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Abstract—These days, the disease among different plants has
been increasing day by day. It is a very hard task for government
institutions and farmers to collect data on plant diseases from dif-
ferent distributed lands among regions. Therefore, data collection,
disease detection, and processing are the key issues for plants when
they are suffering from healthy and unhealthy issues in different
lands. This article presents edge-cloud remote sensing data-based
plant disease detection by exploiting deep neural networks with
transfer learning. The objective is to solve the aforementioned
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issues, such as data collection at a wide range, disease detection,
and processing them with higher accuracy and time on different
machines. We suggest transfer learning commutative fuzzy deep
convolutional neural network (FCDCNN) schemes based on com-
binatorial optimization problems. The convex function optimizes
the processing time and learning rate of data training on different
edge and cloud nodes to collect more and more data from different
plants from distributed lands. In the concave function, we predict
the diseases among different plants, such as sugarcane, blueberry,
cotton, and cherry with images, videos, and numeric values. The
plant disease detection app uses edge nodes and remote satellite
point cloud nodes to gather and train data using transfer learning
and make predictions using fuzzy DCNN schemes that are more
accurate and take less time to process. Simulation results show that
FCDCNN obtained higher accuracy by 98% with less processing
time 25% and trained with a higher ratio of data than existing
schemes.

Index Terms—Edge point cloud, fuzzy deep neural networks,
plant disease detection, remote sensing data, transfer learning.
HESE days, remote satellite data are crucial in green
T environments and in detecting many diseases in different
plants and places. Many sources provide the collected data, such
as NASA, ESA, and Digital Globe [1], [2]. These mentioned
satellites collect multispectral data with diverse wavelengths,
including different features, such as infrared, near, and thermal
bands. These satellites can collect data on permitted areas in
different regions, and images consist of many noises, null,
and other values, too. Therefore, calibration, environment, and
geographical geometrical correction on data (e.g., images and
video) are required for preprocessing to decide on persistently
collected data [3]. These data also require labeling and differ-
entiating healthy and unhealthy plants on different processing
nodes. For data consistency, the point cloud has been gaining
much popularity and collects images and videos in 3-D with
computer-aided design features [4], [5]. The point cloud is also
considered an environment where these data and processes are
executed with the given threshold values.
The edge point cloud is a new emerging processing computing
environment that collects and processes plants’ satellite remote
sensing data, makes decisions on integrated machine learning

approaches, and shares with institutions for further improve-
ment [6]. The data modeling training and evaluation are on

1. INTRODUCTION
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edge and cloud points to reduce the distance and noise issues
between Earth plants on data. NASA and Digital Globe support
many applications, such as water level, disease monitoring, and
crowd-sensing, among different countries and their regions [7].
These studies [8], [9], [10] suggested deep convolutional neural
network (DCNN) approaches for disease detection in different
plants based on collected remote sensing data in terms of videos
and images. These studies [11], [12], [13], [14], [15] considered
unmanned drone vehicles with edge nodes to collect the remote
sensing data of crops and detect their diseases based on DCNN.

However, there are many research issues with the current
plant detection systems. 1) The existing systems only collect
homogeneous limited sensing data with images. Videos and
other numeric data could be beneficial, but they have higher
processing time and less accuracy. 2) The existing systems used
point clouds to train and collect satellite data. However, they
have processing issues when the data contains more noise and
extra vengeance issues.

This article introduces a novel transfer fuzzy deep neural
network plant disease detection system based on edge point
cloud Earth observations remotely sensed data. Based on the
suggested system where implemented the transfer learning com-
mutative fuzzy deep convolutional neural network (FCDCNN)
schemes based on combinatorial optimization problems. The
convex function optimizes the processing time and learning rate
of data training on different edge and cloud nodes to collect
more and more data from different plants from distributed lands.
We consider the multimodel data such as video, images, and
numeric data collected from remote sources, such as digital
globe cloud and drone edge nodes. We consider heterogeneous
resources, such as edge nodes and point clouds for data training
and processing. The article makes the following contributions
to the considered problem.

1) We present a novel transfer learning-assisted fuzzy DCNN
approach, e.g., FCDCNN algorithm to process the mul-
timodal plant data on different nodes. The FCDCNN
algorithm consists of many schemes to process the data
from collection to execution in the system.

