRC-Net: a bitemporal spatial relationship
concerned network for CD. The proposed SRC-Net includes a
perception and interaction module that incorporates spatial re-
lationships and establishes a cross-branch perception mechanism
to enhance the precision and robustness of feature extraction. In
addition, a patch–mode joint feature fusion module is introduced to
address information loss in current methods. It considers different
change modes and concerns about spatial relationships, resulting
in more expressive fusion features. Furthermore, we construct a
novel network using these two relationship concerned modules
and conducted experiments on the LEVIR-CD and WHU Building
datasets. The experimental results demonstrate that our network
outperforms state-of-the-art methods while maintaining a mod-
est parameter count. We believe that our approach sets a new
paradigm for CD and will inspire further advancements in the
field.

Index Terms—Change detection (CD), deep learning, optical
remote sensing images, spatial relationship.

I. INTRODUCTION

CHANGE detection (CD) aims to identify change areas
in the study region through analysis of multiple remote

sensing observations [1], and has gradually become a research
hotspot in remote sensing [2], [3]. By comparing remote sensing
images taken at different times of the same region, change areas
can be extracted on a pixel-by-pixel map. CD has played a
significant role in many fields, including environment monitor-
ing [4], [5], [6], resource management [7], urban planning [8],
and disaster assessment [9], [10].

In recent years, with the widespread adoption of deep learning,
particularly the advancements in convolutional neural networks
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(CNNs) [11] and Transformers [12], CD has gradually tran-
sitioned from traditional pixel-based and object-based meth-
ods [13], [14], [15], [16] to two-stage deep learning approaches,
and finally to the end-to-end deep learning networks [17],
[18]. However, most existing CD networks have originated
from image semantic segmentation, lacking structure design for
perceiving bitemporal spatial relationships. Therefore, existing
methods are insufficient in the utilization of bitemporal spatial
relationships, which is crucial for CD.

In this article, we define the corresponding relationships that
exist between features at the same location at different times
as bitemporal spatial relationships. The optical characteristics
obtained from imaging the same location at different times
should exhibit corresponding relationships. Similarly, the depth
features extracted from the aforementioned optical character-
istics should also exhibit corresponding relationships. Current
network structures are rarely designed to take advantage of
bitemporal spatial relationships. This is similar to using fully
connected neural networks (FCs) to analyze images before
CNNs were proposed. Fortunately, networks could perceive par-
tial bitemporal spatial relationships with extensive learning. This
is similar to how FCs can also perceive some spatial information
in images, despite the difficulty involved.

Existing network structures can be categorized into two
groups: single-branch networks and dual-branch networks. In
single-branch networks, the bitemporal inputs are concatenated
into one matrix as distinct channels, which enables semantic
segmentation networks to address the CD task. In dual-branch
networks, the bitemporal inputs are processed through a Siamese
network with shared network parameters to extract distinct fea-
ture maps for each temporal, subsequently fusing these feature
maps for the change area prediction. Intuitively, CD should an-
alyze the ground object features at each time, and then compare
the corresponding features between different times to detect
changes. This is similar to the process of dual-branch networks
that first extract features from the bitemporal inputs separately
and then compare the differences between the bitemporal fea-
ture maps. Besides, the connection operations within a single-
branch network lead to the disappearance of correspondence
relationships among bitemporal features, thereby losing some
bitemporal spatial relationships. This inevitably gives the im-
pression that dual-branch networks should have advantage over
single-branch networks. However, in the early-used dual-branch
networks [19], each branch extracts features independently, and
there is no cross-branch interaction. These networks did not
perform well in terms of actual results and were significantly
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Fig. 1. Bitemporal remote sensing images. (a) and (b) Original images.
(c) Ground truth. (d) Result of our SRC-Net. (e) Result of the single-branch
network (RDPNet). (f) Result of the dual-branch network without cross-branch
interaction (FC-Siam-diff). (g) and (h) Results of dual-branch network with
cross-branch interaction (BIT, DSIFN). The false positives and false negatives
are indicated in red and green, respectively. Other colors represent true positives.

Fig. 2. Correspondence disappearance in feature concatenation.

inferior to the single-branch networks, as shown in Fig. 1(e)
and (f).

We argue that this is due to the initial dual-branch networks’
inadequate utilization of the bitemporal spatial relationships
during the processes of bitemporal feature extraction and fusion.
During the feature extraction, the initial dual-branch networks
independently extract features in each branch, which lack cross-
branch interaction. Single-branch networks can achieve better
results because they concatenate bitemporal inputs at the be-
ginning. The network does not have the concept of bitemporal
phases and can perceive information across them. Accordingly,
researchers have designed several modules for cross-branch
feature interaction. However, most of them concatenate bitem-
poral features and acquire features through network layers. As
shown in Fig. 2, there should be correlation between features
at the same location at different times, and after concatenating
them, the next network layers have no spatial awareness in the
dimension of depth, and will treat bitemporal features as a new
feature vector, and ignore the relationship between the different
temporal features. Therefore, the correspondence relationships
among the bitemporal features would be disrupted. As shown
in Fig. 1(g) and (h), while there has been some improvement,
there remains substantial room for progression. In the feature
fusion stage, existing approaches can be broadly categorized as
module-based methods and subtraction-based methods. Existing
module-based methods have the concatenation mentioned in

Fig. 2, resulting in the corresponding disappearance. While
subtraction-based methods would lead to the features of un-
changed regions approaching zero, causing a significant loss
of information. Moreover, current methods have not accounted
for the variability of different changes. These turn out to be
bottlenecks of CD.

