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CERMF-Net: A SAR-Optical Feature Fusion for
Cloud Elimination From Sentinel-2 Imagery Using

Residual Multiscale Dilated Network
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Abstract—Satellite-based Earth observation activities, such as
urban and agricultural land monitoring, change detection, and
disaster management, are constrained by adequate spatial and
temporal ground observations. The presence of aerosols and clouds
usually distorts quality ground optical observations and reduces the
temporal resolution, which degrades the learning and extraction
of valuable information. The uncertainty in the occurrence of
clouds in the Earth’s atmosphere and the possible land changes
in subsequent temporal visits is the major challenge in cloud-free
reconstruction problems. Advancements in deep learning enabled
learning from multisensory inputs, and cloud removal problem
seek helps from auxiliary information for better reconstruction.
This research introduces a synthetic aperture radar (SAR) guided
feature Fusion for Cloud Elimination from Sentinel-2 multispec-
tral imagery using Residual Multiscale dilated Network (CERMF-
Net). The proposed CERMF-Net fuses SAR with Sentinel-2 opti-
cal data and learn spatial–temporal dependencies and physical–
geometrical properties for effective cloud removal. The general-
izability and robustness of CERMF-Net are tested against the
SEN12MS-CR dataset, a global real cloud-removal dataset. The
CERMF-Net displayed superior performance in comparison with
the state-of-the-art techniques.

Index Terms—Cloud removal, data fusion, multiscale convol-
utional neural network (CNN), Sentinel-2, synthetic aperture radar
(SAR).

I. INTRODUCTION

EARTH observation applications heavily depend on the
spatial–temporal data from space-borne satellites. Random

clouds in the atmosphere significantly impede optical obser-
vations from the satellites because clouds are opaque to the
optical spectrum. There is no guarantee that the environment
will be cloud free during the satellite revisit; thus, relying on
it for a cloud-free observation is not a solution [1]. NASA
launched Terra and Aqua satellites with moderate resolution
imaging spectroradiometer to study several meteorological phe-
nomena [2]. However, studies indicate that more than 67% of
global coverage and 55% of land coverage are impaired by
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clouds [1]. The empirical evaluations of the Brazilian Amazo-
nian Landsat’s data archive also highlight the risk of clouds in
studying biophysical phenomena [3]. These undesirable cloud
effects must be mitigated to increase the quality of Earth obser-
vations.

Filtering techniques evolved as the first solution for removing
clouds from multispectral data. The spatial and frequency pro-
files of the clouds were studied to forge several homomorphic
filtering methods for cloud removal from Landsat data [4].
Cloud-free reconstruction was made possible by the temporal
interpolation methods that used NDVI and Fourier characteris-
tics from multispectral input [5], [6]. However, these techniques
were unreliable due to the uncertainty of clouds in temporal
observation [7]. Spectro–temporal analysis employing machine
learning techniques, including regression trees, independent
component analysis (ICA), support vector machines, support
vector regression (SVR) and multi-output SVR, outperformed
traditional filtering techniques for cloud removal [8], [9], [10]. It-
erative haze-optimized transformation HOT based on multivari-
ate regression addressed the drawbacks of HOT to differentiate
haze over bright land regions [11]. Compared with all previous
PCA and ICA methods, a noise-adjusted principal component
transform performed better [12].

Image inpainting is a popular image filling and reconstruc-
tion approach using local and global spatial dependencies. The
first inpainting-based missing area reconstruction technique
is a bandelet transform with multiscale geometrical group-
ing [13]. The spatial, spectral, and temporal relationships were
included into recent inpainting-based cloud removal methods
for better reconstruction [14]. Choosing the best pixels for gap-
filling is the primary difficulty posed by inpainting algorithms,
and this challenge can be handled with the help of auxiliary
data [15].The deep learning-based cloud removal using con-
volutional neural networks (CNN), attention frameworks, and
generative adversarial networks (GAN) enabled superior spatio–
spectral feature learning from massive temporal data [16], [17],
[18]. Extending the ability of attention mechanisms to tradi-
tional GANs facilitated better encoding of spatial and spectral
relationships [19].