2) We combine the training on cloud and edge because
satellite cloud can collect huge amounts of land data
compared to edge cloud. However, point clouds have less
data accuracy due to higher delay in data collection and
data consisting of different noises. Therefore, we present
the edge and point-enabled transfer learning share scheme
with the lightweight approach in the system. The sug-
gested edge and point edge transfer learning schemes clean
the nose and vengeance of data issues with less processing
time and improve application training efficiency.

3) We devise a transfer learning approach to train and share
the data training and evaluation on different nodes. For
instance, point cloud-trained data are shared with the edge
nodes for application processing with more accuracy and
time.

4) We present the mathematical model with implementation
with both concave and convex optimization for the con-
sidered problem.

The rest of this article is organized as follows. Section II is

about the state of the arts. Section III is about formulation, and
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Section IV is about methodology. Section V is the performance
evaluation. Finally, Section VI concludes this article.

II. RELATED WORK

This part discusses existing methods and systems based on
remote sensing data for plant disease detection. This study [1]
presented the NASA-based crop detection system based on
global digital remote sensing data. The Google Cloud services
also implemented and collected remote sensing data from differ-
ent satellites and nodes about different winter weather and plant
diseases. However, this study only focused on the collected data
from satellite networks.

The Nepal industry [2] investigated remote sensing data-based
plant disease detection in dedicated regions for farmers. This
study used invasive understories species sensors for crops and
analyzed their plant disease status based on collected data. These
studies exploited deep neural network approaches to get the
features of plant disease data.

The plant nutrition against plant disease based on remote
sensing data from satellite is investigated in this study [3]. The
sensing data were collected and inserted into a deep neural
network for feature extraction and prediction of nutrition de-
ficiencies in plants.

This article [4] used the point cloud to collect remote sensing
data for different crops based on 3-D images at different time
intervals. The convolutional neural network is implemented to
get the features from collected 3-D images and predict the plant
disease with the diversity of collected data. However, this study
only focused on specified areas to collect their data.

A multiplanet point cloud methods are suggested in these
studies [5], [6] for species multisegmentation sensing data for
plant disease. These studies consider the heterogeneous point
clouds where data training and evaluation are done in parallel
form to predict disease on data.

These studies [7], [8], [9], [10], [11], [12] exploited the au-
toencoder DCNN approach to predict nutrition deficiency, plant
diseases, and correlated hyperparameters based on decision
methods. The convolutional neural network trained, evaluated,
and tested the imaginary models of the collected sensing data for
decision. The plant cognitive spray requirement for unhealthy
plants is also implemented in these systems. However, based on
imaginary data, these data are trained and evaluated on the cloud
nodes.

These studies [13], [14], [15] unmanned aerial vehicle (UAV)
assisted edge cloud nodes for real-time remote sensing collection
for plant data. These studies suggested fuzzy logic and multide-
cision methods based on deep neural networks for plant disease
prediction based on crop sensing data based on UAV drone
technologies. These studies [16], [17], [18], [19], [20] suggested
probabilistic fuzzy methods integrated with the transfer learning
based on hyperspectral imaging data of the crops collected based
on remote satellites and drone technologies. These studies [6],
[21], [22], [23], [24], [25], [26], [27], [28] suggested data fusion
based on plant and fruit disease detection systems based on fuzzy
methods in distributed 3-D sensing cloud data. These studies
implemented and integrated the different baseline approaches,
such as remote cloud sensing fuzzy deep convolutional neural



MOHAMMED et al.: EDGE-CLOUD REMOTE SENSING DATA-BASED PLANT DISEASE DETECTION USING DEEP NEURAL NETWORKS

Edge Point

kl,ll,Sl -7

— 5

— RS
(o] @ FDCNN

3D-Images

Point Cloud Satellite

11221

FCDCNN
k4: W=wl+w2+w3

Fig. 1.

network (RSFDCNN) and edge sensing fuzzy deep convolu-
tional neural network (ESFDCNN) methods, to classify and
analyze the plant data for disease prediction in distributed land
in terms of acres.

However, numerous research challenges persist in contem-
porary plant detection systems. All the existing systems solely
gather uniform sensing data via images; nevertheless, videos and
additional numerical data could prove advantageous, consuming
fewer resources while achieving greater accuracy. The afore-
mentioned studies only collected data based on unmanned drone
applications on edge nodes that handle and train plant disease
data. Nonetheless, resource scarcity issues arise when vast areas
of plants exhibit numerous diseases and greater diversity. There-
fore, we suggest the novel transfer learning integrated fuzzy
deep neural network based on edge point cloud and consider
multimodal data for plant disease detection in real-time.