In order to tackle the previously mentioned concern, we
propose a cross-branch interaction module within the feature
extraction phase, along with a bitemporal feature fusion module.
First, we propose the perception and interaction module (PIM),
which constructs a dual-branch communication mechanism that
can perform cross-branch perception without losing bitemporal
spatial relationships, thereby extracting more precise and robust
features. Second, we propose a patch–mode joint fusion module.
With this module, we prevent the correspondence disappearance
in recent fusion modules and the information loss in subtracting
methods. We slice each patch in the bitemporal feature data
into smaller mini-patches, and generate different fusion results
for different change modes. By considering different changing
modes and bitemporal spatial relationships, we could obtain
more expressive fusion features. Finally, we have further op-
timized the network’s backbone and redesigned its architecture
based on our previous research RDP-Net [20]. We believe that
our work offers a novel approach to utilizing the bitemporal spa-
tial relationships in multitemporal remote sensing data, thereby
enhancing the information mining capability of such data.

The SRC-Net has achieved a better performance in the field
of remote sensing CD. The major contributions of SRC-Net can
be summarized as follows.

1) We propose a PIM that utilizes the bitemporal spatial
relationships among bitemporal inputs. It establishes a
cross-branch interaction mechanism during the feature ex-
traction process, leading to the extraction of more precise
and robust features.

2) We propose a patch–mode joint feature fusion module
(PM-FFM) that prevents the information loss present in
current methods. Meanwhile, it considers different change
modes and concerns about bitemporal spatial relation-
ships, thereby obtaining more expressive fusion features.

3) Our proposed SRC-Net has been evaluated on two public
datasets, LEVIR-CD and WHU Building datasets. The
experimental results indicate that the proposed modules
utilize bitemporal spatial relationships effectively, and our
network achieved state-of-the-art (SOTA) performance.

The rest of this article is organized as follows. Section II
provides a review of the pertinent literature concerning CD
networks, feature interaction, and feature fusion. Section III
describes the CD method proposed in this article. Section IV
presents a set of quantitative comparisons and analyses based
on experimental results. Section V presents discussion. Finally,
Section VI concludes this article.

II. RELATED WORK

A. CD Networks

Neural networks have recently demonstrated promising out-
comes in various geoscience applications [21], including scene
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classification [3] and water quality estimates [22]. NN has also
displayed impressive capabilities in CD [23], [24], [25]. Daudt
et al. [26] utilized U-Net as a foundation and introduced early
fusion (EF) and Siamese (Siam). They designed and proposed
FC-EF, FC-Siam-conc, and FC-Siam-diff [19], which are widely
acknowledged as the cornerstone of deep learning-based CD.
Peng et al. [27] and Fang et al. [28] proposed UNet++_MSOF
and SNUNet-CD based on FC-Siam-conc, replacing U-Net with
U-Net++ [29] and merging multiple side outputs of U-Net++.
Papadomanolaki et al. [30] presented an architecture similar to
U-Net, referred to as L-UNet, which incorporates fully con-
volutional LSTM blocks at each encoding level to capture the
temporal relationship of spatial feature representations. Chen
and Shi [31] introduced a spatial–temporal attention mechanism
to improve the discriminative capacity of deep features extracted
from bitemporal images and proposed a late-fusion method
STANet. As another attention-based method, Chen et al. [32]
proposed a bitemporal image transformer (BIT) to accurately
and efficiently capture contextual information within the spatial–
temporal domain. Zhang et al. [33] introduced DSIFN, where
they designed a shared deep feature extraction network as the
encoder and a difference discrimination network as the decoder,
demonstrating impressive performance. Chen et al. [20] pro-
posed a region detail preserving network RDP-Net, avoiding in-
formation loss and improving the network’s attention to details.
Aiming at the loss of the spatial features of buildings caused
by the multiple successive downsampling operations and the
problem of incomplete buildings and the blurred edges caused
by the complex scenes, Wang et al. [34], [35] proposed HDANet
and W-Net. Zhou et al. [36] proposed a context aggregation
network to mine interimage context over all training images for
further enhancing intraimage context. Hang et al. [37] propose
an ambiguity-aware network to address the difficulties in deal-
ing with ambiguous regions, where pseudochanges happen or
real changes are corrupted. Existing networks have often over-
looked the bitemporal spatial relationships among bitemporal
remote sensing data, which is the central motivation of our
work.

B. Feature Interaction

There are two main ideas for dual-branch feature interaction.
One utilizes a module to acquire dual-branch outputs from
dual-branch inputs through neural layers, actualizing interaction
among the branches via structure design. The other directly
exchanges along spatial or feature dimensions of dual-branch
feature maps to actualize dual-branch interaction.