Synthetic aperture radar (SAR) imaging is carried out at
longer wavelengths, and longer wavelengths penetrate through
clouds and other obstacles [20]. Hence, SAR imaging is widely
used for land data collection during unfavorable climatic sce-
narios. On the other side, clouds affect optical images, such
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Fig. 1. 3× 3 convolution carried out at different dilation rate (p): (a) p = 1, (b) p = 2, and (c) p = 4.

as hyperspectral and multispectral images, because of their
wavelength regulations. The progress in multisensor data fusion
techniques enhanced cloud removal paradigms by combining
colocated optical and SAR data [21]. However, deep learning
on these higher dimensional fused 3-D spectral data is often
complex and increases model complexity [22], [23]. A spatial–
temporal–spectral CNN is proposed to extract features from
multisensor data, but the network failed to extract SAR physical
and geometrical properties [24]. An improved conditional GAN
fuses and learns coregistered SAR and temporal optical data to
perform cloud removal [25]. The optical translation of SAR com-
bined with auxiliary SAR is fed to a generative network to re-
place cloudy portions [26]. The first encoder–decoder architec-
ture fusing Sentinel-1 SAR and Sentinel-2 multispectral optical
data has a traditional U-Net structure with three encoders and a
single decoder [27]. A convolutional–mapping–deconvolutional
network performs cloud removal using low-resolution hetero-
geneous and SAR supplementary data [28]. A better pixelwise
cloud recovery is achieved using the hybridization of convolu-
tional long short-term memory with cGAN [29].

CNN-based cloud removal techniques are capped by their
capacity to accommodate spectral and auxiliary information
and fail to generalize. The existing GAN-based cloud removal
performs better only on simulated data and fails for real-world
scenes. Also, most of the fusion-based cloud removal tech-
niques were underperforming due to the deficiency of proper
cloud–shadow masks. The proposed Cloud Elimination from
Sentinel-2 multispectral imagery using Residual Multiscale di-
lated Network (CERMF-Net) addresses deficiencies of exercis-
ing techniques by residual-aided multiscale learning with dilated
convolutions. The notable contributions of this article are as
follows.

1) Introduces a SAR-guided residual multiscale feature fu-
sion network (CERMF-Net) with dilated convolutions for
cloud elimination from Sentinel-2 data.

2) The residual blocks alleviate the vanishing gradient issue
when integrating dense CNN layers for spatio–spectral
feature extraction. The multiscale convolutions extract
features at multiple scales and mitigate the localized fea-
ture identification problem of CNNs.

3) The receptive field of the CERMF-Net is expanded by
employing dilated convolutions without any extra over-
head in computational complexity. The dilations enable
the network to learn global intrinsic features.

4) Proposed a cloud constrained loss function Lccl, which
prioritizes cloudy pixels in loss computation and thereby
improving generalizability.

The rest of this article is organized as follows. The proposed
CERMF-Net is elaborated in Section II, while Section III cov-
ers the experimental setting and outcomes. Finally, Section IV
concludes this article with insightful comments and suggestions
for future research.

II. PROPOSED METHODOLOGY

A. Dilated Convolution

CNN’s performance is hindered by its inability to extract
global features and memorize contextual information. The po-
tential solutions, such as increasing kernel size or convolu-
tion layers, draw extra overhead in computation by increasing
the number of parameters. Conversely, the dilated convolution
expands the receptive field by kernel inflation. The expanded
receptive field facilitates contextual feature learning. The output
ymn of a 2-D dilated convolution with a dilation rate of p on input
x and kernel k is given in the following equation:

ymn = f

⎛
⎝∑

r

h−1∑
i=0

w−1∑
j=0

kijx(m−p∗i)(n−p∗j) + bmn

⎞
⎠ . (1)

The receptive field growth is exponential and is defined by the
power of two at each network level (p = 2l, where l is the
network level). That is, dilations will be carried out on two levels
of p = 4. The receptive field of dilated convolution at various
levels is obtained by the following equation, where l0 = 1 by
default:

li = li−1 + (k − 1)p. (2)

The receptive field expansion of 3× 3 dilated convolutions with
various dilation rates is depicted in Fig. 1.

