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Fine-Scale Phenology of Urban Trees From Satellite
Image Time Series: Toward a Comprehensive

Analysis of Influencing Factors
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Abstract—While satellite time series are essential tools to derive
phenometrics at unprecedented spatial and temporal scales, non-
systematic acquisition or medium spatial resolution of available
missions is potentially problematic. At the same time, low-cost
observation networks bridge the gap between satellite and in situ
observations, which considerably increases ground-based data and
associated possibilities. Here, we provide robust statistics about the
reliability of satellite-derived phenometrics of urban trees across
phenophases. Environmental and acquisition factors influencing
the quality of phenometric estimates were analyzed. First, a multi-
facet regression-based analysis was conducted to measure discrep-
ancies between PlanetScope (and Sentinel-2) and ground-based
measurements across phenophases. Second, we performed hierar-
chical partitioning to tackle the effects of biological parameters
(canopy closure and color leaf) for assessing phenometrics with
satellite time series. Third, we ran Monte Carlo simulations to
propagate errors according to viewing angles in PlanetScope acqui-
sition. Our results show that: 1) PlanetScope provides consistent
phenometric estimates for different tree layouts belonging to the
same species (average R2 = 0.50±0.18); performances are higher
than those of Sentinel-2 but duration-based phenometrics estimates
were poorly reconstructed with both satellite missions; 2) contribu-
tions of biological parameters in the vegetation signal above trees
strongly vary between growth periods; while canopy closure drives
the growing season signal (independent contribution >40%), color
leaf plays a major role in the senescence season; and 3) variable
viewing angles in PlanetScope acquisitions showed only significant
effects on duration-based metrics estimates. Our research opens
new perspectives for monitoring urban trees, which improves the
measurement of ecosystem services for local inhabitants.

Index Terms—Discrepancies, high spatial resolution, phenology,
PlanetScope (PS), satellite image time series (SITS), Sentinel-2 (S2),
urban trees.

I. INTRODUCTION

ORIGINALLY, urban trees were intended to enhance the
visual aesthetics of highly urbanized areas [1]. Today,

numerous additional benefits known as ecosystem services are
assigned to these trees [2], [3]. Urban trees provide multiple
ecosystem services, such as urban heat island mitigation [4],
rainfall runoff reduction [5], carbon storage [6], shading [7],
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and pollutant filtration [8]. They also offer specific ecological
habitats for a large diversity of species, which, in turn, affects
diverse city components [9]. Consequently, urban greening re-
mains an effective local strategy for facing climate change and
acts as an inhibitor of ongoing urbanization [10], [11]. Urban tree
planting initiatives are one of the massive results of these local
strategies and are largely encouraged by city councils, leading
to an increase in the green fraction and green belts in cities
worldwide [12], [13].

The measurements of ecosystem services offered by urban
trees are closely related to tree characteristics, such as species,
morphology, and age [14], [15]. For example, old trees, although
very fragile and declining [16], [17], and often considered
dangerous [18], have shown themselves to be important sup-
ports for biodiversity: habitat for fauna and flora and numerous
other ecosystem processes due, in particular, to the extensive
foliage and the organic matter it produces even in urban environ-
ment [19], [20]. These parameters are also strongly dependent on
seasonality since photoperiods combined with seasonal climatic
variations influence the composition and functioning of urban
trees [21], [22]. In this context, phenology that features the
timing of growth events and productivity measurements are
essential since they allow for the monitoring of tree growth
across seasons [23], [24].

Phenological and productivity-based surveys rely on vari-
ous techniques and methods developed in recent decades [25].
Ground-based human observations allow the accurate identifi-
cation of periods and durations [26]. Various methods, such as
leaf budding, flowering, or leaf color change, are commonly
used to directly observe and record phenological events based
on organic development by researchers and/or management
and conservation specialists. This involves visual assessments,
photography, or manual data collection at specific locations
within the trees. International and local networks, such as the
European PEP725 network and/or the French SOERE TEMPO
database, exist for monitoring and sharing these data at a large
scale [27], [28]. However, for logistical and human reasons,
these techniques are spatially and temporally limited. This ap-
proach results in few individuals being recorded at the city scale
and in temporally incomplete datasets that bias the calculation
of specific phenological estimates. Finally, the subjectivity and
representation of the observations make these data difficult to
integrate into spatial databases to establish connections between
different types of measurements [29].

Optical remote sensing (RS) is an effective approach
for ensuring the phenological monitoring of urban trees at
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appropriate spatial and temporal scales [30], [31]. It may capture
the surface reflectance of individual trees or groups of trees
across seasons. This allows for the reconstruction of growth
cycles, often through the use of vegetation indices [32]. Among
these indices, several studies have demonstrated that MSAVI2
is particularly suitable for urban environments with low degree
of vegetation and/or nonvegetated background [33]. The tem-
poral and spatial resolutions of satellite missions are crucial
when reconstructing the phenology of urban trees [34]. A large
number of well-distributed acquisitions throughout the year
allow more accurate retrievals of phenological events, such as
start of season (SOS) or end of season (EOS). It also directly
affects duration-based phenometrics, such as the short integral of
senescence season (SIOSS), whose calculation relies on at least
two daily phenometrics. Hence, several studies have demon-
strated the usefulness of Sentinel-2 (S2) multispectral image
time series for successfully deriving such metrics in forests [35],
grasslands [36], or peatlands [37]. In urban areas, the spatial
resolution of S2 images (10 m) can be problematic since urban
trees are identified as small elements with various morphologies
(isolated ornamental trees, tree rows, small groves, etc.). Too
large of a pixel captures mixed signals that provoke biased
surface reflectances and homogenized interspecies signals [38].
Thus, phenological metric estimates are also biased, as they are
not specific to targeted trees or groups of trees.

Recently, the PlanetScope (PS) time series has been proposed
as an effective alternative to the S2 time series, especially in
urban environments: the images provide high-frequency surface
reflectance data (every day), suitable spatial resolution (up to
3.125 m), and interesting spectral interoperability with S2 [39],
[40] for the monitoring and the mapping of individual trees [41],
[42]. For example, Alonzoet al. [43] used approximately 130
PS images per year between 2018 and 2020 to investigate the
drivers of earlier SOS and later EOS for∼10 000 species-labeled
trees in the city of Washington DC. The results showed that tree
species accounted for four times more variability in the timing
of the SOS and EOS than did tree planting location. From a
methodological point of view, the results also showed strong
agreement (R2 = 0.94) between the SOS and the EOS derived
from PS and those derived from multisource land surface phe-
nology [44]. Nonetheless, the heterogeneity of acquisitions due
to the variability in PS viewing parameters potentially represents
a significant source of error in phenological parameter estimates.
Indeed, since the viewing angle and sensor azimuth are not as
uniform for this 430+ satellite constellation as for the two S2
satellites, the data being collected are more diffuse in terms of
reflectance, requiring further consideration depending on the
objectives. These aspects have been relatively unexplored until
recently, while the number of studies relying on these data has
been continuously increasing.