III. PROPOSED PLANT DISEASE DETECTION SYSTEM

This study presents a novel edge cloud point-enabled plant
detection system, transfer learning integrated at different nodes,
and trained sensing data based on deep neural networks, as
shown in Fig. 1. The proposed system consisted of elements,

Transfer learning deep neural network assisted plant disease detection system based on edge cloud point networks.

such as a point satellite cloud, distributed point edge nodes,
and designated areas of crops for disease prediction and data
collection, as shown in Fig. 1.

The satellite point cloud is a computing node that collects
remote sensing data on crops from the satellite in the designated
area at time intervals. For instance, the satellite point cloud takes
pictures of plants morning, afternoon, and evening. The satellite
collects remote sensing data in different formats, such as images,
binary, and videos. We have created the socket programming-
based application interface, where edge nodes have the same
application interface for data analysis and results display of
collected crop data.

The edge nodes are subnodes of cloud points that collect high-
resolution data near the plant and train and evaluate it using a
DCNN. We exploited transfer learning, where the training of
plant data is performed at the local nodes, and offloaded the
updated weights to the centralized point cloud for processing
and decision-making.

The plants’ locations and areas are already registered in
the remote cloud point application programming interface and
stored in the cloud for data collection and processing. The edge
nodes and satellites collect the remote sensing data of different
plants based on their types in different locations.
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TABLE I
SYMBOL NOTATIONS

P Application
T Tasks of application P
R Remote sensing data
r Particular sensing data
D Edge sensing data
K Number of edges node
€k Computing capability node &
Ck Computing power of node k
L Total number of crops lands
l Particular crop area
C Number of node
c Particular cloud has V' vms
€c Computing capability node ¢
(e Computing power of node ¢
TTC Transfer learning training on cloud points
TTE Transfer learning training on edge cloud
S Set of fuzzy
s particular fuzzy set
X Fuzzy non linear decisions
T Particular decision
U Number of updated weights of training
u Particular updated weights
DCNN Deep convolutional mechanism of training
\%4 Total number of virtual machines of C'
Z Number of combinatorial constraints
N True and false attempts
J Time zones
J Particular time zone
Satellite determined the satellite time and data
Edge Determine edge time
TTC Determines training time of data

A. Problem Formulation and System Model

The study considers the generic plant application P that
consisted of different number tasks, e.g., 7= {t =1,...,T}.
Each task has a different tuple of attributes, e.g., plat data
collection, training, analyzing, and prediction on different nodes.
We consider the different sensing point computing nodes such
as heterogeneous edge clusters and point clouds that collected
the information from different locations. The distributed and
ubiquitous edge nodes arerepresentedby K = {k = 1,..., K }.
Each edge node k has storage and migration capability ¢; and
central processing unit (CPU) (.. We consider the heterogeneous
clusters enabled virtual machines assisted point cloud which
is implemented and located at a global satellite for capturing
images, video, and numeric values. For instance, C' = {v =
1,...,VC}. Whereas, C is the cloud computing V is the total
of the virtual machine implemented in the point cloud, and v is
a specific virtual machine with different features in the point
cloud.

We formulate the problem in the following way:

R VeCTeA

Satellite = » > Zré—” Vr=1...,R. (1)

r=1 v=1 t=1

Equation (1) is the collection of data processing time of remote
sensing of different point clouds in distinct satellites

D K TeA

Bie =333

d=1k=1 t=1

d,t,k
Ce

vd=1...,D. 2)
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Equation (2) is the collection of remote sensing data processing
time from different placed edge nodes

GE dennlr, ¢, u]
TTC = Z Z — 3)
r=1c=1 ¢

Equation (3) is the training mechanism at point clouds based on
transfer learning DCNN§s

TTE:ZZ dcnngl,k;,u]. @

Equation (4) is the training mechanism at edge nodes based on
transfer learning DCNNs.

The main objective of fuzzy training is to train partially remote
sensing data on different nodes and make a partial decision about
training on individual nodes. We accept both partially optimal
data training based on fuzzy rules. We apply fuzzy logic to
determine partial true training at different edge and point clouds
based on the following way:

1

S _...R,D.
[T TTC TTEee’ & D )

s

Fuzzy = Z S(x)

s=1
We considered the nonlinear sensing data and applied the fuzzy
rules to training as determined in (5).