The first idea has found considerable application in domains,
such as multimodal correlation tasks [38], [39], registration [40],
matching [41]. Lu et al. [42] introduced co-attention to aggregate
different features from different branches and then distribute
them as attention maps, respectively. Yu et al. [43] proposed Sia-
mAttn to compute deformable self-attention and cross-attention
from dual branches for object tracking. Wu et al. [40] proposed
FIRE-Net, which aims to investigate the interaction of features
within source and target point clouds across various levels.

Chen et al. [44] proposed MixFormer to achieve efficient fea-
ture interaction among windows and dimensions. Some recent
networks, such as STANet, BIT, and BAN [45], already employ
similar modules. These methods derive output results through
computations across multiple network layers, which often re-
quire a considerable amount of computation. Meanwhile, they
would result in the disappearance of the correspondence between
bitemporal features, as shown in Fig. 2.

The other idea is directly exchanging along spatial or
feature dimensions of dual-branch feature maps. CEN pro-
posed by Wang et al. [46] is a representative, parameter-free
multimodal fusion framework. This framework facilitates the
dynamic exchange of channels among subnetworks of different
modalities. The process of channel exchange is self-guided by
the importance of individual channels. Fang et al. [47] pro-
posed MetaChanger, directly exchanging features alternately
in the spatial and channel dimensions. Such methods di-
rectly exchange dual-branch feature maps along spatial or fea-
ture dimensions, which would break the intrinsic relationships
within the feature maps, and have not yet achieved widespread
adoption.

In this article, we try to combine these two ideas, reducing the
computation to an acceptable size without breaking the relation-
ships within the original feature maps. Therefore, we propose a
PIM, which calculates the credibility of the dual-branch feature
maps separately and performs the interactions between branches
based on the credibility.

C. Feature Fusion

Feature fusion modules are widely used in various deep
learning applications, such as classification, semantic segmen-
tation [29], [48], CD [19], [20], [28]. Existing modules are
primarily for the fusion of multiscale and multimodal fea-
tures [49], [50], [51], [52], [53]. They concatenate multiple
feature matrices and then generate fusion results through the
network layers, or vice versa. These modules neglect to consider
the spatial relationships among bitemporal data. Mohammadian
and Ghaderi [54] used the Key, Query, and Value matrices from
the self-attention mechanism within Transformer to fuse bitem-
poral features and proposed SiamxFormer. The fusion result is
obtained by a temporal transformer. However, the performance
of SiamxFormer is not good enough.

In addition, within CD, there exists a simple feature fusion
method that directly subtracts bitemporal data [32], [49]. This
straightforward method has also achieved good fusion results.
However, it causes the features of unchanged areas to approach
zero, which leads to information loss and proves detrimental to
the subsequent learning processes.

In this article, we introduce a novel feature fusion module
that leverages the bitemporal spatial relationships of bitemporal
remote sensing data, while avoiding information loss and taking
into account the change modes.

III. METHODOLOGY

In this section, we first introduce the PIM, perceiving the
spatial relationships among bitemporal inputs. Then, we propose
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Fig. 3. Original input bitemporal remote sensing images. (a) and (b) LEVIR-
CD dataset. (c) and (d) WHU dataset.

the patch–mode joint fusion module to avoid information loss
and improve the expressive capability of the fusion features. At
last, we present the architecture of the proposed SRC-Net.

A. Perception and Interaction Module

CD is the analysis of changes in land cover information,
facing various challenges and situations. At times, factors, such
as weather conditions and lighting, can impact the network’s
capacity to extract features and analyze the land cover informa-
tion. In this context, the utilization of bitemporal comparisons
can greatly facilitate the recognition of land cover information.
As the RGB images shown in Fig. 3, the factory buildings at
the bottom of Fig. 3(a) are similar to the nearby roads, making
them susceptible to being mistaken for open space rather than
industrial structures. The trucks situated in the top left corner of
Fig. 3(c) are similar to rest areas or service stations, which are
usually found on the roadside. The perception and interaction
could help avoid misinterpreting the factory buildings as open
space or the trucks as service stations. This example shows the
importance of perception and interaction between branches in
CD.

Therefore, we proposed the PIM. For the bitemporal feature
maps extracted by the Siamese network, we define their cred-
ibility matrices separately, which refer to the probability that
the feature map extracted from a single temporal instance is
reliable. When the feature from a single temporal instance is
deemed reliable, no adjustments would be made. However, if
the feature is deemed unreliable, we would employ the feature
from the other temporal instance to adjust it. To be more precise,
if the other feature is deemed reliable, we would utilize it
as the output; otherwise, we would utilize the average of the
bitemporal features as the output. Drawing inspiration from
the self-attention mechanism within Transformer [12], wherein
the original input computes the Key, Query, and Value matrices
directly via neurons, we similarly process bitemporal feature
maps via neurons to acquire their credibility matrices separately.
In practice, the credibility matrices can be viewed as the prob-
ability that the extracted features are correct, by which we can
calculate the mathematical expectation of the correct features,
and thus obtain the feature interaction results.