Simultaneously, the use of in situ (IS) sensors has con-
tinuously evolved, greatly promoted by sensor networks with
increasingly lower acquisition, operational, and maintenance
costs. These methods bridge the gap between satellite and
field observations [45], [46] both in terms of spatial/temporal
resolution and the granularity of the data collected. On the
one hand, they can be used to validate satellite estimates or
to enhance ground-based observations [47]; on the other hand,
they can be used as efficient and cost-effective stand-alone ob-
servation networks [48]. In the context of urban tree phenology,

IS sensors (meteorological or soil sensors) are used to derive
indirect parameters such as environmental conditions that affect
plant development [49]. Other sensors allow for the retrieval of
direct parameters. The most striking examples are phenocams,
which are used to monitor vegetation greening or browning
continuously with the systematic acquisition of RGB and/or IR
images from a fixed position [50], [51], [52]. Then, images are
processed to derive the time series of color-based indices (green
chromatic coordinate (GCC) or red chromatic coordinate), from
which phenological parameters can be estimated. R or Python
packages such as phenopix [53] or phenology [54] are widely
accepted tools by the scientific community for performing these
tasks. They are based on a similar approach to other packages
and software for analyzing satellite time series, such as famous
TIMESAT [55] or greenbrown [56]. However, installing
phenocams and maintaining them in urban areas can be challeng-
ing due to high human frequency and degradation. In contrast,
portable sensors such as smartphones thus allow for the capture
of both color and tree canopy density information [57], [58].
These methods provide high levels of flexibility in acquisitions,
facilitating the retrieval of phenological parameters at large
scales for a high number of sampled objects [59].

Our study aimed to provide insights into the quality of phe-
nological estimates of urban trees derived from high-spatial-
resolution satellite image time series (SITS). Our goal was first
to investigate the combined effects of the type of phenometrics
(daily or duration-based), phenophases, and satellite missions on
the accuracy of satellite-derived estimates. Second, we aimed
to improve the understanding of the RS signals above trees
regarding tree development stages in the annual growth cycle
derived from IS measurements. Finally, we explored the poten-
tial impacts of satellite mission characteristics on the variability
of phenological estimates according to the type of phenometrics.
We sought to answer the following questions.

1) What are the discrepancies between IS and RS-
derived phenometrics for urban trees regarding different
phenophases and SITS (S2 and PS)?

2) To what extent does the relative contribution of biophysi-
cal variables related to tree development (color and canopy
closure) contribute to explaining the RS signals above
urban trees across different phenophases?

3) How does the heterogeneity in PS acquisitions, notably
related to view angle, affect the estimation of phenological
metrics?

II. MATERIALS AND METHODS

A. Study Area and Selection of Trees

The research was carried out in the Strasbourg Urban Area
in northeastern France near the border with Germany. With 33
municipalities, more than 1.3 million people live in the urban
agglomeration, with a population density of 1500 people/km2.
The study area covers approximately 20 km2 and includes
numerous land-use classes, such as densely and sparsely built-up
areas, along with some natural spaces.

The urban morphology shows different urban fabrics in
line with the traditional pattern of Western European urban
sprawl, which is mainly structured around the Ill and the
Rhine Rivers. The climate is characterized by cool dry win-
ters and warm stormy summers [60]. Strasbourg comprises a
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wide range of trees located everywhere in its territory, along
main streets, in squares and parks. This is the result of sev-
eral years of policies prioritizing active investments in green
infrastructure projects and massive tree planting actions still in
operation [61].

To monitor these trees, local services, therefore, provide an
open-source database (Patrimoine arboré 2022 ©OpenDataS-
trasbourg [62]) describing the 83 670 urban trees in the public
area with dendrometric, species, and management information.
This database was used to select our monitored “green sites”
according to five criteria on which phenology can depend and
criteria that can directly influence tree reflectance.

1) Tree species (any cultivar): The reflectance phenological
behavior is species related [63].

2) Crown shape: Two similar trees show different reflectance
intensities depending on the width, height, and geometry
of the crown influence reflectance [64].

3) Tree surrounding type: Characteristics of the soil
background influence the reflectance even through
canopies [65].

4) Plant layout (isolated or grouped aligned): This reflects
one specific type of management that could be responsible
for variable phenology.

5) Type of pruning: Trees that are overpruned should not
be selected, as this would lead to excessive changes in
phenology and reflectance [66].

The green sites selected correspond to homogeneous sets of
trees according to these different criteria; for the purposes of this
study, these trees are deciduous trees.

Two additional spatial criteria were considered. First, each
green site should be observable with a collection of S2 pixels
whose spatial resolution is the coarsest used in this study. Sec-
ond, green sites should be located uniformly throughout the city
to cover all local climate zones (LCZs) [67], which we found
to be a good indicator of urban form, allowing us to see if our
sites are not located in the same environment and are, therefore,
still representative of the whole urban space. Thus, they were
selected along north–south and east–west axes corresponding to
urban sprawl from the city center to the suburbs. Access to the
sites was also considered.

Multiple correspondence analyses followed by the use of
a hierarchical ascendant classification were used to select the
monitored sites based on all these criteria. It was possible to
extract a proportional number of sites from the generated clusters
to obtain green sites that faithfully represented the diversity of
trees in the city. In total, 19 green sites were selected for further
analysis. The study sites are shown in Fig. 1 and described in Ap-
pendix A, with illustrations, selection criteria, and dendrometric
information.

Finally, within these green sites, a sample of trees was sys-
tematically selected for IS measurements (see the next section).
Some requirements were set: 1) three trees (if not an unique tree)
with regular distances between them were favored (depending
on the layout); and 2) each trio of trees should be at a minimum
distance of 20 m from other plant species, to avoid the contam-
ination of the RS signal of homogeneous monitored trees [68].
These methods ensure reliable (or less biased) statistical rela-
tionships between RS and IS measurements.

