
IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 16, 2023 11467

MS-GAN: Learn to Memorize Scene for Unpaired
SAR-to-Optical Image Translation

Zhe Guo , Zhibo Zhang , Qinglin Cai , Jiayi Liu , Yangyu Fan , and Shaohui Mei , Senior Member, IEEE

Abstract—Synthetic aperture radar (SAR) and optical sensing
are two important means of Earth observation. SAR-to-optical
image translation (S2OIT) can integrate the advantages of both
and assist SAR image interpretation under all-day and all-weather
conditions. The existing S2OIT methods generally follow a paired
training paradigm, which is difficult when dealing with the un-
paired S2OIT application scenarios. Moreover, the generator and
discriminator in current S2OIT methods have insufficient scene
memory for SAR images, resulting in regional landform deforma-
tion in the generated images. To address these issues, we propose a
novel generative adversarial network capable of memorizing scene
for unpaired S2OIT called MS-GAN. The cycle learning frame-
work based on cycle generative adversarial network for unpaired
S2OIT is designed to construct the translation mapping between
unpaired SAR and optical images. The multiscale representation
generator is constructed for multiscale fusion and utilization of
scene features of SAR images. The proposed multireceptive field
discriminator has the ability to enhance scene memory and gen-
erate higher quality optical images in different landforms. In
addition, the designed subbands shrinkage denoising module can
further suppress the effect of speckle noise in SAR images on the
quality of the generated results. Extensive experiments conducted
on three challenging datasets SEN1-2, WHU-SEN-City, and QXS-
SAROPT demonstrate that the proposed MS-GAN outperforms
the state-of-the-art methods on both subjective and objective eval-
uation metrics.

Index Terms—Synthetic aperture radar (SAR)-to-optical image
translation (S2OIT), cycle generative adversarial network
(CycleGAN), scene memory, multi-scale fusion, multireceptive
field.

I. INTRODUCTION

W ITH the continuous development of space remote sens-
ing detection technology, synthetic aperture radar (SAR)

and optical sensing images have a wide range of application
needs in land planning, environmental monitoring, resource
prospection, military reconnaissance and other fields. SAR is
a kind of active remote sensing, which can be used under
all-day and all-weather conditions. But SAR images suffer from
geometric distortion and speckle noise, which seriously affect
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the visual effect of SAR imaging [1]. Without prior knowledge,
it is difficult for nonexperts to visually identify land cover types
from SAR images. In contrast, the optical images contain high
spectral resolution, where the visible light range is more in
line with human visual perception, and the susceptibility of
optical images to severe weather effects such as clouds and fog
can be compensated by SAR images [2]. Therefore, combining
the advantages of these two images and translate SAR images
into corresponding optical images can improve the visual ef-
fect of SAR images, and also reduce the cost of interpreting
SAR images [3]. The basic idea of the SAR-to-optical image
translation (S2OIT) is to pass the SAR images through a deep
learning model and learn the mapping relationship from the
SAR image domain to the optical image domain based on
the features of the SAR and optical images in the training set
as a guidance condition [4]. The imaging principles of SAR
and optical images are fundamentally different, in terms of
measurement methods, wavelengths, detection instruments, and
viewing angles [3]. SAR images mainly represent the structure
and dielectric properties of the observed target, and the spectral
information is insufficient, while optical images are rich in
spectral information, which facilitates the visual interpretation
of the landscape. However, SAR and optical images still have the
essential connection. The acquisition of SAR and optical remote
sensing images is a function of the reflection or scattering char-
acteristics of surface environment to electromagnetic waves [3],
and although the spectra and colors of SAR and optical images
covering the same scene are different, they describe basically
the same features, such as spatial locations, shapes, and types
of scene, which are unchanged, and these intrinsic common
characteristics are the feasibility principle for the S2OIT. Due
to the rapid development of natural image-to-image translation
(I2IT) based on deep learning [5], [6], researchers have begun
to pay attention to S2OIT [4]. However, most of the current
research on S2OIT generally follow a paired training paradigm,
which is difficult when dealing with the unpaired S2OIT task
with more flexible application scenarios.

Cycle generative adversarial network (CycleGAN) [7], as
an unsupervised I2IT model for natural images, brings new
inspiration for the task of unpaired S2OIT. Currently, most of
the research on unpaired S2OIT is designed with CycleGAN
as the backbone network, focusing on the unsupervised SAR
image translation for image processing tasks, such as cloud
and fog removal [8], and change detection [9], etc. Recently,
Yang et al. [10] proposed a fine-grained generative adversarial
network FG-GAN for the unpaired S2OIT, which enhances the
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Fig. 1. Overall framework of MS-GAN model. The proposed framework can be divided into two cyclic processes, i.e., S2OIT and O2SIT. This figure only
focuses on the S2OIT task of this article.

detailed information in generated optical images by improving
the structure of generator and discriminator.

However, the existing unpaired S2OIT methods are designed
from the perspective of natural images, without considering
complex scene characterization of SAR images. Although sev-
eral paired S2OIT methods improve the adaptation to SAR
images by focusing on wavelet decomposition [11], color in-
formation [12], and hierarchical potential features [13], they are
not applicable to unpaired S2OIT task due to the limitations
of their paired training paradigm. In addition, the generator
and discriminator in current S2OIT methods have insufficient
feature extraction and discrimination ability for multiscale and
multireceptive fields, and it is more difficult to memorize the
scene effectively, so the generated images will have regional
topographic deformation [14], which is not conducive for scene
interpretation of different landforms. Furthermore, the speckle
noise in SAR images may also cause color distortion and noisy
color patches in the generated images.

In this article, we propose an end-to-end scene memory gen-
erative adversarial network (MS-GAN) under the cycle learning
framework for unpaired S2OIT. In order to enhance the scene
memorization capability for SAR images of different landforms,
we redesign the structure of the generator and discriminator.
Group convolution is used in the feature extraction part of the
generator for multiscale fusion and utilization of the features.
In the discriminator part, pyramid atrous convolution block is
added to make the output discriminant matrix correspond to
different sizes of the receptive field. The constructed multi-
scale representation generator (MRG) and multireceptive field

discriminator enable the network to extract the features and
discriminate the image with multiscale and multireceptive fields,
which in turn fuses more information to enhance the ability of
scene memory and generate higher quality optical images. In
addition, the designed subbands shrinkage denoising module can
further suppress the effect of speckle noise in SAR images on
the quality of the generated results. Fig. 1 shows the framework
of our proposed MS-GAN. A series of experiments over three
challenging datasets are conducted to assess the effectiveness
and rationality of our MS-GAN for unpaired S2OIT.