B. Cloud–Shadow Map (CM) Generation

The reflectance characteristics of clouds and shadows at
different wavelengths are explored to produce a CM, which
enables selective reconstruction of cloud-affected regions. The
method computes cloud and shadow maps separately and merges
them to yield a final CM. The notations B1, B2, B3, B4, B8,
B10, and B11 represent coastal aerosol, blue, green, red, near
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infrared, short wave infrared (SWIR)-cirrus, and SWIR-2 bands
of Sentinel-2.

Cloud map generation: The normalized difference moisture
index (NDMI) and normalized difference snow index (NDSI)
offer useful information in generating cloud maps [30]. The
proposed cloud map generation process initially considers all
pixels as cloudy (ξ = 1) and later updates them based on the
thresholding of various spectral indices. The input to the cloud
map generation is the bandwise min–max normalized Sentinel-2
reflectance data. Clouds are seen brighter in optical images.
These high brightness features are thus extracted from blue,
green, red, coastal aerosol, and cirrus bands of Sentinel-2 data for
CM generation. In order to calculate the high reflectance-based
update ξHR for each pixel, the prior cloud map is sequentially
replaced with the results from the following equations:

ξ = min(S�(B2)[0.1:0.5],Cloud Map)

ξ = min(S�(B1)[0.1:0.3], ξ)

ξ = min(S�(B10)[0.5:0.7], ξ)

ξHR = min(S�(B2 +B3 +B4)[0.2:0.8], ξ). (3)

Current cloud map generation techniques rely on NDMI for most
pixel estimation. NDMI-based approximations proved best for
vegetation lands but failed for areas of mixed vegetation and
water bodies. NDWI provides a better cloud pixel estimation for
grounds with mixed vegetation and water bodies. The proposed
model integrates NDWI as an auxiliary source for better eval-
uation of cloud pixels [31], [32]. The suggested NDWI-based
cloud map update is shown in the following equation:

ξNDWI = min

(
S�

(
B3−B8

B3 +B8

)
[−1:1]

, ξHR

)
. (4)

The moist pixels are identified using the NDMI index, and
NDMI-based cloud pixel isolation is accomplished as follows:

ξNDMI = min

(
R↓

(
B8−B11

B8 +B11

)
[−0.1:0.1]

, ξNDWI

)
. (5)

Condensed water particles are often present in clouds; hence,
snow pixel evaluation using NDSI is critical for cloud map
generation. The NDSI-based cloud map update is given by the
following equation:

ξNDSI = min

(
S�

(
B3−B11

B3 +B11

)
[0.8:0.6]

, ξNDMI

)
. (6)

The rescaling operation S� performs a pixel-level remapping to
the range of [L, U] and is defined by the rescaling using (7). The
rescale operation carries out a pixel-level remapping between
the range of [0,1], and it helps to strengthen the boundaries of
the image and enables finer grained selectivity [30]

ξS� =
ξ − L

U − L
. (7)

Although the cloud map is obtained, necessary morphological
operations must be performed to remove gaps in the cloud
region. A structuring element of size 3× 3 is used for both

opening and closing operations. Apart from clouds, other highly
reflective ground objects need to be neglected from the resulting
cloud map. An opening operation removes such highly reflective
ground objects from clouds. The resulting cloud map undergoes
an opening operation to fill gaps within the cloudy regions.
Finally, the cloud map is rescaled to the range of [0,1] and
thresholded using a threshold value ofTa = 0.2.Ta binarizes the
resultant cloud map and helps to find the brightness component,
and the final cloud map update is given as

ξ =

{
1, if ξ > Ta

0, otherwise.
(8)

Shadow map generation: The shadow map generation process
exploits the low brightness and low NDVI characteristics of
shadow pixels. NIR, SWIR-1, coastal aerosol, and SWIR-2
bands undergo a thresholding process for extracting the shadow
map [30], [33]. The average of bands B1, B8, B11, and B12 is
thresholded (Tb = 0.75) to extract shadow pixels. Pixels with
low NDVI values (Tc = 0.8) are assumed as dark pixels caused
by the presence of water and discarded from the shadow map.
The thresholds values for Ta, Tb, and Tc are chosen from the
experimental studies performed for Sentinel-2 data [33]. Finally,
a closing operation fills the gaps in the shadow map regions
and constitutes the final shadow map. The following equations
provide the NDVI computation and following shadow map
correction:

NDVI =
B8−B4

B8 +B4
(9)

Φ =

⎧⎪⎨
⎪⎩
1,

(
B1+B8+B11+B12

4

)
< Tb AND

NDVI < Tc

0, otherwise.