We considered different constraints Z, such as accuracy,
precision, recall, fl-score, processing time, deadline, failure,
and resource leakage during the execution of applications in
the point cloud and edge nodes.

The objective function as a combinatorial function is deter-
mined in the following way:

7 =Satellite+ Edge+TTC+TTE+Fuzzy,Vi=1,...T € A.
(6)
Equation (6) is the objective function of the study.
We formulate the fuzzy combinatorial model based on transfer
learning in the following way:

max Z, VO, K, A. 7

Equation (7) determines the maximum functions for all tasks of
application and nodes.
Subject to

z
Accuracy = Z

z=1

True.F .
eTWERYE =1, 72 (8)
N
Equation (8) determines the accuracy of all constraints based on
fuzzy decisions

min 7', VC, K, A. )
Equation (9) determines the minimized functions for all tasks of
application and nodes.

Subject to

Z

True.Fuzzy.z
Resource = Z ~fue.Tuzzy 2

N , Vz=1,...

A (10)
z=1
Equation (10) determines the resource capability constraints

while executing all training and validation of sensing tasks.
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Point cloud satellite plant remote sensing data processing.

IV. PROPOSED FuzzZY TRANSFER LEARNING DEEP
CONVOLUTIONAL NEURAL NETWORK (FDCNN)
METHODOLOGY

We present the FDCNN algorithm methodology, comprising
different submethods, such as remote, edge training, scheduling
resource allocation, and execution.

A. Point Cloud Plants Remote Sensing Data

The position of the point cloud is adaptive and ubiquitous
in terms of satellite, where computing consists of speed and
storage. We defined the point cloud movement to collect the
sensing data from different locations, as shown in Fig. 2. We
consider the point clouds C', where different computing cloud
nodes are shown as ¢ with their respective virtual machines.
The point cloud collects different data modes, such as video
recording, images, and numeric values from different plants and
stores them in the cloud repository. We collected the R with
a distinct data format and trained and evaluated it based on a
FDCNN.

The main role of transfer learning is to train, test, and validate
the data on different nodes, such as edge and cloud nodes. We
trained the data weights on features, such as accuracy, fl-score,
recall, and precision, with the fuzzy sigmoid function. We devise
the fuzzy transfer learning commutative DCNN that trains all
data based on their weights. We present the algorithm, as shown
in the following in Algorithm 1.

In Algorithm 1, we defined these parameters, for instance,
R,C,V, A, L, J. Whereas R is the remote sensing collection of
data, C'is the collection of cloud computing, V' is the number of
tasks of the application, A is the application, L is the total number
of crop locations, J is the time zones when data is collected from
different sensing nodes.
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Algorithm 1: Satellite Point Cloud Remote Sensing Plant
Data Scheme.

Input : R,C,V,A L, J
1 begin

2 Collect Data From Plants L;

3 Time-Zone J,;

4 foreach (I =1 as L) do

5 Capture 3D Images and LIDAR;

6 Determines: ¢, r, [, j: Time zones;

7 Input dataset;

8 foreach (r=1 to R) do

9 Convolutional layer;

10 Matrix[c, 7,1, 71;

11 Feed-forward;

12 Split dataset train and test;

13 Iteration 7;

14 Split.Matrix[c, 7, [, j]1;

15 Test.Matrix[c, 7,1, j];

16 Train.Matrix[c, r, I, j1;

17 Fully Connected all dataset evaluation;
18 Apply Fuzzy rules;

19 e = {0,1} Fuzzy probability based on

equations (1, 3);

20 w= m[c’r’l’j];

21 Call Transfer Learning;

22 Share weights based on equation (3);
23 End Sharing;
24 End training;

25 End Main;

We collected and trained the datasets based on a fuzzy DCNN
scheme that consisted of different processes, such as data col-
lection in different time zones, training, validation, and testing,
as shown in Fig. 3. We defined the inputs and training process in
different layers, as shown in steps 1-10. Algorithm 1 takes the
input as collected data, and collected data extracts their features,
as shown in the metrics. We split the datasets into train, test, and
evaluation and make predictions based on fuzzy based on partial
true and false as determined in steps 11-25.

We collected data sensing data from cloud points from differ-
ent plants in different time zones, as shown in Fig. 3. The data is
trained on different constraints, such as the algorithm scenario
has different steps, such as input convolutional neural network
by 16 x 16 and fully connected layer along with fuzzy decision
with updated weights, as shown in Fig. 3.