Overall, our main contributions can be summarized as
follows.

1) We propose an end-to-end scene MS-GAN under the cycle
learning framework for unpaired S2OIT, which facilitates
scene interpretation of different landforms in SAR images.
Extensive experimental evaluations on three challenging
datasets SEN1-2 [15], WHU-SEN-City [16], and QXS-
SAROPT [17] show the effectiveness of the proposed
MS-GAN.

2) We design the MRG to enhance the scene memorization
capability by multiscale fusion and utilization of scene
features of SAR images.

3) We design the multireceptive field discriminator (MFD) to
make the output discriminant matrix correspond to differ-
ent sizes of the receptive field, thus enabling the network to
generate higher quality optical images of different scenes.

The rest of this article is organized as follows. Section II
briefly introduces the basic knowledge of GAN, natural I2IT,
and S2OIT. The proposed MS-GAN model is presented in detail



GUO et al.: MS-GAN: LEARN TO MEMORIZE SCENE FOR UNPAIRED SAR-TO-OPTICAL IMAGE TRANSLATION 11469

in Section III. Section IV portrays the experiments conducted
over three public challenging datasets. Section V discusses the
experimental results and our future work. Finally, the conclusion
is provided in Section VI.

II. RELATED WORK

A. Generative Adversarial Network

In 2014, Goodfellow et al. [18] proposed GAN, which is a gen-
erative model that consists of a generator for generating images
and a discriminator for distinguishing the generated images. The
excellent performance of the GAN has led to the emergence of a
large number of GAN-based studies. Mirza et al. [19] proposed
conditional generative adversarial network (CGAN), which uses
the condition information corresponding to the image data on the
basis of GAN for training, thus can generate images for a specific
data distribution. Radford et al. [20] proposed DCGAN, which
combines the ideas of convolutional neural networks (CNN) and
GAN, thus improving the performance of GAN. Subsequently,
researchers have successively proposed a series of improvement
methods to further enhance the capability and stability of GAN
in the field of image processing, especially the I2IT [21].

B. Natural Image-to-Image Translation

In 2017, Isola et al. [22] proposed Pix2pix based on CGAN,
which serves as a general I2IT framework and provides a broad
reference for subsequent I2IT work. Meanwhile, Zhu et al. [7]
proposed CycleGAN, which consists of two generators and
discriminators, and can use unpaired images for I2IT task.
Pix2pix and CycleGAN is currently the baseline in supervised
and unsupervised I2IT, respectively. Recently, Li et al. [23]
presented the Brownian bridge diffusion model (BBDM) to
bridge the gap between distinct domains. Jung et al. [24]
introduced contrast learning based on CGAN to improve the
effectiveness of translated images. Guo et al. [25] proposed
structural consistency constraints to mitigate semantic distor-
tions in unpaired image translation. Hu et al. [26] proposed a
new semantic relation consistency regularization, and by intro-
ducing decoupled contrast learning, image translation achieved
better performance. I2IT approaches oriented to multidomain
and object recognition [27], [28], and several unsupervised I2IT
methods have also been proposed [51], [30]. However, most of
the above I2IT methods only focus on the conversion between
natural images or the mutual conversion between natural images
and sketches.

C. SAR-to-Optical Image Translation

Based on the development of natural I2IT, the work on
S2OIT using deep learning techniques started gradually. In 2018,
Merkle et al. [31] achieved image alignment for the first time for
generated images of remote sensing images, and also attempted
to translate SAR images to optical images, showing the great
potential of deep learning in the field of remote sensing I2IT.
Later, Wang et al. [16] combined the advantages of CycleGAN
and Pix2pix to propose a supervised cycle-consistent adversarial
network that preserves both landform and structural information

in S2OIT. Zhang et al. [32] proposed a feature-guided S2OIT
method that combines the cross-modal feature extraction capa-
bility of VGG and uses a multilayer feature matching module
to retain more information, thus improving the quality of the
generated images. Li et al. [11] presented a wavelet feature
learning network combined with the CycleGAN framework,
which can learn features more efficiently. Wang et al. [13]
designed an image translation network with two subnetworks,
which learns richer optical features of the input image through
the optical reconstruction subnetwork. At the application level,
scholars have further improved the quality of generated images
by constructing dilated residual block, DCT residual block, and
cross-fusion reasoning structure [12], [33], [34], [35]. All of the
above methods are supervised image translation, following a
paired training paradigm, which is difficult when dealing with
the unpaired S2OIT task.

Currently, the researchers begin to study unpaired S2OIT.
Yang et al. [10] designed more complex generator and dis-
criminator combined with normalization groups to enable the
network to learn richer features in the image, which improves the
effect of S2OIT. Du et al. [14] combined two classical methods
Pix2pix and CycleGAN and applied them to SAR images to
design a semisupervised image translation framework for image
matching. Liu et al. [36] achieved unsupervised translation of
SAR images by CycleGAN and guided the subsequent change
detection task.

The existing studies are either the direct application of the
methods for natural I2IT or the design of the network structure
only from the view of natural I2IT. Most of these methods
do not take into account the complex scene characterization
of SAR images. Moreover, the generator and discriminator in
current S2OIT methods have insufficient scene memory for
SAR images, resulting in regional landform deformation in the
generated images.