(10)

A unified CM is obtained by the pixel-wise OR operation on the
individual cloud and shadow map. The process flowchart for
creating the CM is displayed in Fig. 2.

C. Cloud Constrained Loss Function

The loss function is a constraint that directs the proper fitting
of the model. L1 loss is a widely accepted loss function and tries
to minimize the sum of all the absolute differences between the
actual and predicted pixels. The L1 loss function is given by the
following equation, where X and Y stand for the original and
restored images, respectively, and N denotes the total number of
observations:

L1 =

∑n
i=1 |Xi − Yi|

N
. (11)

Temporal observations on satellite revisits constitute the ref-
erence images, and there is a high chance that the landscape will
vary within the revisit period. Hence, it is critical to keep all
the cloud-free background information the same. Cloud recon-
struction problems only reconstruct the cloud-affected regions
keeping the unaffected regions the same. The L1 is computed
for the overall image without giving any weightage for the
cloud- and shadow-affected regions. Hence, vanilla L1 loss
needs to be improved for reliable reconstruction. This article
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Fig. 2. Flowchart of the combined CM generation.

proposes a novel cloud-constrained loss function Lccl computed
with the help of the previously generated CM. The proposed
cloud-constrained loss function Lccl is given in the following
equation:

Lccl =

∑n
i=1 CM · |Xi − Yi|

N
+

∑n
i=1 |Xi − Yi|

N
. (12)

The Lccl combines cloud-constrained part and normal L1. The
first part of Lccl is constrained by the CM, which regularizes
the loss computation and improves model fitness. The general
L1 loss section of Lccl is incorporated to preserve the global
texture and foster smooth transitions between cloud-free and
reconstructed image regions.

D. Proposed Model

The proposed CERMF-Net employs Sentinel-1 SAR data as
a complementary source of information to reconstruct cloudy
regions. Sentinel-1 and Sentinel-2 datasets are represented as
3-D cubes with dimensions B ×M ×N , where B denotes the
number of bands andM andN represent the spatial dimensions.
The channelwise concatenation of Sentinel-1 V V and V H
bands with 13 bands of Sentinel-2 resulted in a final fused data of
size 15×M ×N . The fundamental principle of the CERMF-
Net is extracting features at multiple scales by utilizing residual
additions and dilated convolutions. The fused 15-channel input
is passed to a 2-D convolution layer having 384 filters of size
3× 3, producing 384 feature maps to feed succeeding residual
blocks. The model is designed to have 16 residual blocks, each
with three 2-D convolution branches with varying window sizes,

Fig. 3. Proposed CERMF-Net architecture with dilation rate p=2 for cloud
elimination from Sentinel-2 data.

7× 7, 5× 5, and 3× 3, respectively. Each convolution branch
extracts 128 feature maps and concatenates them to 384 feature
maps. These feature maps undergo elementwise addition with
the 384 feature maps from the initial convolution. These residual
addition operations are performed for every 16 residual blocks.
The model employs a final long skip connection whose output
is fed to a 2-D convolution layer having 13 filters of 3× 3 size
to produce a final cloud-free image. All the convolutions in
the CERMF-Net employ rectified linear unit as an activation
function. All convolution layers in the suggested model employ
the same padding method to preserve the feature map size before
and after convolution, with the dilation factor p = 2. The model
is trained using the cloud-constrained loss function Lccl in an
end-to-end manner. Fig. 3 illustrates the detailed framework of
the suggested CERMF-Net.