All the updated trains are shared with the edge nodes for
further processing and execution. All the remote sensing data
on the point clouds is shared with the edge nodes for the further
closeness of plant disease detection with more accurate results.
The remote covered the entire full region data; however, we
exploited the edge nodes for particular areas and downloaded
the trained weights from point clouds for executions. The trans-
fer learning gained knowledge about point clouds and trained
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Fig. 3. Remote sensing training based on FCDCNN scheme.

and predicted particular diseases of plants on edge nodes with
minimum delay and noise in the system.

B. Transfer Learning Between Edge and Point Clouds

We implemented transfer learning where different edge and
cloud points shared their weights to predict disease from satellite
and close ground based on edge and cloud point nodes. Transfer
learning allows the exchange of weights for plant data prediction.
We are considering two kinds of plant prediction: satellite plant
and edge data.

We train, test, and validate the dataset fusion using a different
number of layers. We have defined the different layers and depths
of the proposed FDCNN. There are different layers, such as the
input, output, and convolutional layers, with hidden layers 32 x
32. We train the datasets by 85% and 15% for validity and test
on different nodes as defined in steps 11-25. Algorithm 2 takes
the different parameters as input. For instance, R, k,T, L, J,
whereas R collection of remote sensing data, k is the edge node,
T total number of tasks, L is the location, and .J is the time zone.

1) Algorithm 2 collects the images based on the drone and
designated network very close to the land. The location is
distinct and is less distant as compared to satellite sensing
nodes.

2) We implemented the deep neural network with feedfor-
ward schemes to process the trained data based on updated
weights, which are shared with the remote satellite sensing
data.

3) We extracted all features of data with different edge points
and converted them into a features matrix list.

4) The fully connected layer converts the features into a
meaningful data format for data decisions.

5) The fuzzy rules are applied to the trained data for disease
prediction and process the data on the given threshold as
determined in steps 1-23.
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Algorithm 2: Transfer Learning Assisted Edge Plant Data
Collection and Processing Schemes.

Inmput : R k,T,L,J
1 begin
2 Collect Data From Plants L;
3 Time-Zone J;
4 Analyze tasks;
5
6

foreach (t =1 to T) do

Initiated tasks and downloaded weight from
point clouds;

7 foreach (I =1 as L) do

8 Video and Images Based on Drone Images;
9 Crop Plant Land: k,r, [, j,t: Time zones;
10 Input dataset;

11 foreach (d=1 to D) do

12 Slum scheduler for all tasks;

13 Matrix[t € A, d, [, j1< €g;

14 Transferred weights;

15 Split dataset train and test;

16 Iteration 7;

17 features(t, k, d, [, j1;

18 Test.features[t, k, d, [, j];

19 Train.features[t, k, d, [, j]1;

20 Fully Connected all dataset evaluation;
21 Apply Fuzzy rules;

22 e = {0, 1} Fuzzy probability based on

equations (2, 3);

23 w = trrrerrEe LA Ll;

24 Call Transfer Learning;

25 Share weights based on equation (4);
26 End Sharing;

27 | End training;
28 End Main;

6) All the edge nodes and point clouds are connected and
transfer their trained weights with each other for more and
more plant disease detection with higher accuracy and less
processing time.

7) The epsilon is the fuzzy learning rate in an algorithm that
allows the fuzzy decision based on partial true and false
on the remote and edge sensing data.

The drone collects the data from different locations, e.g., L

in different time zones with higher video recording and high-
quality visual images.

V. PERFORMANCE EVALUATION AND EXPERIMENTS

In this part, we evaluated the performance of different systems
and their implementation, databases, nodes, and resource char-
acteristics. We designed the simulation on different parameters,
such as language, runtime environment, experimental replica,
resources, and operations, as shown in Table II. We have defined
the different layers and depths of the proposed FDCNN. There
are different layers, such as the input layer, output layer, and



MOHAMMED et al.: EDGE-CLOUD REMOTE SENSING DATA-BASED PLANT DISEASE DETECTION USING DEEP NEURAL NETWORKS

TABLE II
POINT CLOUD AND EDGE PLANT SIMULATION PARAMETERS

| Parameter | Description |
Languages JAVA, 10T Kotlin, Socket, Python
Run-time Socket programming