Specifically, when the inputs are two temporal instances, t1
and t2, we first calculate their credibilities separately, denoted
as P1 and P2. Let t1′ and t2

′ represent the output of this module.
When t1 is deemed reliable, t1′ = t1. When t1 is deemed unre-
liable and t2 is deemed reliable, t1′ = t2. When both t1 and t2
are deemed unreliable, t1′ = t1+t2

2 . Let T1 represent the event

where t1 is deemed reliable, and T1 represent the event where
t1 is deemed unreliable. The same applies to T2 and T2. The
mathematical expectation of t1′ can be formulated as

E (t1
′) =

∑
i

(
t1

′
(i)P(i)

)

= E (t1
′ | T1)P (T1) + E

(
t1

′ | T1, T2

)
P
(
T1, T2

)

+ E
(
t1

′ | T1, T2

)
P
(
T1, T2

)

= t1P1 + t2 (1− P1)P2 +
t1 + t2

2
(1− P1) (1− P2)

(1)

where i ∈ {1, 2, 3} denotes three potential situations: T1, T1T2,
and T1T2, E(t1

′ | T1) denote the mathematical expectation of
t1

′ when t1 is deemed reliable, andP (T1) denotes the possibility
of T1. The same applies to E(t1

′ | T1, T2), E(t1
′ | T1, T2),

P (T1, T2), and P (T1, T2).
Above, we consider t1 and t2 as singular variables. How-

ever, in reality, t1 and t2 represent matrices as feature maps:
t1, t2 ∈ RB×C×H×W , where B, C, H , and W represent the
batch size, channels, height, and width of the feature map. The
credibilities of the feature maps {P1, P2} are also two matrices:
P1, P2 ∈ RB×C×H×W . The multiplication in (1) employs the
Hadamard product � [55]. So, the mathematical expectation of
t1

′ is formulated as

E (t1
′) = t1 � P1 + t2 � (1− P1)� P2

+
t1 + t2

2
� (1− P1)� (1− P2) . (2)

Similarly, the mathematical expectation of t2′ can be formulated
as

E (t2
′) = t2 � P2 + t1 � (1− P2)� P1

+
t1 + t2

2
� (1− P2)� (1− P1) . (3)

We name this feature interaction as the PIM. The credibility
matrices are inferred from the input instances by linear layers,
which can be formulated as follows:

Pi = sigmoid (Linear(C,C)(ti)) (4)

where Linear(C,C)(·) refers to a linear layer with C as input
and output dimensions. The function sigmoid(·) maps a real
number to the interval of (0,1).

The structure of the PIM is shown in Fig. 4. Our module
takes into account the bitemporal spatial relationships in remote
sensing CD, enabling the Siamese network to engage in dual-
branch communication during the process of feature extraction.
This enhances the network’s ability to extract features from
bitemporal remote sensing images.

B. Patch–Mode Joint Feature Fusion Module

One crucial task within CD is the fusion of feature maps
extracted by Siamese networks from different temporal in-
stances. Existing methods commonly employ concatenation or
subtraction of bitemporal features. As mentioned previously,
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Fig. 4. Structure of the PIM.

existing methods inevitably result in information loss, and a
lack of consideration for various situations of change. It is worth
delving into bitemporal feature fusion to serve the subsequent
prediction. The fusion module should take into account various
situations of change and the bitemporal spatial relationships,
thereby obtaining more expressive and robust fusion features.

Therefore, we propose the PM-FFM, inspired by the methods
of handling time-varying signals in the field of signals and
systems. In the realm of signal and system analysis, when exam-
ining a time-varying signal, it is common practice to extract the
fundamental frequency or baseline of a time-varying signal first,
which provides a macroscopic description of the signal’s overall
behavior. Derived from this, we can determine the mode of the
signals, subsequently allowing for the selection of an optimal
approach for signal processing. A similar idea should also be
adopted for remote sensing CD. Different feature fusion heads
should be used to fuse the bitemporal feature maps correspond-
ing to different modes. The mean of bitemporal features can be
regarded as the baseline, around which the features of preceding
and subsequent temporal instances exhibit variations. Based
on the baseline, we deduce the probabilities of various change
modes, and obtain fusion features corresponding to these distinct
modes through the specialized fusion heads. Subsequently, the
final fusion result is ascertained based on mathematical expecta-
tion. Specifically, the structure of the patch–mode joint feature
fusion module is shown in Fig. 5.

1) Bitemporal Subfeatures: We partition the input image into
patches for learning at the beginning, so the size of the feature
map extracted by the Siamese network can be equivalently
represented as d× h× w, where h and w denote the height
and width of the input feature map, respectively, and d denotes
the depth. The size of each patch is d× 1× 1. Considering that
the modes within each patch may also vary, each patch is further
subdivided into k mini-patches. The size of the mini-patches is
d
k × 1× 1. This allows for a more detailed determination of the
modes within each patch. A mini-patch equivalently refers to a
vector of dimensions l × 1, where l = d/k. The mini-patches
from the same position in the bitemporal feature maps are
combined to form multiple sets of bitemporal subfeatures.

2) Mode Perception: A mode perception mechanism is con-
structed to determine the mode of the bitemporal subfeatures.
As mentioned above, we consider the mean of the bitemporal
subfeatures as the baseline and utilize a linear layer followed by
a softmax layer to infer the probabilities of the different modes
for each subfeature. The mode perception mechanism can be
formulated as

Mi = Softmax (Linear(l,m)(mean(Fi))) (5)

where Fi = {Fi,1, Fi,2} represents the ith bitemporal subfea-
ture, Fi,1, Fi,2 ∈ Rl×1 represent the ith subfeature of t1 and t2
feature map, Mi ∈ Rm×1 represents the ith probability matrix
of the different modes, and m represents the total number of
modes.mean(·) refers to the operation of taking the mean value.
Linear(l,m)(·) refers to a linear layer with l as input dimension
and m as output dimension. Softmax(·) refers to the softmax
function.

