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DTCNet: Transformer-CNN Distillation for
Super-Resolution of Remote Sensing Image

Cong Lin , Xin Mao, Chenghao Qiu , and Lilan Zou

Abstract—Super-resolution reconstruction technology is a cru-
cial approach to enhance the quality of remote sensing optical im-
ages. Currently, the mainstream reconstruction methods leverage
convolutional neural networks (CNNs). However, they overlook the
global information of the images, thereby impacting the reconstruc-
tion effectiveness. Methods based on Transformer networks have
demonstrated the capability to improve reconstruction quality, but
the high model complexity renders them unsuitable for remote
sensing devices. To enhance reconstruction performance while
maintaining the model lightweight, a distillation Transform-CNN
Network is proposed in this article. The strategy employs the Trans-
former network as a teacher network, guiding its long-range fea-
tures into a compact CNN, achieving distillation across networks.
Simultaneously, to rectify misinformation in the teacher network,
prior information is introduced to ensure accurate information
transfer. Concerning the student network, a novel upsampling
approach is devised, utilizing inherent information in downsampled
feature maps for padding, thereby avoiding the introduction of
zero-information feature points in the traditional deconvolution
process. Experimental evaluations conducted on multiple pub-
licly available remote sensing image datasets demonstrate that the
proposed method, while maintaining a smaller parameter count,
achieves outstanding reconstruction quality for remote sensing
images, surpassing existing approaches.

Index Terms—Gaofen satellite, knowledge distillation (KD),
lightweight network, remote sensing image, super-resolution (SR).

NOMENCLATURE

CNN Convolutional neural network.
LR Low resolution.
HR High resolution.
SR Super resolution.
KD Knowledge distillation.
SRRD Super-resolution reconstruction decoder.
LFE Low-level feature extractor.
HFE High-level feature extractor.
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HIR High-quality image reconstruction.
PSNR Peak signal-to-noise ratio.
SSIM Structural similarity.
SAM Spectral angle mapper.
NIQE Natural image quality evaluator.
NSS Natural Scene Statistics.
MVG Multivariate Gaussian.
Ent Entropy.
Std Standard deviation.
Grad Average gradient.

I. INTRODUCTION

R EMOTE sensing technology is an evolving and contin-
ually improving discipline that advances alongside soci-

etal progress and technological developments. With widespread
applications in various domains, such as agriculture, military,
and transportation, remote sensing technology has demonstrated
significant value [1], [2], [3]. Optical remote sensing images
constitute a crucial component of this technology, offering rich
spatial and spectral information. However, due to limitations
imposed by imaging devices and signal transmission, remote
sensing images often exhibit various types of noise, adversely
affecting image clarity and quality. To mitigate noise in remote
sensing images, numerous scholars have proposed denoising
algorithms based on diverse theories and methods [4], validating
their effectiveness through experimentation. Nevertheless, be-
yond noise reduction, a more challenging issue persists, i.e., how
to improve the sharpness of remote sensing images, allowing the
visualization of more subtle features and data.

The improvement of the resolution of remote sensing images
has been one of the research directions that have attracted much
attention in the field of remote sensing. HR remote sensing
images are of great significance for applications, such as land
cover classification, resource monitoring, and environmental
analysis. However, due to the limitations of sensor performance,
data transmission, and storage, the resolution of remote sensing
images actually acquired often fails to meet the needs of specific
applications. An important research direction at present is to
utilize multisource data fusion techniques. By integrating data
from different sensors, multispectral bands, or different time
points, researchers can obtain richer and more comprehensive
information while maintaining high quality resolution [5], [6].
This fusion method not only helps to improve the spatial and
temporal resolution of the images but also enhances the recog-
nition and classification of feature characteristics in remote
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sensing images. In addition, there are also related studies that
by reconstructing in the HSV domain within the RGB spatial
domain, not only can we achieve spectral SR but also obtain
more detailed and accurate information about the motion of the
object of interest [7]. Compared to the above two methods, SR
reconstruction through a single image can be used to recover a
HR image from a single LR image using deep learning methods
to improve the spatial details and quality of the image in the case
of more limited data [8].

The process of single image SR reconstruction involves
restoring a HR image from a lower-resolution counterpart.
While this approach enhances image clarity and details, the
inherent challenge and uncertainty arise from the insufficient
information present in the LR image. To address this problem,
three primary categories of methods are commonly employed:
1) interpolation-based methods, such as those discussed in [9]
and [10]; 2) reconstruction-based methods, as outlined in [11];
and 3) learning-based methods, exemplified by studies like [12]
and [13]. The most straightforward and expeditious approaches
fall within the realm of interpolation-based methods. These
methods, characterized by their simplicity and speed, involve
the estimation of unknown pixels by leveraging information
from neighboring pixels. Notable interpolation methods en-
compass nearest neighbor interpolation, bilinear interpolation,
bicubic interpolation, etc. However, these methods often result
in low-quality images after reconstruction, which are prone
to blurring and aliasing effects. Reconstruction-based methods
are usually based on multiple frames of images, which con-
strain the reconstruction process by combining prior knowledge,
such as convex set projection method [11], Bayesian analysis
method [14], iterative back-projection method [15], etc. In con-
trast to interpolation techniques, these methods exhibit superior
capabilities in enhancing the quality of reconstructed images.
However, it is noteworthy that along with this improvement,
they concurrently escalate computational complexity and time
requirements. In recent years, learning-based approaches have
gained widespread popularity [16], [17]. These methods involve
acquiring the mapping relationship from pairs of LR and HR
images, ultimately resulting in the attainment of HIR. However,
these early learning-based methods require manual feature de-
sign, which still face challenges for larger magnification factors
and more complex image contents.