X86 virtualization

46 times

High performance computing
Server socket layer

Wireless technology

Operating system
Simulation repetition
Environment

Drone edge layer
Communication networking

Input layer 500 layers

Output layer 700 layers

Convolutional layers 32x32
TABLE III

PLANT DISEASE DETECTION APPLICATION TASKS

| Task | Description | Remote-data | Edge-data |
tl Plant surveillance Image | Video Recording
2 Location Coordinates Coordinates
3 Plant results Images Images, video
T Data Size Nodes
2000 | Multimodal 2 GB Edge cloud
TABLE IV
PLANT DATASETS
Plant Data Node Area Time
Cotton 3000 Images | Edge cloud 15000 acre Morning
| Cherry | 5000 fusion | Edge cloud | 20000 acre | Morning |
| Sugar-cane | 4000 fusion | Edge cloud | 18000 acre | Morning |
| Blue-berry | 1000 fusion | Edge cloud | 19000 acre | Afternoon |

convolutional layer with hidden layer 32 x 32, as we defined in
Table II.

Table II shows the simulation parameters of the experimen-
tal implementation of crop disease detection application with
different values and characteristics. Table III shows the plant
disease application tasks’ characteristics and data size with data
types. We consider multimodal data, such as image, video, and
numeric data, which is collected from different point clouds and
edge nodes for plant disease detection, as shown in Table III.

A. System Implementation and Datasets

We collected the different data fusion datasets of plants from
different sources, improved their labels, and processed them
on remote and edge cloud nodes. This data fusion, such as
sugarcane, cherry, and blueberry datasets, is divided into remote
and edge cloud sensing classes and includes 2 GB of 3-D images
of diseased plants, damaged crop leaves, and healthy plants.
We created the plant detection disease system based on socket
programming, where all runtime compilers are designed based
on X86 cross-platform for execution. We designed the different
interfaces for simulation, such as the controlled application inter-
face, remote sensing interface, and edge cloud sensing interface,
for disease detection in the system. We have trained, tested, and
validated different samples of images, such as cotton, sugarcane,
blueberry, and cherry, as shown in Table IV. We defined the
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TABLE V
COMPUTING RESOURCES

Node | Resource Storage CPU Placement

cl Hybrid VMs 5000 GB | Core i7 | Point cloud

c2 Hybrid VMs | 10000 GB | Core i9 | Point cloud

c3 Hybrid VMs 10 TB | Core i7 | Point cloud

k1 Edge 100 GB | Core i5 | Edge cloud

k2 Edge 1000 GB | Core i3 | Edge cloud

k3 Edge 1 TB | Corei5 | Edge cloud

TABLE VI
CONVEX OPTIMIZATION TIME COMPLEXITY RESULT ANALYSIS
| Method | Plant | Data | Node | Z’ (Minutes) |

FCDCNN Cotton 18000 | Edge cloud 20
RSFDCNN | Cotton 19000 | Edge cloud 50
ESFDCNN | Cotton 20000 | Edge cloud 60
FCDCNN Cherry 7000 | Edge cloud 18
RSFDCNN | Cherry 7000 | Edge cloud 45
ESFDCNN | Cherry 7000 | Edge cloud 55
FCDCNN Sugar-cane 5000 | Edge cloud 16
RSFDCNN | Sugar-cane 5000 | Edge cloud 48
ESFDCNN | Sugar-cane 5000 | Edge cloud 57

different data samplings in the dataset for the article’s result
analysis.Table IV shows the remote and edge sensing data for
the different crops with different characteristics. Fusion shows
the data types executed during the system’s training, testing, and
validation.Table IV shows the remote and edge sensing data with
the different crops, as shown with different characteristics.

B. Result and Discussion

In this part, we discuss the numeric result analysis and a
graphical evaluation of the performance of different methods
on different plant data based on statistical concave and convex
binomial distributions.

We integrated the different baseline approaches, such as
RSFDCNN and ESFDCNN methods we discussed in the related
work. We compared the existing approaches with the proposed
algorithmic schemes in the system. Table VI shows that all the
plant data with the higher accuracy have less processing time
with the FCDCNN as compared to existing baseline approaches.
The main reason is that we have exploited transfer learning,
where trained weights are shared to optimize both concave
and convex optimization for the applications in the system.
The existing baseline approaches did not consider the transfer
learning training on remote and edge sensing data with less
accuracy and higher processing with the partial true and false
results, as shown in Table VI.