3) Multihead Feature Fusion: In correspondence with the
various modes that exist for subfeatures, we design a multihead
feature fusion mechanism. The inputs for different heads are
obtained through linear combinations of the subfeature. Dif-
ferent combinations are processed through a group linear layer
to obtain the fusion results of different modes. The number of
groups in the group linear layer is equal to the number of modes,
implying that each mode has its dedicated linear layer. This
arrangement allows for generating unique feature fusion results
for each mode. The combination of bitemporal subfeatures can
be formulated as

Ci,j = αjFi,1 + βjFi,2 (6)

where αj and βj represent the jth coefficients for the linear
combination of Fi,1 and Fi,2, respectively, and Ci,j ∈ Rl×1

represents the jth linear combination, j ∈ {1, 2, . . .,m} of Fi.
The multihead feature fusion results can be formulated as

Hi,j = Linear(j)(l, l)(Ci,j) (7)

where Linear(j)(l, l)(·) refers to the jth linear layer with l as
input and output dimension in the group linear layer. Hi,j ∈
Rl×1 represents the feature fusion result of the jth head

Hi = Concat (Hi,1, Hi,2, . . ., Hi,m)

= [Hi,1, Hi,2, . . ., Hi,m] (8)

where Concat(·) refers to concatenating matrices along the
second dimension, and Hi ∈ Rl×m represents the multihead
feature fusion results.

Consequently, we obtain the probabilities of different modes
for each subfeature, and obtain the fusion results by utilizing
the feature fusion head specific to each mode. The final feature
fusion result of a subfeature can be obtained through matrix
multiplication, which can be formulated as

Ri = Hi ×Mi (9)

where Ri ∈ Rl×1 represents the final feature fusion result of the
subfeature Fi. The fusion result of t1 and t2 feature maps is ob-
tained by combining the results of every bitemporal subfeature.
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Fig. 5. Structure of the PM-FFM.

Fig. 6. Architecture of the proposed SRC-Net.

The proposed PM-FFM effectively avoids information loss,
takes into account the different change modes, and utilizes the
bitemporal spatial relationships of the input instances. In the
experiment, the number of mini-patches in each patch k is set to
16, and the number of feature fusion heads m is also set to 4.

C. Network Architecture

The overall architecture of the proposed SRC-Net is shown
in Fig. 6. The network backbone is similar to RDP-Net, but
is enhanced by employing Siamese networks to extract fea-
tures separately from bitemporal inputs, and we augment the
supervision of network learning. Our network primarily consists
of three stages: bitemporal geospatial feature extraction stage,
bitemporal feature fusion stage, and change prediction stage,
complemented by two additional layers: patch embedding layer
and patch combining layer. In addition to supervising the final
prediction, we have introduced supervision for the features
extracted by the bitemporal geospatial feature extraction stage.
The bitemporal features obtained in the feature extraction stage
possess the capacity to characterize ground object information.
By analyzing these features, we can identify the types of ground

objects at different times and initially determine the change
areas. The comparison of the initial result with the ground truth
(Loss2) supervises the feature extraction stage.

Specifically, the patch embedding layer is employed to par-
tition the input image into multiple patches based on their
respective regions. In order to reduce the loss of information
and maintain the intricate local details, the patch embedding
layer with patch size (p× p) and input image size (C ×H ×W )
can be implemented as two convolutions (GenPatch(·) and
GenPatch2(·)). The input channels of the first convolution
GenPatch(·) are cin, output channels are c/4, kernel size is
4, and stride is 4. The input channels of the second convolution
GenPatch2(·) are c/4, output channels are c, kernel size is p/4,
and stride is p/4. The layer can be formulated as

Xpatch = GenPatch2 (BN(GenPatch(Xinput))) (10)

where BN() represents Batch Normalization [56], Xpatch repre-
sents the patch embedding feature maps, and Xinput represents
the input image.

The SRC-Block is used as the backbone of our network. As
shown in Fig. 7, it consists of a depthwise convolutional layer
followed by two pointwise convolutional layers. The depthwise
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Fig. 7. SRC-Block.

layer consists of three parallelized group convolutional layers,
which are used to explore the information between different
patches. Each of the three group convolutional layers has c
input and output channels, with c groups. The kernel sizes for
these layers are 1, 3, and 5, respectively. The two pointwise
convolutional layers are used to explore the information of each
patch, where we explore the inverted bottleneck design. The
kernel sizes for these convolutional layers are 1. The input
channels and output channels for these layers are (c, 4c), and
(4c, c), respectively. The residual connection serves to maintain
a primary focus on the details inside a patch when the network
explores the context information between patches. LayerNorm
represents layer normalization [57], GELU represents Gaussian
error linear unit [58], and GRN represents the global response
normalization layer [59].