III. RESULTS AND DISCUSSIONS

A. Dataset

The proposed CERMF-Net is trained and tested on an all-
season multiregion, multimodel dataset SEN12MS-CR [34].
The SEN12MS-CR dataset is curated from multiple regions of
the globe and captured during various seasons, covering a wide
variety of land. These dataset variations can ensure the dataset’s
validity and the model’s generalizability in real-world scenar-
ios. SEN12MS-CR is a free cloud-removal dataset available in
the public domain and is carefully curated from the original
SEN12MS dataset [35]. The dual-pol SAR sensor mounted on
the Sentinel-1 satellite operates on interferometric wide swath
mode, delivering a cloud-free V V and V H SAR composite.
The Sentinel-2 multispectral data collected from Level-1 C top
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of the atmosphere reflectance product have 13 spectral bands.
The dataset has 175 nonoverlapping regions of interest (ROIs)
of colocated Sentinel-1 SAR and Sentinel-2 multispectral data.
The global sampling and all-season data collection concrete the
credibility of the dataset, making it a benchmark dataset. Each
ROI is reregistered to 10 m spatial resolution, covers a ground
area of 52 × 40 km, and has 5200× 4000 pixel resolution. The
patch extraction process generates700patches of size256 × 256
from each ROI. Finally, patches undergo boundary artefacts and
distortion removal, resulting in 122 218 patch triplets. Sentinel-1
SAR, Sentinel-2 multispectral cloudy, and Sentinel-2 MS cloud-
free observations recorded in the same meteorological season
constitute the triplets.

B. Experimental Setup and Parameter Setting

The experiments and model training were conducted on an
NVIDIA DGX A100 GPU SERVER with 320 GB memory.
The Sentinel-2 dataset is clipped to the range of [0,10 000] to
exclude overbright noisy pixels. The Sentinel-1, on the other
hand, undergoes value clipping within the range of [−25.0,
−32.5] to mitigate the presence of noise anomalies and invariant
pixels. The dataset is divided into training, testing, and validation
sets, with 70:15:15 proportions, and processed with min–max
normalization, data augmentation, and shuffled training. The
augmentation method performs shape-preserving 180◦ flips and
90◦ rotations on-the-fly using the Keras default “ImageDataGen-
erator” class. The input patch spatial resolution has been fixed
as 256× 256, where M = N = 256. The CERMF-Net cloud
removal model implements 16 residual blocks and a final long
skip connection. Each residual block has multiscale convolution
branches of varying window sizes W1 = 7× 7, W2 = 5× 5,
and W3 = 3× 3. Besides the multiscale convolution branches
and residual additions, CERMF-Net employs dilated convolu-
tions. The dilation rate p is selected from the set 1, 2, 4, 8, 16,
where p = 1 denotes a standard convolution. The hyperparame-
ters, such as learning rate and batch size, have been fixed at 7e-6
and 16, respectively.

C. Evaluation Parameters

The subjective evaluation of the reconstructed cloud-free im-
ages is often not practical [34]. Various pixelwise and spectral–
structural closeness criteria are used to evaluate model perfor-
mance objectively. The supervised nature of the CERMF-Net
enables such objective evaluations. This section explains the
evaluation criteria used to compare results in the proposed work.
compared in the proposed work.

1) Pixelwise Closeness Matrices. Mean Absolute Error
(MAE): MAE is a simple arithmetic averaging of the absolute
errors between paired observations X and Y . The observations
X and Y should have an identical spatial and temporal resolu-
tion because MAE is a scale-variant pixelwise error matrix. In
multispectral scenarios, absolute error is computed over all the
spectral dimensions and averaged. A minimal MAE signifies
a better restoration. Equation (13) defines the MAE between
reference image X and reconstructed cloud-free image Y . The
variables B, H , and W indicate the number of spectral bands,

height, and width of the image, respectively. xb,h,w and yb,h,w
denote pixel values in the appropriate spatial and spectral loca-
tions, respectively,

MAE(X,Y ) =
1

B ·H ·W
B,H,W∑

b=h=w=1

|xb,h,w − yb,h,w| . (13)

Mean Square Error (mse): MSE is a pixel-based scale variant
error metric that tries to find the sum of squares of error in predic-
tion, whereas root-mean-squared error (RMSE) is the square root
of mse. Attaining a lower mse and RMSE is a desirable criterion
for reconstruction problems. The mse and RMSE between the
reference image and the reconstructed cloud-free image are
calculated using the following equations:

mse(X,Y ) =
1

B ·H ·W
B,H,W∑

b=h=w=1

(xb,h,w − yb,h,w)
2

(14)