B. Ground-Based Measurements

The field campaign took place over a full growing season
from March 2022 to February 2023 to monitor tree growth. Our
selected sites were surveyed every 10–15 days during periods of
high phenological variation, such as spring (April to June) and
autumn (September to November), and once per month when
plant activity was lower, from approximately 7:30 A.M. to 2:30
P.M. GMT (see Fig. 2). Solar zenith hours were avoided to prevent
any lens flares on the photographs, which could compromise
the following data extraction process [69]. Note that the revisit
periods were also estimated thanks to a phenological monitoring
carried out at the same time, based on a BBCH scale for woody
plants [70], [71], describing the stages of development of tree
organs. It enabled us to plan the key moments for carrying out
our field measurements for each site. Moreover, to make sure that
the 10–15-day gap between measurements was not too wide, we
estimated the average and maximum evolution of the vegetation
cycle over 15-day periods (see Appendix B), using the S2 and
PS satellite data as references (MSAVI2; see the next section),
after interpolation and smoothing (see Section II-D). To do this,
we calculated the consecutive differences in MSAVI2 values
between each DOY and averaged them over a rolling 15-day
window for the 80 000+ trees of the urban area, along the whole
year. The result is an average change of 0.5% and a maximum
of 2% of the amplitude of the phenological curves (min–max
scaled for each tree). These low values ensure that the 15-day
duration is appropriate for monitoring these trees in this study
area. Thus, each green site was surveyed 12 times.

1) The leaf rate was investigated via leaf area index (LAI)
measurements, which characterize the percentage of
canopy openness, gap formation, and closure. The im-
ages were derived from digital hemispherical photogra-
phy (DHP) with a smartphone camera (SM-A528B/DS—
64 MP) equipped with a removable 180◦ fish-eye lens.
Camera settings (see Table I) were defined according to the
literature [72], [73], [74], [75], [76] and field tests, ensur-
ing more accurate separation between tree branches/leaves
and the sky using a threshold binarization technique [77].
The parameters were set to a fixed ISO sensibility, aper-
ture, shutter speed, and white balance regime, with auto-
focus and 1× optical zoom. Thus, for each tree belonging
to a trio of trees, four hemispherical photographs corre-
sponding to the four cardinal points were captured with
constant distance, height, and orientation of the lens as
well as one hemispherical photograph in each interstice
(see Fig. 1 and Appendix C). For each photograph, LAI
was inferred from angular gap fraction using the complete
hemispheR R package [78]. The processing parameters
were defined following a series of tests and according to
the literature. We chose the Otsu thresholding method as it
provided robust binarization [79], [80], based on the blue
channel of the RGB hemispherical photographs for maxi-
mal contrast between vegetation elements and background
(sky) [81], [82]. This thresholding step is independent for
each hemispherical photographs. The maximum radius of
the angular calculation rings has been reduced to limit
the presence of artifacts from nearby buildings. Even
with precise sensor parameters, cases of overexposure,
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Fig. 1. (a) Green site locations in the Strasbourg Urban Area, France. (b) Site-related field data acquisition schemes for digital hemispherical photography (red),
front-view digital photography (green), and extended area for RS data extraction (black). (c) Tree-related field data acquisition scheme for digital hemispherical
photography (right) and front-view digital photography (left).

Fig. 2. IS measurements and satellite image acquisition dates (2022).

reflection, and lens flares were sometimes identified, as
the incident rays are not filtered by a dense canopy as they
are in forests [83]. Their presence depend on the sun orien-
tation and the cardinal position of the sensor. Acquisition
at each cardinal point for several trees and aggregation
into a single value has helped to limit these biases: the
median LAI was calculated from all LAI measurements
and assigned to the green site (noted as LAIsite).

2) Leaf color was monitored through the acquisition of
GCC [84], which is a robust indicator highly correlated
with photosynthetic activity [85], [86]. GCC is calculated
from the digital color values as the ratio of green to
the channels of an RGB sensor. Thus, one front-view
photograph of 3468×4624 pixels facing north, to limit
canopy shadows and glare [87], was captured for the
trio of trees at each survey. The distance between the
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TABLE I
CAMERA SETTINGS FOR IS DATA ACQUISITION (SM-A528B/DS—64 MP)

shooting location and the target was optimized to enhance
the field of vision of the trees (see Fig. 1 and Appendix
C). Similar photographic equipment was used for the LAI
measurements, and identical camera settings were used to
guarantee that the monitoring was easily repeatable. We
obtained the GCC values of green materials in each pho-
tograph using the interactive phenopix R package [53].
A value is, therefore, available on each date for each site.

C. Satellite Image Time Series

1) S2 Imagery and Preprocessing: For this study, S2 im-
ages were acquired during the tree survey period. Twenty-four
S2 Level-2A (L2A = atmospherically corrected surface re-
flectance) were downloaded from the Copernicus Open Access
Hub website and corresponds to all images where at least one
green site was cloud free (see Fig. 2). These S2 images, available
every five days, comprise three classic visible bands and a
near-infrared (NIR) band (B2, B3, B4, and B8) at a 10-m spatial
resolution, and six spectral bands at 20 m from the red-edge and
NIR spectral domains (B5, B6, B7, and B8a, respectively) to the
shortwave infrared spectral domain (B11 and B12). Provided
cloud masks and cloud shadow masks were then applied to each
image. On average, each green site was observed between 23
and 24 times.

To extract the temporal signal of trees at each green site, the
selected S2 image time series was first coregistered to avoid
geometric misalignment between acquisitions. We used the CO-
REGIS processing chain, which is particularly well suited to
this sensor [88]. It relies on dense subpixel offset measurements
and robust statistics to correct for systematic shifts and striping
artifacts. All channels were coregistered independently. Then,
spectral information was summarized using the modified soil
adjusted vegetation index 2 (MSAVI2), which is dependent on
the vigor and quantity of vegetation. It displays greater resilience
against changing soil conditions and significantly mitigates soil
interference [89], [90]. This index is better suited to highly
heterogeneous urban environments than the well-known nor-
malized difference vegetation index (NDVI) [91], [92]. It is also
calculated from the red and NIR (10-m resampled NIR narrow)
bands, with values ranging between −1 and +1, where the
higher the value, the greater the plant activity. The formula is as

follows:

MSAVI2 =

(
2(nir + 1)−√

(2nir + 1)2 − 8(nir − red)
)

2

where “nir” is the 10-m NIR narrowband reflectance and “red”
is red band reflectance. Median MSAVI2 values were calculated
for each S2 acquisition at each green site from all the pixels
fully included in the region of interest. This latter corresponds
to the convex hull (see Fig. 1), which fits the trio of trees and
is then extended to encompass neighboring trees of the green
site (up to a maximum distance of 50 m, and noted after as the
“tree sampling region”). The tree sampling region was manually
digitized from Pléiades very high spatial resolution images (0.50
m) acquired on June 30, 2022.