Bitemporal geospatial feature extraction stage: This stage
employs Siamese networks to extract features, respectively, from
bitemporal inputs. Each Siamese branch contains n1 blocks,
with each block consisting of a Siamese SRC-Block and a PIM.
The SRC-Blocks on each branch of the Siamese networks share
network parameters. These n1 blocks can extract features from
bitemporal inputs, harnessing the bitemporal spatial relation-
ships and engaging in dual-branch communication.

Bitemporal feature fusion stage: This stage uses the PM-FFM,
which takes into account the varying situations of changes, pre-
serves bitemporal spatial relationships, and avoids information
loss.

Change prediction stage: This stage contains n2 SRC-Blocks
to predict the change results from the fusion feature maps.

The patch combining layer is utilized to merge patches based
on their respective regions in order to generate a pixel-level
classification feature map. The region composition layer can
be implemented as a convolution-transpose and a convolution.
The input channels of the convolution-transposePatchUp(·) are
c, output channels are 32, the kernel size is p, and stride is p.
The input channels of the convolution Final(·) are 32, output
channels are out_ch, and the kernel size is 1. The layer can be
formulated as

Youtput = Final (GELU (BN(PatchUp(Ypatch)))) (11)

where Youtput represents the predicted results, and Ypatch repre-
sents the input patch embedding feature maps.

The previous paragraphs delineated the architecture of the
different stages within the network. To facilitate a more ro-
bust learning process, we have implemented three sets of loss
functions. These loss functions supervise the network’s training
together. The overall loss function can be defined as

Loss = Loss1 + Loss2 + Loss3. (12)

Loss1 primarily imposes constraints on the training of the
PIM in the bitemporal geospatial feature extraction stage, en-
suring that the module can better retain pertinent information.
Specifically, a singular temporal instance along with its noisy
signal is fed into the module. The credibilities calculated for the
noisy signal should be lower, and the credibilities of the original
signal should be higher, resulting in two outputs that are closer
to the original signal. We calculate the disparity between the
module’s output signal and the original data as the loss, which
can be formulated as

Loss1 = ||Sout − Sori||2 (13)

where Sout represents the module’s output signal and Sori repre-
sents the original data.

Loss2 and Loss3 both describe the disparity between the
prediction and the ground truth. Loss2 primarily examines the
feature extraction capability of the feature extraction network.
Utilizing a convolution-transpose and a softmax layer, the like-
lihood of land cover types for each point can be inferred. Then,
we can calculate the probability of change at each point by
employing Bayes’ formula, thereby computing the loss, which
enables effective supervision of the feature extraction. Loss3 is
employed to calculate the disparity between the final prediction
and the ground truth. In our network, we use a hybrid loss
function as Loss2 and Loss3, which can be defined as L

L =
1

σ2
1

Lfocal +
1

σ2
2

Ldice +
1

σ2
3

Ledge + log σ1σ2σ3 (14)

where Lfocal represents focal loss [60], Ldice represents dice
loss [61], and Ledge represents edge loss [20]. σ1, σ2, and σ3

represent the learnable relative weight of the lossesLfocal,Ldice,
and Ledge, respectively, according to a principled approach to
multitask deep learning proposed by Kendall et al. [62]. Focal
loss and dice loss primarily address issues related to class imbal-
ance. Edge loss is primarily concerned with capturing details,
particularly in boundary regions. The formula of edge loss is

Ledge = −wedge log(pt) (15)

where wedge represents the edge weight of point and pt repre-
sents the probability of correct classification.

IV. EXPERIMENTS AND ANALYSIS

A. Dataset

The experiment was conducted on two datasets named
LEVIR-CD dataset [63] and WHU Building dataset [8], two
of the most common datasets in remote sensing CD.

LEVIR-CD dataset consists of 637 visible light image pairs
of 1024 × 1024 pixels, which are collected from Google Earth.
The spatial resolution is 0.5m per pixel. We cut each image pair
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TABLE I
RESULTS ON LEVIR-CD DATASET AND WHU BUILDING DATASET

TABLE II
ABLATION EXPERIMENT ON LEVIR-CD DATASET

TABLE III
EXPERIMENT WITH DIFFERENT k IN PM-FFM

into 256 × 256 pixel patches without overlapping and ultimately
obtained 7120 training sets and 1024 validation sets.

WHU Building dataset consists of two visible light aerial
images of size 32 507 × 15 354, which are captured by NZ
Aerial Mapping Ltd. The spatial resolution is 0.3 m per pixel.
We cut each image pair into 256 × 256 pixel patches without
overlapping and ultimately obtained 5141 training sets and 2293
validation sets.

B. Implementation Details

We implemented SRC-Net using the PyTorch framework. The
number of PIM in the bitemporal geospatial feature extraction
stage is set to 4, and the number of SRC-Blocks in the change
prediction stage is also set to 4. c is set to 256. The learning rate
is set to 2e-3 and decays by 0.8 every 20 epochs. In the training
process, the batch size is set to 16, and AdamW [64] is applied
as an optimizer. We conducted experiments on a single NVIDIA
RTX3090 and trained for 300 epochs. The comparison methods
also use all the same parameters.

We used three metrics, precision, recall, the F1 score, overall
accuracy (OA), and IoU to quantitatively evaluate the perfor-
mance of the CD models.