III. PROPOSED METHOD

We propose MS-GAN under the cycle learning framework to
cope with the unpaired S2OIT task, which has a strong scene
memorization ability, thus learning more reliable information
and generating images closer to the real optical images. The
MS-GAN consists of three parts: Subbands shrinkage denoising
(SSD) module, MRG, and multi-receptive field discriminator
(MFD). The overall framework of the model is shown in Fig. 1.
Our MS-GAN framework can be divided into two cyclic pro-
cesses according to the different categories of input images, i.e.,
S2OIT and optical to SAR image translation (O2SIT) process.
Fig. 1 focuses on the task of this article: the S2OIT, in which the
SAR image SAR_raw is first suppressed from its speckle noise
by the SSD module, and the denoising result SAR_denoise
is then fed into the translation mapping Gs2o containing the
MRG module to generate the optical image OPT_fake. Then,
the discriminator DOPT and another translation mapping Go2s

containing the MRG module process the generated optical im-
age. The DOPT makes the generated optical image closer to
the real image OPT_real by discriminating the authenticity
of the image, and the translation mapping Go2s converts the
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Fig. 2. Structure of SSD module. SAR_raw means the raw SAR image, and SAR_denoise means the SAR image after denoising.

generated optical image back to the SAR image SAR_rec. The
discriminatorDSAR makes the generated SAR imageSAR_rec
closer to the real imageSAR_real. The O2SIT process is similar
to the S2OIT described above, only the inputs and outputs are
different. Cycle-consistency lossLcyc makes the whole network
more stable by minimizing theL1 loss between input and output
images of each cycle process. The redesigned MRG and MFD
have the strong ability to memorize scenes in SAR images
of different landforms, so as to cope with the complexity and
richness of SAR image scenes.

A. Subbands Shrinkage Denoising

The mechanism of SAR coherent imaging leads to the gen-
eration of speckle noise, which is an inherent characteristic
of SAR images, and this noise will affect the acquisition of
valid information in SAR images. To address this problem,
we consider the physical model of speckle noise, and design
the subbands shrinkage denoising (SSD) module, to suppress
the speckle noise in SAR images.

For speckle noise in a SAR imaging system that satisfies
the fully developed condition [37], it can be regarded as multi-
plicative noise. The distribution of the log-transformed speckle
can be well-approximated to be additive white Gaussian noise
with zero-mean Gaussian distributions [38]. It has been shown
in [39] that wavelet shrinkage based on a Bayesian formalism
in a homomorphic framework can provide a better reduction
of the speckle noise and recover signals from the noisy data
more effectively. Based on the above analysis, we design the
SSD module to suppress the speckle noise of SAR images. The
structure of SSD is shown in Fig. 2.

Let ISAR_raw denote the intensity information of a SAR
image, we first perform a homomorphic transform (H-TRANS)
on ISAR_raw to transform the multiplicative noise into additive
noise, and further perform the discrete wavelet transform (DWT)
to obtain four frequency subband images Isubband, subband ∈
LL,LH,HL,HH , whereLL represent the approximation sub-
band, and LH,HL,HH are three detailed subbands. Then,
Isubband is input into the subsequent network.

Inspired by SE-Net and deep residual shrinkage network [40],
we designed the shrinkage prediction filter (SPF) to obtain the
most suitable threshold for each subband image through network
learning optimization, and filter each Isubband separately based
on this threshold to remove the speckle noise in SAR images.

Subsequently, the threshold of each subband image can be
estimated based on the standard deviations using the Bayesian
shrinkage threshold estimation [39], denoted as: ThrBay(LL),
ThrBay(LH), ThrBay(HL), and ThrBay(HH), respectively.
Therefore, we get descriptor of each subband image.

These descriptors are then input into a two-layer fully con-
nected (FC) network to continually optimize the threshold es-
timation, thus accelerating the convergence of the network and
obtaining more stable results. The first FC layer sets four nodes,
and the activation function is ReLU. The second FC layer sets
three nodes, and the sigmoid function is used to normalize the
interval [0,1] as the prediction values of the FC layer. As part of
the overall network, the parameters of the FC layer are iteratively
updated based on the loss values of the generated images. Specif-
ically, in each iteration of the network, the cycle-consistency
loss Lcyc between SAR_raw and SAR_rec is calculated,
which guides the network training by minimizing the L1 loss
of SAR_raw and SAR_rec, and updating the entire network
parameters, including those of the FC layer. In addition, the
discriminator DOPT discriminates the generated OPT_fake,
calculates the adversarial loss LGAN between OPT_fake and
OPT_real, and passes the gradient of this loss value back
to the FC layer and updates the parameters accordingly. The
input of the FC layer is the descriptors of different subbands,
and this operation can combine the information of different
frequencies of the image to adjust the filtering threshold of
each subband, thus utilizing more information of the image
and effectively improving the stability of the network. Then,
the descriptors (ThrBay(LL), ThrBay(LH), ThrBay(HL),
ThrBay(HH)) are expanded by 1.5 times, respectively [39],
and multiplied by the prediction values output from the FC
layer to finally obtain the prediction threshold (Thrpre(LL),
Thrpre(LH), Thrpre(HL), Thrpre(HH)) for the subbands
image, specifically for the three detailed subbands [39].

Subsequently, the prediction threshold is input into the fil-
tering unit. Here, we use the soft threshold filtering strategy,
where each subband image is filtered according to different
thresholds, and this operation can make the images smoother.
The soft threshold filtering function is as follows:

soft(pi(x, y))=

⎧⎨
⎩
pi(x, y)+Thrpre() pi(x, y)<−Thrpre()

0 |pi(x, y)|≤Thrpre()
pi(x, y)−Thrpre() pi(x, y)>Thrpre()

(1)
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Fig. 3. Structure of the MRG (a) and multireceptive field discriminator (b) in MS-GAN.

where pi(x, y) describes the value of the ith pixel in Isubband,
(x, y) denotes the coordinates of the pixel. Thrpre() represents
the estimated threshold. After homomorphic and wavelet trans-
forms, negative values are introduced in the resulting subband
images, so there are cases where the value of pi(x, y) is less than
zero.

The filtered subband image is first performed an inverse
discrete wavelet transform, and then an inverse homomorphic
transform, at which point the result is the SAR image after the
SSD process.