2) PS Imagery and Preprocessing: Fifty-three PS Ortho Tile
four-band products were downloaded from the Planet’s data
delivery API during the same period (see Fig. 2). These Level-3A
preprocessed products are atmospherically corrected surface
reflectance data on demand (analytic_sr assets), at a 3.125-m
spatial resolution, available almost every day. The generations
of PS sensors and their spectral responses were considered in
this study: only the latest generation SuperDove satellite images
(PSB.SD) were selected because they are natively spectrally
interoperable with S2 and have, on average, almost identical
and correlated surface reflectances with the blue, green, red and
NIR narrowbands [39], [40] (see Appendix D).

As PS images were generated with different spatial coverages,
we first merged all tiles available on each date that intersected the
city boundaries. Then, to ensure geometric alignment between
dates and matching statistical comparisons with the S2 time
series, all available merged PS images were coregistered from
the S2 grid. We used theAROSICS python package, which per-
forms automatic subpixel coregistration of two satellite image
datasets based on an image approach working in the frequency
domain [93]. This PS and S2 coregistration, which is particularly
relevant in an urban environment [94], was evaluated using time
series. Linear regressions comparing the two RS sensors, for
pairs of images with very close dates (less than five days),
are available in Appendixes for coregistered (see Appendix E)
and uncoregistered (see Appendix F) images. Fourteen pairs of
dates and a total regression show that this coregistration step
was beneficial. Overall, our graphs show a significant increase
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Fig. 3. Main methodological steps.

in the correlation with even an R2 rise of 4% for all 14 dates
combined, as well as a decrease in the root-mean-square error
(RMSE). This analysis was carried out on all the trees within
the Strasbourg urban area. It should be noted that one date (S2
01/09/PS 04/09) shows a slight drop in correlation, but this
does not justify the removal of images from this date. Finally,
with the aim of comparing the performances of S2 and PS
in reconstructing phenological parameters, MSAVI2 was also
calculated for each date from the merged PS tiles. The median
MSAVI2 was reported for each green site according to the same
tree sampling region.

D. IS and Satellite-Based Phenology

Once the raw data had been collected, the rest of the method-
ological approach is summarized in Fig. 3.

1) Data Smoothing: LAI, GCC, MSAVI2PS and MSAVI2S2

time series were all fitted with a Savitzky–Golay filtering method
to derive daily values and reduce noise introduced by undetected
clouds or cloud shadings [95], [96]. The Savitzky–Golay filter is
a moving window that removes outliers while preserving trends
(example shown in Fig. 4). A least squares fitting convolution
is used to fit and calculate derivatives of a set of consecutive
values. The convolution corresponds to a weighted moving

Fig. 4. Example of Savitzky–Golay interpolation and smoothing of different
datasets in 2022—Site no. 1. Simple linear interpolations are also shown.

average filter whose weights vary according to a degree of
a polynomial fixed by users. Regarding the weight applied,
the corresponding least squares fit is performed in the moving
window. In this study, a moving window of seven days was
applied, as a 15-day period was considered a relatively stable
period for the annual vegetation cycle. We also favored a second-
degree polynomial order to seek a balance between smoothing
the data and maintaining the moderate variations, which is
particularly suitable for signals with relatively smooth changes
[97], [98].

2) Phenological Parameters: Phenological metrics were cal-
culated using a threshold-based method consisting of a pre-
defined percentage of the vegetation growth/decline ampli-
tude [55]. We used this straightforward method due to its relative
simplicity and robustness and because it is the most commonly
used approach by the community. We thus want to communicate
our results to the largest audience.

First, for the sake of comparison, the four time series were
normalized using min–max feature scaling, and the threshold
values were identical for all of them. No consensus exists on
threshold values for calculating phenometrics [99]; we chose
amplitudes of 30% and 80%. We calculated a list of phenomet-
rics whose purpose is diverse. One-third of these phenometrics
correspond to DOY phenometric bounding phenophases, such as
SOS, start of maturity (SOM), end of maturity (EOM), and EOS.
The second three aim to quantify different growth durations,
such as the length of growing season, length of maturity season,
length of senescence season, and length of season. The last
third comprises integral-derived metrics (trapezoidal rule) to
measure the cumulative amount of biomass produced during
the target growth period. We calculated the short integral of
the growing season (SIOGS), the short integral of the maturity
season (SIOMS), the short integral of the senescence season
(SIOSS), and the short integral of the season (SIOS). Finally,
after carrying out all the analyses on these 12 metrics (see
Table II), only “daily” (SOS, SOM, EOM, and EOS) and
“duration-based” phenometrics (SIOGS, SIOMS, SIOSS, and
SIOS) were considered due to the similar results between length
and integral-based metrics.
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TABLE II
LIST OF THE DAILY AND DURATION-BASED PHENOMETRICS CALCULATED AND USED IN THIS STUDY

E. Statistical Analysis

1) Measuring Discrepancies Between IS and Satellite-Based
Phenometrics: A regression-based analysis was performed
to measure discrepancies between IS (LAI and GCC) and
satellite-based phenometrics (S2 and PS) according to differ-
ent phenophases. R2 and statistical significance were used to
measure how well the IS variable could explain the variation in
the RS variable. The RMSE was also calculated to investigate
how well the resulting regression model could predict the value
of the RS variable.

2) Evaluating the Contributions of Biological Parameters
to RS Phenological Signals: To address the contribution of
biological parameters to the RS signals above trees during
the growing season, a hierarchical partitioning procedure was
applied using the R packages lme4 and partR2. This allows
us to assess the independent and joint contributions of each
explanatory variable in a linear model. Thus, we calculated a
linear mixed model with MSAVI2 as a response variable and
IS LAI and GCC as fixed variables for three phenophases,
namely, the growing [SOS-SOM], maturity [SOM-EOM], and
senescence [EOM-EOS] seasons, for the S2 and the PS time
series. The ID sites were set as random variables to control for
pseudoreplication.

For each model, we applied the following procedure.
1) A number of days was randomly sampled in each

phenophase for each site. As the length of phenophases
was different for each green site, this number is equal to
the minimum number of days observed among sites.