RMSE(X,Y ) =
√

mse(X,Y ). (15)

Peak Signal-to-Noise Ratio (PSNR): PSNR is the ratio of the
peak pixel value to the RMSE between actual and reconstructed
data. Generally, a decibel-scaled logarithmic value is used to
express PSNR. The PSNR value directly relates to the recon-
struction quality, and a high PSNR indicate a better reconstruc-
tion. The PSNR between the reference cloud-free image and the
generated cloud-free image is given in the following equation:

PSNR(X,Y ) = 20 · log10
(

1

RMSE(X,Y )

)
. (16)

2) Spectral–Structural Closeness Matrices: Structural Simi-
larity Index Measure (SSIM): SSIM is an image-wise metric that
exploits the neighborhood pixel information and captures crucial
structural information from the data [36]. SSIM quantifies the
structural similarity between the reference and reconstructed
cloud-free images. Human visual perception relies on recog-
nizing structural differences; hence, SSIM is a vital indicator
to rank the image reconstruction quality. The value of SSIM
ranges between −1 and 1, where 1 indicates the highest degree
of similarity. The following equation reveals the SSIM between
the reference image and the reconstructed cloud-free image:

SSIM(X,Y ) =
(2μxμy + C1) (2σxy + C2)(

μ2
x + μ2

y + C1

) (
σ2
x + σ2

y + C2

) . (17)

The mean and standard deviation of images X and Y are
denoted by μx, μy , σ2

x, and σ2
y , respectively. σxy indicate the

covariance between X and Y . The weak denominator problem
is compromised by the constants C1 and C2, obtained from
the equation KiL

2
i , i ∈ 0, 1. L denotes the dynamic range of

the image, and K1 and K2 are set to 0.01 and 0.03 by default,
respectively.

Spectral Angle Mapper (SAM): SAM measures the angle
between the reference image and the reconstructed cloud-free
image and is generally used for multispectral data [37]. The
angle for each pixel in all available spectral bands is calculated
and averaged to obtain a general spectral angle characterizing
the similarity between two spectral data in terms of rotation.
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Fig. 4. Training and validation loss curves for the suggested CERMF-Net.

Hence, a smaller SAM value indicates a more closely aligned
spectral reconstruction. SAM is calculated by taking the inverse
cosine value of the following equation:∑B,H,W

b=h=w=1 xb,h,w · yb,h,t√∑B,H,W
b=h=w=1 x

2
b,h,w ·∑B,H,W

b=h=w=1 y
2
b,h,w

. (18)

D. Result Analysis

This study examines the performance of the proposed
CERMF-Net architecture against four state-of-the-art fusion-
based cloud removal methods, such as c-GAN [25], simulation-
fusion GAN (SF-GAN) [26], DSen2-CR [38], and GLF-
CR [39]. The traditional GAN framework is revamped to in-
troduce c-GAN, where the generator and discriminator modules
are conditioned on either SAR or temporal noncloudy observa-
tions. The two-stage SF-GAN synthesizes an optical simulation
from SAR observation and later fuses it with SAR and cloudy
multispectral input to generate a cloud-free composite. Although
these two GAN-based techniques performed well for syntenic
data, they failed for natural images, especially when applied
to fully clouded areas. The DSen2-CR model has a residual
neural network structure that operates on a single scale. This
model performed well in reconstructing thin and thick clouds
but failed in global feature extraction. Global fusion and lo-
cal fusion are two crucial functions of GLF-CR. Local fusion
assures the texture and details of the reconstruction, whereas
global fusion ensures uniformity of the reconstruction with
cloud-free areas. However, GLF-CR lacks extraction of multi-
scale features and sophisticated cloud–shadow mask generation
procedures.

The cloud-constrained loss discovered throughout the training
and validation phase of the proposed model is visualized in
Fig. 4. During the early stages of training, the validation accuracy
surpassed that of training. During the training, it was noted
that the validation loss decreased and stabilized at a consistent
level alongside the training accuracy. During epoch 97, the
model demonstrated a validation loss lower than the training
loss. Training has been halted at this juncture, leading to the
attainment of an optimal model. Table I compares the CERMF-
Net against state-of-the-art using various spectral–structural and
pixelwise closeness metrics, such as MAE, mse, RMSE, PSNR,
SAM, and SSIM.