B. Multiscale Representation Generator

SAR images have a higher viewing angle and a wider field of
view than natural optical images. Hence, SAR images contain a
greater variety of scene content, and the generator used to gener-
ate natural images is difficult to match SAR images. To address
this problem, an effective way to enhance the feature extraction
capability of the generator is to utilize multiscale information fu-
sion. Currently, many multiscale information extraction methods
have been proposed for remote sensing applications, and proved
to be effective. Tu et al. [41] proposed a superpixel–pixel–
subpixel multilevel network for hyperspectral images (HSIs)
classification, which compensates for the insufficiencies of the
different levels and decreases the information loss. They de-
signed the global attention module to learn local regular regions
based on pixel-level features to extend the global interactive
representation capability and reduce the information loss. They
further proposed a new multiscale multiangle attention network
for HSIs classification that models the internal relationship
between image features at local and global scales [42]. Wang
et al. [43] presented a multiscale superpixel-guided weighted
graph convolutional network for PolSAR images classification.
In this method, the multiscale superpixel features are introduced
into the weighted graph convolutional network to obtain higher
level representation to fully utilize the land cover information in
PolSAR images. Wang et al. [44] proposed a multiscale attention

Fig. 4. Structure of the MR Block. (IF: input block features, OF: output block
features. The input features are blocked and then convolved for different times
to get the output block features, and the obtained output features are spliced and
fed into the subsequent network.)

superclass CNN to combine multiscale feature fusion with the
attention module to improve the integrity of SAR target feature
representation. Inspired by the above works, we designed a
more complicated generator called MRG, and the MRG is more
capable of extracting multiscale features from images and is
more suitable for SAR images with complex scenes. The overall
structure of the designed MRG is shown in Fig. 3(a).

Specifically, we adopt Res2Net [45], but replace the 1 × 1
convolution with the combination of group convolution and
regular convolution for extracting the multiscale information of
an image. We name this new convolution block the multiscale
representation block (MR block), and its structure is shown in
Fig. 4. The MR Block extracts the multiscale information of
an image by using a combination of group convolution and
regular convolution. In the MR Block, a 3 × 3 convolution is
first used to extract the features initially to obtain the feature
map, and then the feature map is divided into four parts evenly
by channel to obtain the block features IF1− IF4 of the input
feature map, and different number of convolution operations are
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TABLE I
NETWORK ARCHITECTURE OF MRG

performed on these block features to obtain the output feature
maps OF1−OF4. No convolution operation is performed on
the first part of the features, and therefore the output of each
part contains information at different scales, i.e., the receptive
fields of each part are different. To better fuse the information of
different scales, we splice all the obtained results together and
go through a 3 × 3 convolution kernel again. Compared with the
simple residual block, MR Block has a larger receptive field and
a larger number of parameters.

The new generator is obtained by inserting the MR Block.
The input image will first go through the downsampling step,
which raises the image dimensions and reduces the size. The
downsampling operation performs the initial feature extraction
of the image. After this, the image is fed into the 9-layer MR
Block to extract the image features from various scales and then
fused and output. The MR block ensures that the overall network
has a larger field of view and extracts more effective information.
The MR block is followed by an 8-layer residual block, which
adjusts and filters the image features. Finally, an upsampling
layer maps the information of the image to the corresponding
image domain and generates a more realistic image. Table I
shows the network architecture of our MRG. Compared to the
residual block, our network is more complex, a larger number
of receptive fields and parameters can ensure the ability of the
network to extract features.

C. Multireceptive Field Discriminator

Compared with the traditional generator, the designed MRG
has a more complicated network structure, which makes it
difficult to perform stable adversarial training with a simple
discriminator. To address this issue, we design the MFD com-
bined with atrous convolution. The multireceptive field network
enhances the discriminative ability, ensuring stability during
adversarial training with the generator, while also guiding the
generator to output higher quality images. Several works have
shown that atrous convolution avoids reducing the resolution
of the feature maps, which helps to mitigate the loss of spatial
information [46]. Geometric distortion in SAR images lead to
a certain degree of local spatial information loss. The spatial
multiscale feature maps obtained by the multireceptive field
network with atrous convolution have the potential to reduce the

TABLE II
NETWORK ARCHITECTURE OF MFD

adverse effects of local geometric distortion for SAR image and
provide better conditions for generating optical image. Another
advantage of atrous convolution is that the number of parameters
is smaller while achieving the same receptive field. Atrous
convolution requires the input of a convolution dilation rate
parameter d, by which the actual size of the atrous convolution
kernel is controlled.

The structure of our designed MFD is shown in Fig. 3(b).
MFD performs pyramid atrous convolution on image features to
generate the discriminant matrices, and then these matrices are
spliced together. This operation makes it to have three different
receptive fields, the size of which are: 70 × 70, 110 × 110, and
182 × 182, which is conducive for the discriminator to combine
the details of the generated image with the overall information
for discrimination. Table II shows the network architecture of our
MFD. The image generated by the generator first goes through
the downsampling step to initially get the small receptive field
features, then undergoes an atrous convolution layer with d of
2 to get the medium receptive field features, and finally goes
through an atrous convolution layer with d of 5 to get the
large receptive field features, which will be convolved through
three sets of convolutions to get the corresponding discriminant
matrices, and finally give the discriminative results.

D. Total Loss Function

The total loss function of our proposed MS-GAN consists
of four parts, the adversarial loss function in both S2O and
O2S translation directions, the overall cycle-consistency loss
function, and the identity loss function.

1) Adversarial Loss: The adversarial loss is necessary for
GAN training, and we apply the adversarial loss to two trans-
lation mappings. For the translation mapping function Go2s :
OPT → SAR and its discriminator DSAR, the objective func-
tion of the mapping can be expressed as follows:

LGAN (Go2s, DSAR, OPT, SAR)

= Esar∼pdata(sar)
[logDSAR(sar)]

+ Esar∼pdata(opt)
[log(1−DSAR(Go2s(opt)))] (2)

where OPT describes the optical image, SAR denotes the SAR
image, Go2s represents the generator that produces the SAR
image from the optical, DSAR denotes the discriminator of the
SAR image, Go2s tries to translate the optical image to the
SAR image, and DSAR is used to distinguish the translation
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result from the real image. We introduce a similar adversar-
ial loss for the mapping function Gs2o : SAR → OPT , i.e.,
LGAN (Gs2o, DOPT , SAR,OPT )

2) Cycle-Consistency Loss: Cycle-consistency loss is an
important loss in the unpaired I2IT task, which guides
the network training by minimizing the L1 loss of the
image before and after an image undergoing a transfor-
mation cycle (sar → Gs2o(sar)) → Go2s(Gs2o(sar)) ≈ sar),
the cycle-consistency is usually denoted as

Lcyc(Gs2o, Go2s)

= λs2oEsar∼pdata(sar)[||Go2s(Gs2o(sar))− sar||1]
+ λo2sEopt∼pdata(opt)[||Gs2o(Go2s(opt))− opt||1] (3)

where λs2o and λo2s denote the loss weights of the two cycle
processes.