2) The latter random sampling was performed follow-
ing a stratified sampling strategy based on quantiles
to ensure that the input datasets covered the entire
phenophase.

3) One hundred runs of 50 parametric bootstrap iterations
were performed, and the mean partial (semipartial)R2 and
p value were used to measure the relative contribution of
each IS variable.

3) Assessing the Effects of Variable View Angles of PS Scenes
on the Resulting Phenometrics: We used Monte Carlo (MC)
simulations to investigate the effects of the variability of view
angles in PS acquisitions on the accuracy of the derived pheno-
metrics. MC simulations are generally used when processes are
random or when assumptions in theoretical mathematics are not
well known [100], [101]. In this study, applying MC simulations
showed several advantages. First, we are not aware of the amount
of error induced by variable view angles of PS scenes on tree
surface reflectances over the year. Second, MC simulations are
easily performed and applicable to different ecological habitats.
This approach could thus make more systematic the analysis of

satellite data quality on derived environmental variables such as
phenometrics.

The first step consisted of calibrating the range of error where
the error was randomly sampled and assigned to MSAVI2 values
at each date. To perform this stage, we used an approach based
on the darkest pixel principle applied in the context of atmo-
spheric corrections [102], [103]. It consists of calculating an
error value by examining the variability of pixels that are not ex-
pected to change over time. Therefore, 1000 spatial points from
MSAVI2S2 (1/500 of the total number of pixels) were selected in
Strasbourg in areas with stable annual surface reflectance. These
areas correspond mainly to stagnant inland water bodies. We
then calculated the standard deviation of all MSAVI2PS values
recorded throughout the year at each point (annual point error)
and calculated the mean of these latter values (mean error).
Finally, the normal distribution of the error was calculated by
averaging the mean error and calculating the standard deviation
of the annual point error. Hence, for each run (1000 runs in
total), a specific value of error was randomly extracted from the
normal distribution to add it to the median MSAVI2PS values at
each green site on each date. New MSAVI2PS time series were
thus drawn at each run, and new phenometrics were derived.

Boxplot distributions were ultimately investigated to analyze
the variability after 1000 runs, with standard deviations, to mea-
sure the latter effects on output daily phenometrics. The relative
uncertainty percentage [104] was calculated to investigate the
variability of estimates in duration-based phenometrics. Specif-
ically, we used the 95% uncertainty percentage that involves the
95% confidence interval, as follows:

95% uncertainty=
1

2

(
95% confidence interval width

mean

)
× 100.

Then, a threshold of 25% was set, above which the uncertainty
was considered too high for considering reliable estimated
duration-based phenometrics.

III. RESULTS

The results are again divided into three sections, aimed at
answering our three main questions: 1) the discrepancies be-
tween RS and IS-derived phenometrics; 2) the relative con-
tributions of IS GCC and LAI to the RS signals above trees
across phenophases; and 3) the effects of the heterogeneity in
PS acquisitions on phenological estimates.

A. Discrepancies Between RS and IS-Derived Phenometrics

The regression results between the phenometric estimates
derived from satellite time series and those derived from IS data
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Fig. 5. Linear regression model comparisons of daily and duration-based phenometrics for observed (LAI—red and GCC—green) and predicted values (S2 and
PS).

are presented in Fig. 5 and Table III. First, our findings indicated
that daily phenometric estimates derived from the MSAVI2PS

time series exhibited greater correlations with IS estimates than
did the metrics derived from MSAVI2S2. The average R2 values
were 0.51±0.18, and all the statistical relationships associated
with the different phenometrics (e.g., SOS, SOM, and EOM)
were significant except for those associated with the EOS. In
contrast, theR2 values for the four phenometrics calculated with
S2 averaged 0.19±0.19. Only the EOM estimates derived from
the latter satellite missions exhibited a significant relationship

with the IS LAI-derived estimates. We found very little signif-
icant agreement between the satellite-based and IS duration-
based phenometrics, indicating strong error propagation for
metrics relying on several daily phenometrics (first and last
days). Only the SIOSS estimates derived from IS LAI showed
significant relationships with those calculated with both the
MSAVI2S2 and MSAVI2PS time series (R2 = 0.66, p = 0.0020
and R2 = 0.43, p= 0.0188). A significant relationship was also
found between the SIOS estimates derived from MSAVI2S2 and
the IS LAI.
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TABLE III
REGRESSION RELATIONSHIPS BETWEEN SATELLITE DATA (S2 AND PS) AND IS DATA (LAI AND GCC) FOR ALL DAILY AND DURATION-BASED PHENOMETRICS

TABLE IV
SEMIPARTIAL R2 VALUES OF LAI, GCC, AND SHARED AMONG THEM (%) ON DEPENDENT SATELLITE VARIABLES (S2 AND PS), ALONG THREE PHENOPHASES

Second, the phenological estimates calculated with IS LAI
values exhibited greater correlations with satellite-derived esti-
mates than did the estimates obtained with IS GCC. The meanR2

values obtained via regression between the daily phenometrics
derived from MSAVI2PS and the IS LAI are equal to 0.59±0.15
against 0.43±0.18 with the IS GCC. Similarly, the agreement
between the daily phenometrics obtained with S2 and the IS
LAI displayed an average R2 of 0.32±0.17 against 0.06±0.11
for the GCC. However, these results should be nuanced because
the RMSE values were not always lower for the LAI-derived
estimates than for the GCC-derived estimates. For example, the
RMSEs resulting from the residuals of the linear regressions
between daily phenometrics estimated with GCC and MSAVI2S2

were smaller than those obtained when estimates were derived
from LAI time series in three out of four cases (e.g., SOS,
SOM, and EOS). Third, discrepancies between satellite- and
IS-derived phenological estimates vary across phenophases.
When selecting significant regression models between IS and
satellite estimates, we observed greater correlations during the
initial stage of growth and at the end of the maturity period.
Linear models between the SOS and the EOM estimated from
MSAVI2PS and IS LAI showedR2 values of approximately 0.70
(0.75 and 0.69, respectively). These values were lower than 0.50
for models aimed at estimating the SOM and the EOS (0.48 and
0.44, respectively).