The proposed CERMF-Net, with a dilation rate of 2, out-
performed all the state-of-the-art methods under comparison.

TABLE I
PERFORMANCE ANALYSIS OF PROPOSED MODEL VERSUS STATE-OF-THE-ART

CLOUD REMOVAL TECHNIQUES USING MAE, MSE, PSNR, RMSE, SAM, AND

SSIM EVALUATION METRICS

According to the findings, c-GAN had a low MAE score but
could not obtain respectable ratings for the other evaluation
metrics. All other state-of-the-art methods perform better than
c-GAN, except MAE. While real-world observations with ir-
regular clouds and noise posed challenges for GAN-based re-
construction, GAN models proved their ability to rebuild using
simulated data. Compared with the newly released DSEN2-CR
and GLF-CR models, the suggested cloud removal framework
has a lower MAE score. The DSen2-CR model utilized the
residual connection to improve the reconstruction in terms of
SSIM, SAM, and PSNR. Nevertheless, the residual connections
could not extract multiscale features and instead increased the
number of learnable parameters. With distinct global and local
feature extraction networks, the GLF-CR model outperformed
DSen2-CR in terms of PSNR, SAM, and SSIM, but it also had
a larger mse value. Implementing dilated convolution in the
proposed CERMF-Net extracts more global features without
significantly raising the number of learnable parameters. The
multiscale feature extraction process combines global and local
features into a single network structure. As a result, the suggested
model beat all cutting-edge methods, achieving lower SAM,
greater PSNR, and SSIM scores.

The subjective assessments of the suggested model against
cutting-edge methods for various geographies and cloud cir-
cumstances are displayed in Fig. 5. Rows 1 and 2 of Fig. 5 rep-
resent samples of thin cloud; all the state-of-the-art algorithms
were able to demonstrate fairly well cloud-free reconstruction
for these samples. However, it is evident from the visualiza-
tion that both c-GAN and SF-GAN struggled to maintain the
structure and color accuracy. In both samples, the GLF-CR
were only able to create hazy reconstruction. DSen2-CR and
proposed CERMF-Net performed very well in reconstruction,
but CERMF-Net showed its upper hand in retaining better color
accuracy. Rows 3 and 4 represent thick clouds affected as a whole
or a portion of the patch. In both cases, c-GAN and SF-GAN
failed to reconstruct and produced washed-out results. GLF-CR
was able to do a hazy reconstruction for a partially cloud-affected
patch but entirely failed for the fully cloudy patch. In this case,
DSen2-CR also performed moderately well but failed for the
quality reconstruction of an entirely clouded patch. The pro-
posed CERMF-Net showed superior reconstruction ability even
for these entirely clouded patches while preserving structure and
color. The results substantiate the model’s capability to handle
both thin and thick clouds without altering the scene’s physical,
texture, and color characteristics of the scene.
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Fig. 5. Subjective comparison of proposed model with state-of-the-art techniques for different ground and cloud conditions: (a) input-cloudy, (b) input-SAR,
(c) reference-cloud free, (d)–(g) reconstructed for c-GAN, SF-GAN, DSen2-CR, and GLF-CR, (h) CERMF-Net without SAR, and (i) CERMF-Net with SAR.

TABLE II
EVALUATION METRICS COMPARISON FOR THE SUGGESTED CERMF-NET WITH

AND WITHOUT SAR SUPPLEMENTARY DATA

1) Impact of SAR Supplementary Data on Reconstruction:
The model is trained in two different environments: one com-
bining real cloudy data with SAR supplementary data and an-
other excluding SAR supplementary data. This ablation study
provides insight into comprehending the necessity and impact of
SAR in reconstructing cloud-free imagery. The ability of SAR
to penetrate through clouds facilitates the retrieval of physical
information, such as boundaries, textures, and patterns, thereby
enhancing the quality of reconstruction. Table II presents a
quantitative comparison of evaluation metrics with and without
supplementary information from SAR. Upon examination of the
values presented in the table, it is evident that the reconstruction
achieved through the proposed CERMF-Net in the absence of
SAR is suboptimal, as evidenced by a high MAE. The elevated
SAM value and diminished SSIM value suggest a reduced level
of spectral resemblance compared with the network incorporat-
ing supplementary data.