3) Identity Loss: The identity loss can stabilize the overall
training and help the network learn the correct results [47]. The
identity loss function is expressed as

Lid(Gs2o, Go2s) = λs2oEsar∼pdata(sar)[||Gs2o(sar)− sar||1]
+λo2sEopt∼pdata(opt)[||Go2s(opt)− opt||1].

(4)

4) Total Loss: The total loss function of our proposed MS-
GAN is

L(Gs2o, Go2s, DSAR, DOPT )

= LGAN (Go2s, DSAR, OPT, SAR)

+ LGAN (Gs2o, DOPT , SAR,OPT )

+ λcycLcyc(Go2s, Gs2o) + λidLid(Go2s, Gs2o) (5)

where λcyc, λid represent the weights of cycle-consistency loss
and identity loss, respectively. We train the network by optimiz-
ing this combined total loss function.

IV. EXPERIMENTS

A. Experimental Setup

1) Datasets: To validate the effectiveness of our proposed
method, we conducted comprehensive comparison experi-
ments with state-of-the-art methods on three public challenging
datasets SEN1-2 [15], QXS-SAROPT [17], and WHU-SEN-
City [16].

SEN1-2 dataset: The SEN1-2 dataset includes 282 384 pairs
of corresponding images, SAR images (VV polarization) col-
lected by Sentinel-1 satellite and optical images collected by
Sentinel-2 satellite, each with a size of 256 × 256, which orig-
inated from all over the world and four seasons. The SEN1-2
dataset is usually used to train SAR image colorization, SAR
image matching, and other tasks.

QXS-SAROPT dataset: The QXS-SAROPT dataset consists
of 20 000 pairs of SAR and optical images. The SAR images are
from Gaofen-3 satellite, and the corresponding optical images
are from Google Earth, covering three port cities: San Diego,
Shanghai, and Qingdao. The image size is 256 × 256.

TABLE III
NUMBER OF SCENE DATA PER CATEGORY OF THE SEN1-2 DATASET

WHU-SEN-City dataset: The WHU-SEN-City dataset con-
tains 32 Chinese cities, with a total of 18 542 paired training
samples and 4566 paired test samples, in which the SAR images
are collected by the Sentinel-1 satellite, containing two polar-
ization channels, VH and VV, with a resolution of 20 m in the
range direction and 22 m in the azimuth direction. The optical
data are collected from the Sentinel-2 satellite.

Considering the complexity of the SEN1-2 dataset and the
influence of training time and GPU memory on the experimental
efficiency, we randomly selected 3600 SAR images and 3600
optical images from the SEN1-2 dataset for unpaired training,
and 400 SAR images and 400 optical images for testing. For
each scene, the training and test sets were selected uniformly
with no crossover. Moreover, the distributions of the training
and test data are similar but do not overlap. In addition, we
divide these training and test images into urban, semiurban,
rural, farmland, grassland, forest, mountain, and other scenes
as shown in Table III.

For the QXS-SAROPT dataset and the WHU-SEN-City
dataset, we also randomly selected the training and test sets
with the same number of SEN1-2 datasets. The QXS-SAROPT
dataset contains mainly urban scene and some mountain scene,
while the WHU-SEN-City dataset contains mostly urban scene.
For both datasets, we extracted the training and test sets accord-
ing to the proportion of scenes in the entire dataset.

SAR data from the SEN1-2 and QXS-SAROPT dataset only
contain amplitude information of the observed targets, and are
visually represented as grayscale images, while the SAR data
from the WHU-SEN-City dataset contain both amplitude and
phase information of the observed targets, and are visually
represented as color images. We also preprocessed and randomly
enhanced the data before inputting into the network. We first
resized the image from 256 × 256 to 286 × 286 by double triple
interpolation method, and then randomly flipped it left and right,
and finally randomly cropped the image to the same 256 × 256
size as the final input image. The random enhancement of the
data can prevent the overfitting phenomenon to a certain extent.

2) Implementation Details: In the experiments, we use the
PyTorch framework and a single NVIDIA RTX4090 with 24 GB
GPU memory for development, and the server system version
is Ubuntu 20.04. We set the same training parameters for the
three different datasets, and the Adam optimizer is used. In the
training stage, the epoch is set to 200, and the initial learning
rate is set to 0.0002 for the first 100 epochs, and decays linearly
to zero for the subsequent 100 epochs, and the gradient decay
rates are set to 0.5 and 0.999. The translation between the two
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domains under the unpaired task should be symmetric, so the
ratio of the weights of cycle-consistency loss function, λo2s and
λs2o is 1, i.e., λo2s:λs2o = 1:1. The values of hyperparameters
λid and λcyc are set to 2 and 10. The basis for the selection of
hyperparameter values will be analyzed in detail in the ablation
study section.

3) Evaluation Metrics: We conduct evaluations using four
different mainstream evaluation metrics, which are peak signal-
to-noise ratio (PSNR) [48], structural similarity index metric
(SSIM) [48], Fréchet inception distance (FID) [49], spectral
angle mapping (SAM) [50], and learned perceptual image patch
similarity (LPIPS) [51]. PSNR, SSIM, FID, and SAM are ap-
plied as objective evaluation metrics for image quality, whereas
LPIPS as subjective evaluation metric.

Let x denotes the generated image, and y represents the real
image, PSNR is defined as follows:

PSNR(x, y) = 10log10

(
MAX2

MSE

)
(6)

where MAX denotes the maximum gray value of x and MSE
denotes the mean squared error betweenx andy. PSNR evaluates
the image quality by estimating the ratio of the useful signal to
the background noise, with a larger PSNR representing better
image quality.