B. Relative Contributions of IS GCC and LAI to the RS
Signals Above Trees Across Phenophases

As expected, in Fig. 6 and Table IV, the results of hierarchical
partitioning showed joint contributions close to 90% for two-
thirds of models, indicating strong collinearity between GCC
and LAI. Nonetheless, the resulting average limits of confidence
intervals featuring independent contributions do not intersect
with 0, except for GCC in the growth period with the PS time
series. This allows for the analysis of the relative influence
of IS biophysical parameters on the variance of satellite-based
MSAVI2 signals. We found that the LAI exhibited a stronger
independent contribution than the GCC in the first two periods,
while the opposite effect was observed for the senescence phase.
These findings were consistent between satellite missions, and
some key points should be highlighted. First, the contributions
of both parameters were almost equal for the maturity season
when explaining the variation in MSAVI2S2. In contrast, more
than a ten-point difference in favor of LAI was observed when
considering MSAVI2PS. The joint contributions are the lowest
of the three phenophases with 41.1% and 53.0% for S2 and PS,
respectively, indicating that the set of predictors as a whole is not
explaining much of the variation in the dependent variable during
maturity season. Next, we found null and very low contributions
of the GCC and LAI parameters, respectively (contribution
scores=Oslash; and 0.09), to the variance in MSAVI2PS during
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Fig. 6. Bar chart of semipartial R2 values for each specific predictor (LAI—red and GCC—green) and shared among them (gray) for the two time series (S2
and PS) along three productive phenophases.

TABLE V
AVERAGE VALUE OF PS-DERIVED SIMULATED DAILY PHENOMETRICS FOR EACH SITE, WITH STANDARD DEVIATION

the growth period. However, their joint contribution was close
to 100%, demonstrating that it was not possible to disentangle
the effects of GCC and LAI in the MSAVI2PS variance for this
configuration. In contrast, the LAI showed a contribution three
times greater than that of the GCC (45% against 15%) according
to the S2 time series for the same period. Finally, GCC had a
greater relative influence than LAI on the MSAVI2 variance for
both missions during the senescence season, reaching more than
30%. This was true despite contribution scores lower than those
observed with the PS time series. The joint contributions are
almost as important as for the growing phenophase.

C. Effects of the Heterogeneity in PS Acquisitions on
Phenological Estimates

Our simulation results allow for the assessment of the effects
of variable view angles in PS scenes on phenological estimates.

These results were considered in two steps: one focusing on
standard deviations derived from 1000 simulations for daily
phenometrics (see Fig. 7 and Table V) and the other on relative
uncertainty results for duration-based phenometrics (see Fig. 8).

Overall, we found that the standard deviation results for daily
phenometrics ranged from low to high, with averages ranging
from 2.6±0.9 for the SOS metric to 7.2±3.4 for the EOM metric.
Specifically, we noted greater variability in the estimates of
late-season metrics than in those of early-season metrics (see
Table V). The combined SOS and SOM data had an average
resulting standard deviation equal to 2.9±1.4 among the sites,
compared to 5.8±2.9 for the EOM–EOS pair. For these specific
late-season metrics, nearly half of the sites exhibited standard
deviations exceeding 1 week for the EOM metric, with a maxi-
mum occurring at 16 days for site number 5. However, the EOS
metric exhibited more moderate variability, with no recorded
standard deviation exceeding seven days and an average of
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Fig. 7. Distribution of MC simulated daily phenometrics on the PS TS with 5–95% percentiles. The original phenometrics of our study are also shown (LAI,
GCC, S2, and PS), and boxplots are colored depending on the standard deviation.
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Fig. 8. Proportional representation of the dispersion of PS TS-simulated duration-based values around the mean, with 95% relative uncertainty percentage. The
three seasons (SIOGS, SIOMS, and SIOSS) are represented as well as for the total season (SIOS). Percentage changes over time between two seasons are given,
as well as the >25% uncertainty values (red circles), which we define as a cutoff threshold for considering reliable estimated duration-based phenometrics.

4.5±1.0 days. Finally, the boxplot distributions in Fig. 7 also
allowed us to consider gaps with S2 and IS-derived estimates.
We found average absolute differences equal to |6|±12 and
|13|±29 days between the median values resulting from 1000
simulations and the S2-derived estimates of the SOS and SOM
values, respectively. These differences ranged from |26|±25 to
|21|±26 for the EOM and the EOS. Concerning gaps with IS
variables, differences between median values calculated from
simulated distributions, and LAI- and GCC-derived estimates,
were relatively more constant among the four phenometrics.
These values were, respectively, equal to |10|±20, |8|±24,
|15|±21, and |22|±16 with LAI, and |23|±6, |28|±23, |26|±24,
and |15|±12 with GCC.

Fig. 8 shows proportional circles illustrating the percentage of
relative uncertainty in the simulated duration-related variables.
Overall, 25% of the sites (four out of 19) exhibited relative
uncertainty scores exceeding the 25% threshold (highlighted in
red). These high scores were exclusively associated with either
the SIOMS or SIOS metric, underscoring the significant impact
of the variability in the viewing angle of PS on the quality of
phenological estimates for duration-related phenometrics. Fur-
thermore, we noted a progressive increase in relative uncertainty
percentages as the growth cycle advanced. On average, there
was an increase of 9.5±6.9% between SIOGS and SIOMS
and 5.0±4.7% between SIOMS and SIOSS across all sites.
Notably, the maximum relative uncertainty recorded was for
SIOSS (41.9%), with an overall metric average of 22.6±7.4%
for this metric across all sites. Finally, SIOGS and SIOS dis-
played consistently low relative uncertainty percentages, aver-
aging 8.1±3.5% and 6.3±0.8%, respectively. For these latter
phenometrics, the impact of varying angles in PS scenes on the
accuracy of estimates appears negligible.

IV. DISCUSSION

In this study, we aimed to investigate the quality of phenolog-
ical metrics of urban trees derived from high-spatial-resolution

SITS. For this purpose, we used IS phenological metrics derived
from portable low-cost images. The SITS proved to be a relevant
variable for deriving accurate phenometrics of urban trees for
different species in different urban contexts. Specifically, the PS
time series provided the highest accuracy in phenological esti-
mates, with variable performances across phenophases. Overall,
the type of phenometrics and phenophases are the main drivers
of discrepancies between RS and IS data.

A. SITS, Such as S2 and PS, Are New Reliable Tools to
Retrieve Phenological Metrics of Urban Trees

The relationships between the RS-derived metrics and IS-
derived metrics (GCC and LAI) exhibited high agreement be-
tween the S2 and PS data for the different phenometrics. Our
results demonstrated the potential of the SITS for monitoring
phenology in urban trees of different spatial arrangement at the
city scale. These findings provide insights into satellite-based
studies dedicated to environmental monitoring in complex het-
erogeneous environments.