Fig. 6 displays the characteristic curves of the metrics used
in the ablation study, including loss, MAE, mse, PSNR, SAM,
and SSIM. The graph shows that the CERMF-Net setup with
supplementary SAR data worked better than the setting without
SAR. The lower loss, MAE, mse, and SAM values and higher
PSNR and SSIM values obtained at each epoch for the with-SAR

Fig. 6. Characteristic curves of (a) loss, (b) MAE, (c) mse, (d) PSNR,
(e) SAM, and (f) SSIM during the validation phase for the ablation study (with
and without SAR).

setting substantiate the significance of SAR auxiliary data for
reconstruction. The subjective assessments from subfigures (h)
and (i) of Fig. 5 highlight improvements in reconstruction while
incorporating SAR auxiliary data. Furthermore, compared with
thin cloud removal, it is evident that thick cloud removal greatly
improved with the aid of auxiliary SAR input.

2) Selection of Dilation Factor: Dilated convolution enables
the extraction of global features by inducing an expansion in
the receptive field while avoiding any additional burden on the
learnable parameters. Selecting an appropriate dilation factor is
crucial, and it cannot be assured that an increase in dilation rates
will result in improved reconstruction. An increased dilation
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TABLE III
EVALUATION METRICS COMPARISON FOR DIFFERENT DILATION RATES IN THE

PROPOSED CERMF-NET

TABLE IV
COMPARISON OF EVALUATION METRICS FOR MODEL SETTING WITH L1

AND LCCL

rate can potentially neglect the collection of local character-
istics, as it may prioritize global features to a greater extent.
A reduced dilation rate can capture the distinctive attributes
of nearby regions, yet it is inadequate in capturing broader
scale features. Therefore, conducting an empirical assessment
and choosing the appropriate dilation factor are imperative. The
model under consideration was tested across a range of dilation
rates (p = 1, 2, 4, 8, 16), and the optimal value of p = 2 was
determined based on an analysis of the evaluation metrics. As the
value of p exceeded 2, a decline in performance was observed.
The impact of various dilation rates on assessment metrics is
presented in Table III. The reconstruction deteriorates on higher
levels of dilation, which can be due to a lack of local feature
extraction on higher p.

3) Effect of Loss Function: The proposed model designed a
new cloud-constrained loss function Lccl, which combines the
cloud-constrained part and normal L1. The model is trained in
two settings, one with L1 loss for reconstruction, and the other
with Lccl. The setting with Lccl loss improves the quality of
reconstruction with the aid of the cloud-constrained part and is
justified by the evaluation parameters in Table IV.

IV. CONCLUSION

Cloud cover reduces the quality of satellite observations and
affects many ground applications. This article proposed a ro-
bust residual multiscale deep fusion framework with dilated
convolution to remove clouds from Sentinel-2 data. The pro-
posed CERMF-Net extracted underlying geophysical properties
by fusing optical observations with auxiliary SAR data. The
experimental studies revealed that thin cloud removal is possible
without SAR; however, the auxiliary SAR heavily improved
thick cloud reconstruction. The multiscale dilated convolutions
facilitated global feature extraction with the cloud-constrained
loss function obtained from the unique cloud mask. The quantita-
tive and qualitative comparisons against diverse state-of-the-art
methods ensure supreme model performance in reconstructing
thick and thin clouds while retaining geometric fidelity, color,
and texture. This study substantiates the necessity and impact
of employing multisensor fusion techniques in the context of

cloud removal tasks. One of the limiting factors in Sentinel-2
and Sentinel-1 data fusion for cloud removal is the temporal de-
viations in the registered data samples because of the differences
in acquisition date. These temporal variations in registering
samples and ground truth are neglected in this study. Future
satellite programs may offer sensors simultaneous optical-SAR
data registration, thus mitigating this challenge. Future study
may look into combining conventional CNN with spatial at-
tention on multitemporal fusion data to improve extraction of
spatial–spectral relationship.
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