SSIM is defined as follows:

SSIM(x, y) =
(2μxμy + c1)(2σxy + c2)

(μ2
x + μ2

y + c1)(σ2
x + σ2

y + c2)
(7)

where μx, σ2
x, μy , σ2

y denote the mean and variance of the
features of x and y, respectively. σxy is the covariance between
x and y. c1 and c2 are two constants used to ensure that the
denominator is not zero. SSIM reflects the image structure
similarity between the generated and the real image, with a larger
SSIM representing higher similarity.

FID is usually defined as follows:

FID(x, y) = ||μx − μy||22 + Tr(Cx + Cy − 2(CxCy)
1
2 ) (8)

where μx, Cx, μy , Cy denote the mean and covariance matrix
of the features of x and y, respectively. Tr(·) denotes the trace
function. The lower the value of FID represents the more similar
the distribution of images.

SAM is defined as follows:

SAM(x, y) = cos−1

(
(x∗)T y∗

(||x∗||)(||y∗||)
)

(9)

where x∗ and y∗ denotes the vectorization of x and y, respec-
tively. SAM measure the spectral fidelity between the generated
and the real image. The lower the value of SAM indicates that
the quality of the generated image is prone to be better.

LPIPS calculates the distance between two images after ex-
tracting the network through perceptual features, which can
better measure the subjective perception distance between x
and y. A lower value of LPIPS represents a better quality of
the generated image.

B. Experimental Results

We validate the effectiveness of our MS-GAN for unpaired
S2OIT task proposed in this article in terms of both subjective
and objective evaluation. We chose five unpaired image trans-
lation comparison methods, CycleGAN [7], UGATIT [51], Di-
vCo [30], SCC-CycleGAN [25] (abbreviated as SCC in Figs. 5,
6, 7, 8, and 9), and FG-GAN [10]. We use CycleGAN as the
baseline. All the above comparison methods use the code and
parameter settings publicly available in the original paper.

1) Metrics Comparison: The comparison results under three
datasets, with five evaluation metrics are shown in Table IV, with
bold indicating the best. It can be seen that our proposed MS-
GAN performs significantly better than the other comparative
methods. MS-GAN achieves the best results of the comprehen-
sive evaluation of the metrics under three different datasets, in
which the PSNR, SSIM, LPIPS, and SAM metrics are optimal
on all three datasets. The above four metrics of our MS-GAN
are improved by about 6%, 10%, 6%, and 4.3%, respectively,
compared with the other methods. For the FID metric, since
it evaluates the images through a network pretrained on the
ImageNet dataset, which is mostly images from viewpoints such
as cell phone cameras, and quite different from the high-range
images of the optical remote sensing images. The two images
have different features, so it is not easy to achieve high scores
when calculating the distance. In contrast, UGATIT, which
focuses on the style transfer task, can achieve better FID results.
Combining all the evaluation metrics, our MS-GAN is the best.

2) Visualization Comparison: Figs. 5, 6, 7, 8 show the optical
images generated by different methods on three datasets SEN1-
2, WHU-SEN-City, and QXS-SAROPT, respectively. In order
to intuitively visualize the error distribution of the generated
optical images by different methods and real optical images,
we also give the residual results of different methods. The blue
color indicates the residuals are close to zero, while the yellow
color means the residuals are largest, and the color axis from
blue to yellow indicates that the residuals vary from small to
large. To compare the adaptability of different methods to SAR
image scenes, the example images we selected contain a rich
variety of scene categories. Figs. 5 and 6 contain images from
the SEN1-2 dataset in seven scenes: urban, semiurban, rural,
farmland, mountain, grassland, and forest. Since the WHU-
SEN-City dataset is basically all urban scene, the images in
Fig. 7 are all urbans but contain different landform colors. The
QXS-SAROPT dataset is dominated by urban scene and also
contains some mountains, so Fig. 8 contains both urban and
mountain scenes. By comparison, we find that the DivCo and
UGATIT methods lack the ability to memorize the complex
and variable SAR scenes. DivCo outputs the same color for
different landforms, while UGATIT easily outputs colors that
do not match the landform structure. In Figs. 5 and 6, DivCo
obtains dark red-based colors for all example images, not getting
the correct color information. UGATIT’s color information is
sometimes right and sometimes wrong, and the results generated
by these two methods are much more difficult for interpretation.
The residual results of these two methods also demonstrate
a large error distribution with respect to real optical images.
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Fig. 5. Visualization results of different methods for S2OIT under different scenes on the SEN1-2 dataset. (a) Original SAR image. (b) Real optical image.
(c)–(h) Represent the result of DivCo, UGATIT, CycleGAN, FG-GAN, SCC, and our MS-GAN, respectively. The residual results are under the generated optical
images of each method. The scenes are urban, urban, semiurban, rural, from top to bottom.

TABLE IV
EVALUATION INDEX RESULTS ON DIFFERENT DATASETS
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Fig. 6. Visualization results of different methods for S2OIT under different scenes on the SEN1-2 dataset. (continued) (a) Original SAR image. (b) Real optical
image. (c)–(h) Represent the result of DivCo, UGATIT, CycleGAN, FG-GAN, SCC, and our MS-GAN, respectively. The residual results are under the generated
optical images of each method. The scenes are farmland, mountain, grassland, and forest, from top to bottom.

CycleGAN and the CycleGAN-based methods FG-GAN and
SCC-CycleGAN all have preliminary scene memory ability,
and can output colors that are relatively consistent with the
landform structure, but will output similar colors for the forest
and grassland, and the color difference between the generated
image and the real optical image is still relatively obvious, as
the residual results show.