C. Comparison With SOTA Methods

We compared our method with FC-EF, FC-Siam-conc, FC-
Siam-diff [19], RDP-Net [20], SNUNet [28], L-UNet [30],
STANet [31], BIT [32], DSIFN [33], BAN [45], Changer [47],
SiamixFormer [54], and LightCDNet [65]. These methods rep-
resent deep learning-based approaches in the field of CD. FC-EF,
FC-Siam-conc, and FC-Siam-diff [19] are baseline models and
they represent improvements of U-Net [48]. STANet [31] in-
corporates a spatial–temporal attention mechanism to improve
the discrimination of deep features within bitemporal images.
BIT [32] utilizes a customized CNN along with a pair of
transformer encoders and decoders to effectively address the
CD problem. L-UNet [30] represents a combination of convolu-
tional and recurrent approaches, employing fully convolutional
LSTM blocks for an end-to-end neural network. SNUNet [28],
DSIFN [33], and LightCDNet [65] are three recently pro-
posed methods, which are effective in obtaining competitive
results. Changer [47] proposes a novel general architecture,
MetaChanger, which integrates interaction layers within the
process of feature extraction. SiamixFormer [54] leverages tem-
poral transformers in feature fusion, enhancing the preservation
of large receptive fields generated by transformer encoders.
BAN [45] proposes a universal foundation model-based CD
adaptation framework designed to extract foundational model
knowledge for CD purposes.

Table I reports the comparisons of detection accuracy and
the number of parameters. Our proposed SRC-Net shows better
performance than other SOTA CD methods with only 5.17 M
parameters. On the LEVIR-CD dataset, our SRC-Net achieved
the highest F1 of 0.9224, surpassing other SOTA methods. The
precision is 0.9263 and the recall is outstanding 0.9172, both
of which are competitive, demonstrating a competitive perfor-
mance. BIT secures the second position with an F1 of 0.9169,
and 11.94 M parameters. SRC-Net has about 44% of BIT’s
parameters (11.94M× 43% = 5.17˜M). On the WHU Building
dataset, our SRC-Net also achieved the highest F1 of 0.9224 and
the highest recall of 0.9155, surpassing other SOTA methods.
The precision is outstanding at 0.9257, further demonstrating a
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Fig. 8. (a)–(i) Results on the LEVIR-CD dataset. (j)–(r) Results on the WHU Building dataset. (a), (b), (j), and (k) Original images. (c) and (l) Ground truth. The
results of (d) and (m) FC-Siam-diff, (e) and (n) BIT, (f) and (o) DSIFN, (g) and (p) SNUNet, (h) and (q) RDP-Net, and (i) and (r) our SRC-Net. The false positives
and false negatives are indicated in red and green, respectively. Other colors represent true positives.

competitive performance. RDP-Net secures the second position,
boasting an F1 of 0.9169. Fig. 8 shows some detection results
from the validation set of the LEVIR-CD dataset and WHU
Building dataset. The qualitative results provide a more intuitive
comparison of the CD methods. We observe that most of the
comparative methods perform poorly in complex scenes, such as
the case of tree occlusion. In contrast, thanks to the more accurate
features extracted by the PIM and the more expressive features
fused by the PM-FFM, our SRC-Net has better performance.

In our experiments, particularly in certain scenarios, we have
also observed significant improvements in our SRC-Net com-
pared with other SOTA methods, as shown in Fig. 9. For scenar-
ios where the optical properties of the road and the roofs of the
surrounding buildings are similar, comparative methods perform
poorly, and our SRC-Net still gives good results. However, we
also note that there is still room for improvement of our method
in this scenario. These experiments further prove the superiority

of our SRC-Net. We believe that these improvements are the
result of our enhancements, which will be analyzed in detail
later.

D. Ablation Study

To evaluate the PIM and PM-FFM, a couple of ablation
experiments were conducted, as given in Table II. There are two
variants of our network, in addition to the full network. They are
as follows.

1) SRC-Netγ: We remove PIM from SRC-Net.
2) SRC-Netβ: We remove the PM-FFM from SRC-Net, and

just subtract bitemporal feature maps to obtain the new
feature map.

3) SRC-Netα: We remove PIM from SRC-Netβ .
The experimental results exemplify the contributions of each

improvement in our SRC-Net. The PIM improves our network
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Fig. 9. (a) and (b) Original images. (c) Ground truth. The result of (d) FC-Siam-diff, (e) BIT, (f) DSIFN, (g) SNUNet, (h) RDP-Net, and (i) our SRC-Net. The
false positives and false negatives are indicated in red and green, respectively. Other colors represent true positives.

Fig. 10. (a) and (b) Original images. (c) Ground truth. The result of (d) SRC-Netα, (e) SRC-Netβ , and (f) SRC-Net. The false positives and false negatives are
indicated in red and green, respectively. Other colors represent true positives.

Fig. 11. (a)–(f) Original images. The visualization results of (g)–(l) the output
feature maps of the bitemporal geospatial feature extraction stage of SRC-Netα,
and (m)–(r) SRC-Netβ .

by 1.40% recall and 0.43% F1. The PM-FFM improves our
network by 0.93% recall, and 0.28% F1. Fig. 10 shows some
detection results.