We evaluated the result analysis in tradeoff combinatorial
problems, such as concave and convex optimizations, where time
and accuracy have higher frequency on the method performance
to determine disease in plants. All the existing studies only
suggested methods to solve the concave optimization problems
on the plant data; however, they have less accurate results with
the higher frequency of processing time and resource failure on
different computing nodes.
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TABLE VII
GROUND TRUTH DATA FOR THE PLANT DISEASE BENCHMARKS STAGE WITH
RESULT ANALYSIS
| Method | Plant | Accuracy | Recall | Precision |
FCDCNN Cotton 98.5 0.98 0.98
RSFDCNN | Cotton 83.5 0.89 0.84
ESFDCNN | Cotton 80 0.85 0.83
FCDCNN Cherry 92.2 091 0.98
RSFDCNN | Cherry 89.5 0.82 0.80
ESFDCNN | Cherry 81 0.83 0.81
FCDCNN Cherry 98.2 0.98 0.98
RSFDCNN | Cherry 90.5 0.89 0.83
ESFDCNN | Cherry 89 0.88 0.84

We have compared the results of different baselines and pro-
posed algorithms for different samplings of plant data. Ground
truth data of plant disease with datasets benchmark stages, such
as offloading, scheduling, and prediction, are evaluated with
different constraints. For instance, time, resources, accuracy,
recall, and precision, as shown in Table VII consisted of different
metrics. Table VII shows that the proposed scheme optimized
both concave and convex optimization statistical functions with
prediction and processing on different plant data using different
baseline approaches. We combined remote sensing data from
point clouds and edge drone-collected data on distributed land
regarding acres.

C. Cases of Implemented Datasets

In the experiment, we consider data fusion data in a dataset
where different objectives are difficult to achieve when time,
resources, and classification accuracy are constraints in the
distributed computing nodes on remote sensing data. In this
case, we are considering different nodes, where each node has
different computing capabilities and resources. Therefore, main-
taining time is very difficult. Another case is resource scalability,
when huge amounts of data are offloaded for training, testing,
and validation. Therefore, we need to offload data from the bal-
ance form. The final but not least difficulty is accuracy when data
has many forms and features on the different nodes. Therefore, in
the simulation, we divided and experimented with our problem
combinatorially and optimized all constraints related to plant
disease data in the system.

We evaluated the performance of different methods in con-
cave optimization with different constraints and metrics such as
accuracy, recall, and precision for all data. We obtained optimal
results as compared to existing studies. The main reason is
that existing studies only focus on accuracy and can only train
the current data weights with the available resource capability.
However, it has less accuracy when the data and complexity
increase in the plant disease for dedication and loss to farmers’
economics for productions. We executed the remote sensing data
with different diversity in tasks such as 10000 and identified
which plant was healthy and suffered from any disease. We
also analyzed the results based on fuzzy logic with the higher
ratio of predication diseases among different plants, as shown
in Fig. 4. The confusion matrix shows the overall result analysis
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report of training with the transfer learning based on DCNN
about healthy and nonhealthy plants on the collected data. We
consider the prediction and scheduling problem a combinatorial
problem, whereas concave problems are considered classifica-
tion and convex and scheduling problems. Fig. 4 shows the
result analysis of the convex function where we determined
the confusion matrix for the data training on different edge
cloud nodes. Because we determine the plant disease prediction
on the different nodes to maximize more and more concave
accuracy function. However, to remove the confusion, we added
the confusion for plant disease detection with higher accuracy,
as shown in Fig. 5. Fig. 5 shows a confusion matrix where we
labeled the disease and healthy plants with the different 21000
images based on a convolutional neural network. The main
motivation of the confusion matrix is to show the refinement
of images, whether the plant is healthy or the disease identified
from collected images in our method.

We are considering the multimodal data such as images, video,
and numeric values; the disease prediction is diverse at different
nodes and shares their weights on different to improve the
prediction accuracy and minimize the training and processing
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Fig. 7. Different plant data processing with concave accuracy under given
threshold values.

time for application tasks. We analyzed the categorical collected
and cumulative data rows that are 50 000 in the confusion matrix,
as shown in Fig. 4. We determined that the edge node has less
processing speed and less training data for complex work, with
a poor result of about false 492. However, edge-cloud transfer
learning weights have higher prediction with the fuzzy decision,
which is about 4591 with false values. Therefore, true labels and
predicated labels with true and false data prediction improve
on edge cloud nodes when they are using transfer learning and
sharing their weights for plant disease prediction in the system,
as shown in Fig. 4. Therefore, our proposed scheme is more
optimal in both combinatorial types of functions for plant disease
data in distributed land acres.