The outcomes showcased the ability of SITS with a resolution
of a few meters to track tree clusters and large unique trees in
highly heterogeneous environments, such as urban areas. The
S2 and PS time series provided consistent signals for both
tree alignments and clusters within any type of tree layout
within squares, parks, or streets, belonging to the same species.
Consequently, reliable interspecies signals can be obtained,
allowing us to observe the heterogeneity of phenology within
the urban matrix. These findings are in line with recent results
from Granero-Belinchon et al. [105], who successfully used the
S2 series to reconstruct the phenological dynamics of urban
trees exposed to different environmental conditions in Toulouse,
France. These findings also support those of Alonzo et al. [43],
who leveraged the PS series to investigate the SOS and EOS
of numerous trees in Washington, DC. In the latter study, the
results underscored the possibility of using these data to re-
trieve phenological indicators in heterogeneous environments
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previously avoided due to low vegetation cover [106], [107].
Combined with our results, these works also ensure the ability
of PS to investigate unique plant functional types and to avoid
biases related to subpixel mixing in the phenometric retrieval
process. Finally, our study highlights the ability of PS time series
to upscale observed phenological data from the field [29], [108],
[109]. These relationships were consistent with the IS GCC
and LAI data across seasons, which reinforces the interest in
coupling these data to investigate phenology at different spatial
scales [110]. This could be a key parameter in the implementa-
tion of management-based decisions [111].

The temporal resolution of a few days demonstrates satisfac-
tory performance in the derivation of phenometrics for objects
with rapidly changing behavior within key periods. First, this
indicates that the general preprocessing framework (smoothing,
coregistration) effectively addresses data inconsistencies over
time and yields reliable temporal signals [112]. In this regard,
we recommend its systematic application in studies aiming
to use these time series for urban tree phenology monitoring.
Furthermore, although a sufficient number of S2 acquisitions
have been processed [34], the higher temporal resolution of
PS was particularly crucial, specifically for the retrieval of
duration-based phenometrics. These specific metrics performed
significantly better than did those obtained with S2, limiting the
propagation of errors when multiple metrics were combined.
Nonetheless, despite the strict selection of scenes, our simulation
results showed that the variability in PS viewing angles could
be a significant error source in phenological estimates [113].
The models demonstrated varying effects depending on the
metric, season, and selection criteria such as species (through
site). Further studies should investigate the tradeoff between
the number of PS scenes available within seasons and the vari-
ability in viewing parameters for the retrieval of phenometrics.
Overall, we also encourage the scientific community to delve
into the impact of PS acquisition heterogeneity on the retrieval
of environmental variables. Despite these challenges, our study
demonstrated in a quantitative way that PS data are effective at
reconstructing daily phenometrics with acceptable errors across
seasons. This paves the way for a more systematic use of these
data for urban phenology [114].

B. Phenophases and Type of Phenometrics Are Essential
Drivers to Explain the Variable Quality of Phenological
Estimates

First, our results showed that duration-based phenometrics
consistently exhibited greater discrepancies than did daily met-
rics with IS-derived metrics, regardless of the targeted mission.
This reflects that the error propagation resulting from the daily
metrics estimates affects metrics combining multiple ones. We
found this true for metrics aiming to characterize specific peri-
ods, such as maturity or senescence. We hypothesize that their
short amplitude exposed them to greater uncertainty. Conversely,
simulation outcomes showed less pronounced results for metrics
characterizing the entire growth cycle with a lower relative
uncertainty. This means that metrics displaying lower sensitivity
due to larger amplitudes are less subject to error propagation.
Despite these results, the difference in the number of days

compared to IS phenometrics can still be high and still remains
problematic for further analysis.

Second, simulation results demonstrating the effect of vari-
able viewing angles in the PS time series showed increasing
errors with advancing phenological cycle. This led to lower
performances for EOS metrics than those obtained in spring. Our
findings corroborate several studies that have already demon-
strated the highest errors in the phenological retrieval process
during autumn [45], [115], [116], [117]. We hypothesize that
such observations are due to several reasons.

1) The shape of the curve at the corresponding time where
phenometrics are investigated exhibits an amplitude or
slope that makes threshold-based retrieval a challenging
task [118]. While the growth period displayed a rapid
increase in the vegetation indices during a short period
followed by a well-stable maturity plateau, we observed
a more progressive and/or slower period of decline for
immune senescence. Consequently, the systematic thresh-
old value applied to retrieve daily phenometrics will be
more uncertain because of the elasticity of the period due
to shorter or longer periods provoked by earlier or later
senescence.

2) The duration and frequency of the RS time series in au-
tumn are too low to monitor complex and abrupt changes.
In autumn, leaves progress through different colors (green
to yellow to red), thus explaining greater discrepancies
between RS and IS variables [29].

Third, we explored the latter aspect in depth by studying the
relative contributions of biological parameters (color and canopy
closure) to the variance in the satellite-based MSAVI2. Our
results showed the opposite trend in terms of the contributions
of these two parameters over time, indicating that the RS signal
was first related to canopy closure at the start of the season,
while leaf color guided its evolution during senescence. Our
results are in line with those obtained by Huemmrich et al. [119].
The latter authors noted considerable differences in the effects
of ecological change on the NDVI responses in high-latitude
ecosystems due to varying canopy structures. They concluded
that NDVI changes associated with ecological change are most
often observable at low green plant coverage or low LAI values,
which is consistent with our observations. Taken together, these
findings reinforce the interest in using high-resolution images
since small pixels are more useful for monitoring leaf surface
changes and providing more accurate phenometrics, especially
in heterogeneous environments [120]. The city is one such envi-
ronment, and being able to derive precise information about the
colorimetry of foliage is a major asset. For example, managers
can use predictive results to plan maintenance work such as
pruning and general monitoring of trees. Similarly, changes in
the chemical composition of leaves obviously lead to systematic
variations in the ecosystem services provided. As a result, trees in
the city can be detected with a view to estimating their maximum
contribution periods to the environment, which is often linked
to the species [43], [121]. New tree planting by decision makers
will be based, for example, on estimates of the length of the
seasons using satellite data, in order to optimize the benefits of
trees over the maximum period of time so sought after in this
changing climatic context. The results also encourage thinking
about the optimization of the number of satellite scenes in
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autumn for capturing rapid color changes. Synergistic effects
between S2 and PS appear to be a potential solution to these
challenges [122], [123], [124]. Finally, even if the quality of
phenological estimates remains high in spring, challenges exist
in the real monitoring of leaf color changes during the latter pe-
riod. The ability of RS missions to capture these microvariations
is likely to provide insights into the phenology of urban trees.
Tradeoffs between citizen sciences and satellite estimates could
also be relevant for performing this task [125], [126].