Meanwhile, the optical images of urban scene generated by
the above method will contain many wrong color information,
and the results are still not accurate enough. For example, in

Fig. 7, the optical translation images of urban and forest scenes
from CycleGAN, FG-GAN and SCC-CycleGAN methods all
show confusion between grassland and urban scenes. The im-
ages in Fig. 8 has a low view angle, which require high scene
memory capability of the network. It can be seen that all the other
comparison methods except CycleGAN lack scene memory
capability and will translate mountain into urban, and the colors
of the cities are not accurate. As can be seen from the results
in Figs. 5, 6, 7, and 8, the other comparison methods make
serious errors when translating SAR images for scenes such as
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Fig. 7. Visualization results of different methods for S2OIT under different scenes on the WHU-SEN-City dataset. (a) Original SAR image, (b) Real optical
image. (c)–(h) Represent the result of DivCo, UGATIT, CycleGAN, FG-GAN, SCC, and our MS-GAN, respectively. The residual results are under the generated
optical images of each method. The scenes are all urban.

grassland and forest. The translation results will show various
miscellaneous colors (e.g., rows 5 and 7 of Fig. 6). By analyzing
the corresponding SAR images, we find that the radar reflections
in grassland and forest scenes are relatively uniform, and the
amplitude of the actual received radar signals does not differ
much. Hence, the difference in the grayscale values of the SAR
images is small. In such scenes, the coherence effect becomes
obvious, and the speckle noise affects the images more. The
noise brings more invalid information to the network, leading to
poorer translation results.

To further compare the ability of different methods to memo-
rize the details of the scene, the zoom-in images of the translation
results are given in Fig. 9. From the results in Figs. 5, 6, 7, and
8, it can be seen that the overall color of the images generated
by the UGATIT and DivCo methods has a large discrepancy
with the real image, so the zoom-in images of the above two
methods are not shown in Fig. 9. As can be seen from Fig. 9,
the other comparison methods lack the ability to extract the
detailed features of the image, especially when dealing with the
urban scene images, the edges of the buildings and highways
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Fig. 8. Visualization results of different methods for S2OIT under different scenes on the QXS-SAROPT dataset. (a) Original SAR image. (b) Real optical image.
(c)–(h) Represent the result of DivCo, UGATIT, CycleGAN, FG-GAN, SCC and our MS-GAN, respectively. The residual results are under the generated optical
images of each method. The scenes are urban, urban, mountain, and mountain, from top to bottom.

will be seriously missing, and the buildings in the same area
will be translated together by the network, which is not able to
distinguish the actual scenes.

In contrast, our proposed MS-GAN gives the best translation
results for SAR images of different scenes in all three datasets
and has the most outstanding ability to suppress speckle noise
and memorize scene details, as the visualization results and
residual images show. Due to the addition of MRG and MFD,
MS-GAN has a multiscale receptive field and feature extraction
ability, which can not only memorize the scenes with large

differences, such as urban and forest, but also distinguish the
scenes with small differences, such as forest and grassland (e.g.,
rows 5 and 7 in Fig. 6), and can relatively accurately memorize
more colors in color-rich scenes, and in the building-dense
scenes. MS-GAN can generate more image details and improve
the accuracy of translated image. Meanwhile, the SSD module
in MS-GAN can suppress the speckle noise in SAR images
and reduce the effect of noise on image translation, which
can output more stable and reliable results for scenes such as
grassland and forest that are more affected by noise. Overall,
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Fig. 9. Zoom-in results of different methods for S2OIT on the SEN1-2 and QXS-SAROPT datasets. (a) Real optical image. (b)–(e) represent the result of
CycleGAN, FG-GAN, SCC, and our MS-GAN, respectively. The regions of interest are marked with red boxes, the first three rows of images are from the SEN1-2
dataset, and the fourth row of image is from the QXS-SAROPT dataset.

TABLE V
DIFFERENT COMPONENTS IN THE PROPOSED METHOD ON DIFFERENT DATASETS

the images generated by MS-GAN have more accurate colors,
richer landscapes, are less affected by noise, and have better
performance in general.

3) Ablation Study:
Validation of module effectiveness. We evaluate each com-

ponent in the proposed MS-GAN, i.e., SSD, MRG, and MFD.
Table V gives the comparison results of the five evaluation met-
rics on the three datasets, based on baseline (CycleGAN) with
the addition of each of the three modules and the combination of
all of them. +SSD, +MRG, and +MFD denote adding the three

modules in baseline, respectively, and +all represents MS-GAN
after all combinations. All the parameter settings are the same
in the experiment except for the different modules. As can be
seen from Table V, each of our proposed modules combined
with the baseline significantly improves the PSNR, SSIM, and
SAM metrics of the generated images. This indicates that each
of our proposed modules can improve the learning ability of
the network for the image, and the result generated by each
module in combination with baseline is more consistent with
the original image in general. However, we also find that adding
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Fig. 10. Visualization results with and without SSD module for S2OIT under different scenes on the SEN1-2 dataset. (a) Real optical image. (b) Result with
SSD. (c) Residual of (b), (d) the result without SSD, (e) the residual of (d), respectively. The scenes are urban, urban, semiurban, semiurban, farmland, from top
to bottom.

the MRG and MFD module individually sometimes lead to the
deterioration of the two metrics, FID and LPIPS. The reasons we
analyze are as follows: since FID and LPIPS evaluate the quality
of images from the perspective of features through the pretrained
network, and the pretrained dataset for these two evaluation met-
rics is somewhat different from the remote sensing data, which
leads to a certain degree of fluctuation in the evaluation metrics.
The other reason is that strengthening the discriminator or gen-
erator alone will result in one of them being more capable, which
cannot guarantee the stability of the GAN adversarial training,
thus affecting the results. The image generated by combining all
of these three modules (+all) is the best in all the indexes, which
shows that our proposed MS-GAN can overcome the above
problems.

To further evaluate the effectiveness of the SSD module in
MS-GAN, we compare the real optical images in different scenes
in the SEN1-2 dataset as well as the generated results with
and without the SSD module, and also give the corresponding
residual results, as shown in Fig. 10. The color distribution of
the residual is the same as in Fig. 5. As can be seen from Fig. 10,

the results generated by MS-GAN with SSD are significantly
closer to the real optical images and have smaller residuals
than the results generated without SSD. Specifically, for the
semiurban scene, the color difference between the result without
SSD and the real optical image is huge, and almost all the
original dark areas become green, and the details of the edges
are blurred. For the farmland scene, when SSD is not used, the
distinction between different fields is hardly visible, and the
color deviation from the real image is also large. It can be seen
that the SSD module is able to suppress the effect of speckle
noise in SAR images on S2OIT network and improve the quality
of the generated optical images.