We can improve the plant disease prediction with the higher
ratio of concave function accuracy with the proposed scheme,
as shown in Fig. 6. We considered the different plants’ disease
remote and edge sensing data, such as sugarcane, cherry, cotton,
and blueberry as shown in Fig. 6, as shown in the x-axis and
y-axis shows the accuracy of the methods to run these data and
predict the plant disease with the more accuracy. Fig. 6 shows
that the proposed idea and scheme have higher accuracy with a
different data diversity than existing methods. The processing
time consisted of offloading time between edge nodes to the
point cloud, execution time, and training and sharing time on up-
dated data weights. Therefore, considering that the availability
of resources is adaptable and scalable, this is not true on the edge
nodes. Therefore, we connect edge and cloud nodes to collect
and process data more accurately and on time. Fig. 7 shows
that the proposed scheme predicted and executed all plant’s
remote and edge sensing data with true partial and partial false
based on the given threshold values in the experiment part. The
threshold is that the prediction must have good accuracy and a
higher ratio than 90%, which is more appropriate for the correct
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results on the given and trained plant data on the different edge
and cloud nodes. Fig. 7 shows that FCDCNN is outperformed
than RSFDCNN, and ESFDCNN for all given plant data for
prediction and execution. Fig. 8 shows that the proposed scheme
predicted and executed all plant’s remote and edge sensing data
with true partial and partial false based on the given upper bound
and lower bound threshold values in the experiment part. The
upper bound threshold is set at a level equal to 90%. The lower
bound is also acceptable with fuzzy partial true and partial false
values to detect plant diseases but with less accurate results
during experiments. Fig. 8 shows that FCDCNN outperforms
RSFDCNN and ESFDCNN in both upper and lower bound
limits during experiments. Fig. 9 shows plant data’s numerical
and graphical categorical result analysis with different metrics
such as accuracy, recall, and precision. Fig. 9 shows that all
application tasks have higher accuracy, recall, and precision on
different plant data when they are executed for prediction and
analysis on different nodes based on suggested schemes. For
the experiment, we only chose the fitted and best results from
the experiments; we ignored the bad results due to resource and
deadline failure during an experiment in the simulation.

However, still with the best result, Fig. 9 shows that FCDCNN
outperformed RSFDCNN and ESFDCNN in both upper bound
and lower bound limits during experiments.

VI. CONCLUSION AND FUTURE WORK

The main finding of this was to introduce a methodology titled
edge-cloud remote sensing data based plant disease detection
using deep neural networks with transfer learning, aiming to
address the aforementioned hurdles, such as broad-scale data
collection, disease identification, and processing with height-
ened precision and efficiency across diverse platforms. We
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proposed using transfer learning in conjunction with FCDCNN
schemes rooted in combinatorial optimization problems. The
convex function was employed to optimize data training pro-
cessing time and learning rate across various edge and cloud
nodes to enhance data acquisition from various plants in dis-
tributed locations. Conversely, the concave function was utilized
to prognosticate diseases prevalent among distinct plant species,
such as sugarcane, blueberry, cotton, and cherry, leveraging
images, videos, and numerical values. We combined a plant
disease detection app that uses edge nodes and remote satellite
point cloud nodes to make it easier to collect data and train
the app through transfer learning. This lets us make predictions
using fuzzy DCNN schemes that are more accurate and take
less time to process. The simulations confirmed that FCDCNN
was more accurate than other methods, as discussed in the result
analysis.

However, the proposed work has many limitations. In the
future, we will consider these constraints, such as economic
impact, processing cost, and security, which have not been part
of the proposed system. In future work, we will extend our plant
disease detection system with these constraints and improve its
efficiency with more optimal results regarding security, cost, and
economical types for the government and farmers.

DATA-STATEMENT AVAILABILITY

We have downloaded the sugarcane data for the experiments. !
It comprised 10000 data samples of healthcare leaves and un-
healthy sugarcane leaves in different distributed land acres. We
have exploited the mix of remote sensing data and edge cloud
data related to cotton.2 However, we will share mixed data soon
on the public repository. We have mixed data, as we publically
uploaded it on GitHub.?
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