The experimental results suggest that our improvements can
increase recall, thereby allowing the network to detect more
change areas. In addition, the experiments demonstrate the
efficiency of the SRC-Net architecture, enabling the attainment
of performance levels comparable with SOTA standards even in
the absence of the PIM and PM-FFM.

E. Experiment in PIM

The aforementioned experiments collectively demonstrate
the remarkable superiority of our SRC-Net. By analyzing
experimental results, we conclude that a significant fac-
tor lies in the better feature extraction capabilities during
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Fig. 12. (a) and (b) Original images. (c) Ground truth. The result of (d) SRC-Netβ and (e) our SRC-Net. The false positives and false negatives are indicated in
red and green, respectively. Other colors represent true positives.

the bitemporal geospatial feature extraction stage. The PIM
facilitates dual-branch communication. These factors con-
tribute to the network’s extraction of more precise and robust
features.

As shown in Figs. 9 and 10, SRC-Net exhibits enhanced
discernment when it comes to buildings that are easily confused
with their surrounding environments. We have visualized the
bitemporal feature maps obtained by extracting the instances
in Fig. 10 through SRC-Netα and SRC-Netβ , and the results
are shown in Fig. 11. From the results, it is evident that for
regions with changes in buildings, the feature maps extracted
by SRC-Netβ exhibit more pronounced variations compared
with SRC-Netα. Furthermore, the delineation of the area is
more precise. These are highly advantageous for subsequent
predictions of changed areas.

F. Analysis of PM-FFM

The fusion module is designed to prevent the information loss
present in current methods. Meanwhile, it considers different
change modes and concerns about bitemporal spatial relation-
ships, thereby obtaining more expressive fusion features.

For the setting of the hyperparameter k in the module, six
values from 2 to 64 are selected and tested on the LEVIR-CD
dataset. The results are given in Table III. It can be seen that
when k is larger than 4, the impact on the final performance will
not be significant, and we set k to 16 based on the result.

In addition, we visualize the results of bitemporal feature
extraction. As shown in Fig. 12, in the top row of images, the
area surrounding the three houses in the middle remains as land
before and after the change. However, the middle house differs
from the other buildings, yet it might be misidentified as flat
land when looking at a single image. If we observe the fusion
features by direct subtraction, crucial features that can determine
the type of this area may be lost. As a result, SRC-Netβ is
unable to identify this particular change. With the RS-CD feature
fusion module, this change is well predicted. In the bottom row,
this situation becomes even more apparent. The input images
have significant forest cover, and if we simply subtract them, it
becomes challenging for the subsequent network to perceive

the surrounding environment’s characteristics. It may fail to
recognize the potential noise that could have been introduced
in the previous network.

V. DISCUSSION

Most existing CD networks lack structure design for perceiv-
ing bitemporal spatial relationships. Therefore, existing methods
are insufficient in the utilization of bitemporal spatial relation-
ships, which is crucial for CD. The SOTA methods compared in
Table I can be broadly categorized into three groups: single-
branch networks (FC-EF, L-UNet, SNUNet, and RDP-Net),
dual-branch networks without cross-branch interaction (FC-
Siam-conc, FC-Siam-diff, STANet, SiamixFormer, and BAN),
and dual-branch networks with cross-branch interaction (BIT,
DSIFN, Changer, LightCDNet, and SRC-Net). From the results,
it can be seen that dual-branch networks without cross-branch
interaction achieve generally poorer results than single-branch
networks, whereas dual-branch networks with cross-branch in-
teraction achieve better results. The results further validate the
importance of bitemporal spatial relationship. The two modules
proposed in this article significantly enhance the network’s abil-
ity to perceive spatial correlation during the feature extraction
and feature fusion stages.

However, the current SRC-Net still has some limitations. The
SRC-Block can be reduced in the amount of computation and the
number of parameters. In addition, the PIM relies on the learned
credibility matrices for interaction, ignoring that the land cover
may have changed between the two time phases. These issues
will be the focus of our future research.

VI. CONCLUSION

In this article, we propose SRC-Net, an effective method
concerning bitemporal spatial relationships for remote sensing
CD. It contains the PIM and the PM-FFM. These modules
effectively utilize the bitemporal spatial relationships in the input
bitemporal data. The PIM establishes a cross-branch percep-
tion mechanism during the feature extraction process with the
bitemporal spatial relationships among bitemporal inputs, lead-
ing to extract more precise and robust features. The PM-FFM
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considers different change modes, and concerns bitemporal
spatial relationships, and prevents information loss in current
methods. With this module, we can obtain more expressive
fusion features. We have corroborated the effectiveness of our
network through comprehensive experiments. The proposed
SRC-Net achieves the SOTA empirical performance with 5.17 M
parameters. Experiments were conducted on the LEVIR-CD
and WHU Building datasets, with the results indicating that
the SRC-Net model has the potential to notably improve the
accuracy of remote sensing CD. However, we also note that the
computational overhead of the current backbone of SRC-Net
remains a limiting factor for deployment on edge devices. The
research in this article is based on bitemporal remote sensing
images, but the two modules proposed can be also applied in
multitemporal CD tasks, which will be the direction of our
subsequent research.
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