Hyperparameters Selection: We discuss the values of the
hyperparameters in the loss function, and the experiments are
all performed on the SEN1-2 dataset, where all other parameters
are the same. The results of the discussion are given in Figs. 11
and 12, where the dashed lines represent the optimal results
among the other compared methods in Table IV, and the solid
lines represent the changes of the evaluation metrics with the
weights.
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Fig. 11. Comparison results for different λid. From (a) to (d) denote PSNR, SSIM, FID, and LPIPS metrics, respectively.

Fig. 12. Comparison results for different λo2s : λs2o. (a) and (b) represent PSNR and SSIM, respectively.

Identity loss helps to guide the network to generate stable
results and improve the quality of the generated images, while
the value of its weight λid affects the results. Therefore, we
selected different values for λid for the experiments, and the
comparison results of the four metrics PSNR, SSIM, FID, and
LPIPS, are shown in Fig. 11. The experimental results show that
the three metrics reach the optimization when the value of λid is
2, and the FID index is not much different from the other choices
and better than the optimal results in other comparison methods,
so we finally chose the value of λid as 2 in our experiments.

The weight ratio λo2s : λs2o of the cycle-consistency loss in
both directions affects the stability of the network, so we select
different values for λo2s : λs2o for the experiments, and the
results are shown in Fig. 12. Since the values of FID and LPIPS
fluctuate in the evaluation process, we determine the weight
ratio based on the more stable PSNR and SSIM metrics. The
experimental results show that both PSNR and SSIM metrics
are the best when the λo2s : λs2o is 1:1, so we finally choose
λo2s : λs2o=1:1.

MRG network structure parameter selection: The network
structure of the MRG will directly affect the effect of image
translation. To find the optimal MRG structure, we change the
network depth of MR Block and ResBlock on the SEN1-2
dataset for the experiments, and give the comparison results of
the evaluation metric PSNR and SSIM, as shown in Table VI.
From the comparison results, we can see that PSNR and SSIM
do not continue to improve with the deepening of the number
of layers of MR Block and ResBlock. When the number of
layers of MR Block and ResBlock is 9 and 8, respectively, the
results of PSNR and SSIM research the best. When the number
of layers of MR Block and ResBlock continues to deepen, the
above two metrics have different degrees of decline. Considering
the effect of the network and the training cost, we finally chose
the structure with the best performance in the experiments,
i.e., the number of layers of MR Block and ResBlock is 9 and
8, respectively.

Algorithm implementation efficiency: The execution effi-
ciency of the algorithm directly affects the practical applications.
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TABLE VI
COMPARISON RESULTS OF NETWORK STRUCTURE PARAMETER

SELECTION FOR MRG

TABLE VII
ABLATION STUDY OF AVERAGE COMPUTATIONAL INFER TIME ON SEN1-2

DATASET

TABLE VIII
TRAINING AND TESTING TIMES AND MODEL SIZE OF OUR MS-GAN

We compare the average inference time of different structural
networks for a single image, and the experiments are conducted
on the SEN1-2 dataset. The results are shown in Table VII.
The methods of adding the three modules SSD, MRG, MFD,
and the overall combination respectively in Table VII are the
same as in Table V. From the comparison results, it can be seen
that there is a small increase in computational infer time after
combining baseline with SSD, MRG, and MFD modules, and
the infer time after combining all the modules, i.e., MS-GAN,
is only increased by 0.15 s compared to baseline. However, the
two metrics PSNR and SSIM are improved by 5.3% and 8.8%,
respectively, as shown in Table V. Therefore, the MS-GAN
proposed in this article effectively improves the quality of the
generated images with only a small increase in the infer time.
We also give the training time of the MS-GAN model on the
SEN1-2 dataset and the parameters of our proposed generator
and discriminator, as shown in Table VIII. From Tables V, VII,
and VIII, it can be seen that our MS-GAN has a small increase in
the number of parameters compared to the baseline CycleGAN,
and the model training speed and infer time are comparable, but
the performance metrics for generated optical images are im-
proved more substantially. The experiments prove that MS-GAN
has high implementation efficiency and practical application
value.

V. DISCUSSION

Due to the redesigned generator MRG and discriminator
MFD, our proposed MS-GAN has a multiscale receptive field
and feature extraction ability, which can not only memorize the

scenes with large differences, such as urban and forest, but also
distinguish the scenes with small differences, such as forest
and grassland, and can relatively accurately memorize more
colors in color-rich scenes, and in the building-dense scenes.
Five evaluation metrics also show that our proposed MS-GAN
performs significantly better than the other comparative meth-
ods, in which the PSNR, SSIM, LPIPS, and SAM metrics of
our MS-GAN are improved by about 6%, 10%, 6%, and 4.3%,
respectively. However, due to the unavailability of real optical
images paired with SAR images in the training set, the gener-
ated optical images generated by our MS-GAN still lose much
structural information and small details information, and the
image contrast is also lower. Although the above phenomenon
is quite common for unpaired image translation methods, a
possible attempt can be made to enhance the structural and detail
information for the generated optical images by adding some
semisupervised auxiliary information, such as scene category
information, so that SAR and optical images of the same scene
are fed into the network for model training. Furthermore, since
the backbone of our method is CycleGAN, which contains image
translation networks in both directions, which complicates the
process of network training. Therefore, an attempt can be made
in subsequent studies to address the lack of learning efficiency
by trying other framework such as diffusion model for directly
learning translation between two image domains. In addition,
future research can utilize more frequency band information in
the remote sensing data, as well as using the multispectral data
to increase the amount of information, which will be beneficial
to the network to extract richer features and further suppression
of SAR image noise.

VI. CONCLUSION

In this article, we propose an end-to-end unpaired S2OIT
model called MS-GAN, which has a strong scene memorization
ability. Our MS-GAN has innovatively designed MRG and MFD
modules for the complex scene characterization of SAR images.
The MRG and MFD are capable of extracting multiscale features
of complex scene of SAR images and giving multireceptive field
discriminative results, which leads to strong memorization of
complex and rich SAR image scenes. The SSD filters further
suppress the effect of speckle noise in SAR images on the
quality of the generated results. Comprehensive experiments
demonstrate the effectiveness of our proposed MS-GAN, thus
our MS-GAN can provide a new general solution framework for
the unpaired S2OIT task.
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