C. Coupling Satellite-Based and Portable Low-Cost
Acquisitions of Phenological Estimates Help Measuring the
Quality of the Essential Environmental Variables

The accuracy of RS products has been markedly enhanced
by the continuous advancements in aerospace technology for
several decades now. As we have shown, despite these im-
provements, inherent errors in phenological estimates persist.
Assessment of urban trees is challenging due to limitations
stemming from the technical capabilities of satellite platforms
and sensors (e.g., spatial, spectral, and temporal resolutions,
view angle variations, etc.). A validation process is then es-
sential for building confidence in the utility of RS data and
ensuring its reliability [127], [128]. Systematically scrutinizing
and confirming errors through reference data, such as IS mea-
surements, assumes a pivotal role. Ground-level measurements
serve as a crucial benchmark for validating the performance of
high-resolution time series [129], [130]. This way, by assessing
the agreement with both sources of observations, discrepancies
or inaccuracies in phenological estimates can be identified and
addressed [131]. Scale differences between satellites and IS
measurements will always remain a complex scientific chal-
lenge [29], [132]. Nonetheless, this still can be seen as an asset
to improve the overall quality of environmental data and, more
importantly, to contribute to the widespread application of RS
products. We were, for example, able to demonstrate differences
linked to phenophases and the type of sensor using this process,
which will help the scientific community get closer to the ground
truth using such data in further applications.

Portable low-cost devices, such as ground sensors or smart-
phones, enable on-the-ground measurements with high temporal
and spatial precision. It is particularly valuable in resource-
constrained settings [133] and could be in complex environments
such as cities, where field monitoring infrastructure may be
limited. By leveraging cost-effective technologies, this approach
democratizes access to critical environmental monitoring tools,
fostering a more inclusive and globally informed understanding
of the trees’ health and development. Their flexibility, ease of
deployment, and community engagement potential make them
more and more valuable for real-time monitoring of environ-
mental conditions. It could provide researchers, policymakers,
and local communities more reliable information for decision
making. In this study, we deliberately chose to use this type of
sensor. The field acquisition protocol we defined proved feasible
for collecting reliable and usable data. There is currently no
study on urban trees that has gathered data over a complete
phenological cycle, for two distinct biological parameters: leaf
vigor linked to photosynthetic activity (GCC) and leaf area
coverage (LAI). Until now, these indicators were compared with

satellite data at specific points in time [134], [135] or in an open
environment [136], [137]. For the reasons mentioned earlier,
we took advantage of this innovative temporal approach, which
played a key role in understanding seasonal changes in this urban
component.

V. CONCLUSION

This study marks a significant stride in advancing our com-
prehension of urban tree phenology by amalgamating SITS from
S2 and PS, alongside on-the-ground observations using portable
low-cost sensors. The results underscore the potential of SITS
in capturing the intricate phenological dynamics of urban trees,
providing insights crucial for urban environmental management
and policy formulation. Our analyses demonstrate that both S2
and PS datasets can reliably yield phenological metrics across
diverse urban tree species and settings. Notably, the PS time
series exhibited superior accuracy in estimating phenological
events, potentially attributed to its higher temporal and spatial
resolution. This characteristic proved indispensable in precisely
documenting rapid phenological changes, particularly during
critical transitional periods such as spring. The study also sheds
light on challenges and limitations inherent in RS of urban tree
phenology. Notably, we evaluated the impact of viewing angle
variability in PS data as a factor influencing the accuracy of
phenological estimates. While error propagation in duration-
based phenometrics was highlighted, errors due to variations in
satellite angles were deemed more acceptable for daily metrics.
These findings provide a road map for future methodological
enhancements in urban tree monitoring through RS. Further-
more, the study delves into the contribution of biological pa-
rameters (LAI and GCC) and the comparison of IS and RS
metrics, revealing disparities between phenophases. The early
season, characterized by more abrupt changes and a simpler
phenological reconstruction, exhibited superior performance.
The integration of IS measurements through portable low-cost
devices emerges as a valuable approach for validating satellite-
derived phenological metrics. This synergy between satellite and
ground-based observations not only improves the accuracy of
phenological estimates but also democratizes the environmental
monitoring process, making it accessible and feasible in diverse
urban settings. In summary, this research significantly con-
tributes to the field of urban tree phenology by showcasing the
effectiveness of combining RS and ground-based approaches. It
introduces new possibilities for urban environmental monitoring
and management, presenting a model that can be replicated and
adapted in various urban contexts globally. The insights from
this study underscore the importance of continuous innovation
and the integration of multiple data sources in environmental
research. Looking forward, future research should concentrate
on refining methodologies to address specific challenges identi-
fied in this study, such as error propagation in duration-based
metrics. In addition, broadening the scope of the study to
encompass a wider array of tree species and urban settings
would provide a more comprehensive understanding of urban
tree phenology. Leveraging advancements in RS technology and
data processing algorithms will be crucial for enhancing the
accuracy and applicability of phenological monitoring in urban
environments.
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APPENDIX A

TABLE VI
GREEN SITE DESCRIPTION WITH SPECIES, MANAGEMENT, AND DENDROMETRIC INFORMATION (IN METERS); ILLUSTRATIONS FROM JULY AND AUGUST 2022

APPENDIX B

Fig. 9. Frequency of absolute percentage change in MSAVI2. These values are percentages of mean differences in consecutive values over 15-day windows,
from interpolated, smoothed, and scaled S2 and PS data. Performed on 83 670 trees.
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APPENDIX C

Fig. 10. Example of DHP at each cardinal position around the same tree (left), and six front-view digital photographs taken during the year (right). Acquired on
October7, 2022—Site no. 8.

APPENDIX D

Fig. 11. Visualization of the spectral bands of S2 and PS sensors. The SuperDove harmonized bands and their wavelength ranges are displayed (adapted from [40]).
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APPENDIX E

Fig. 12. Linear regressions of MSAVI2 values for S2 and PS, for 14 pairs of coregistered close date (less than five days apart), and total. Performed on 83 670
trees.
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APPENDIX F

Fig. 13. Linear regressions of MSAVI2 values for S2 and PS, for 14 pairs of uncoregistered close date (less than five days apart), and total. Performed on 83 670
trees.
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