The advancement of deep learning technology has catalyzed
the rise of SR reconstruction methods employing CNN. These
approaches prove effective in restoring intricate texture details
within images. However, the early CNN methods had low image
quality after reconstruction due to the small number of parame-
ters [18]. To improve the performance of image reconstruction,
some scholars increased the depth of the network and enhanced
the network’s ability to extract image features [19]. Overall,
CNN generally have a local receptive field, making them more
efficient in terms of computation and memory usage. However,
they may struggle to capture global context and long-range
dependencies, which are crucial for reconstructing high-quality
images from LR inputs [20]. Furthermore, CNN often require
deeper or more complex architectures to increase their recep-
tive field, which may lead to increased model complexity and
a risk of overfitting [21], [22]. With the introduction of the

Transformer model [23], it has achieved great success in the
field of natural language processing, and aroused the interest
of more and more scholars to apply it to the field of image
processing. The Transformer model can handle the dependency
relationships between sequence data well, which is beneficial for
the model to learn the global features of images [24], [25], [26].
However, the Transformer model also has some problems, such
as the computational complexity and memory consumption of
the self-attention mechanism increase sharply with the increase
of the input sequence length, which brings great pressure on
the computing resources and storage space, especially when
processing HR images [27]. The self-attention mechanism cal-
culates interactions between all pairs of input positions, leading
to a computational cost that has a quadratic relationship with
the size of the input. This poses a particular challenge for SR
tasks, which typically involve processing large images with fine
details. This is undesirable for remote sensing task scenarios
with limited device performance, because remote sensing tasks
often require fast, accurate, and stable image processing results.
Therefore, how to obtain a simple and high-performance model
that can adapt to the characteristics and requirements of remote
sensing images is an urgent problem to be solved.

Currently, there are numerous strategies aimed at reduc-
ing the complexity of neural networks, among which KD has
emerged as a prominent focus of research [28]. KD involves
the transmission of information between models, facilitating
the transfer of knowledge from a complex teacher network to
a relatively simplified student network. This approach enables
the maintenance of model performance on specific tasks while
reducing the overall scale. Notably, KD plays a significant
role in improving model inference efficiency and allows for
the application of high-performance models in environments
with limited computational resources. However, existing KD
methods predominantly concentrate on applications between
networks of the same type [29], [30], [31]. Meanwhile in the
implementation of KD, these architectural paradigms face sev-
eral challenges, including: how to efficiently transfer knowledge
from the teacher network to the student network, especially when
there are significant differences between their architectures, this
process may encounter difficulties; second, the selection of an
appropriate teacher network is crucial for the performance of the
student network. The teacher network needs to be sufficiently
powerful to provide valuable information and guidance; further-
more, the student network needs to have enough capacity to learn
the knowledge from the teacher network, but at the same time, it
should not be too large to lose the advantages of KD; finally, how
to design effective distillation strategies to ensure that the student
network can capture the important features and knowledge from
the teacher network.

To address the challenges of cross-architecture knowledge
transfer between CNN and Transformer in the KD task, and
to improve the efficiency of network distillation in the remote
sensing image SR task, while ensuring that the network remains
lightweight and the performance of the final model is not signifi-
cantly affected, this article combines the advantages of CNN and
Transformer networks and proposes a teacher–student network
called the distillation Transform-CNN network (DTCNet) for
use on the remote sensing SR tasks. This method not only helps
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to convey the model’s deep understanding of the data but also
enhances the ability of the student network to generalize to spe-
cific tasks. Specifically, first, a pretrained Transformer network
is used as the teacher network, which extracts high-dimensional
features from the LR remote sensing images and captures the
global dependency relationships between the features. Then, a
CNN-based SR reconstruction network is designed as the stu-
dent network, which learns the mapping relationship between the
LR and HR images under the guidance of the teacher network,
and overcomes the problem of insufficient global information
perception ability of pure CNN. Finally, a subpixel convolution
layer is introduced in the feature upsampling stage, which better
utilizes the inherent information in the feature map and improves
the clarity and details of the image. The main contributions of
this article are as follows.

1) Introducing a cross-network distillation framework rooted
in KD, this approach employs the Transformer network as
the teacher network and the CNN as the student network.
Utilizing the KD layer, the output of the teacher network
serves as an auxiliary supervision signal, guiding the
student network to acquire more comprehensive global
feature information.

2) A correction method for the erroneous knowledge of
the teacher network is proposed, which constrains the
erroneous edges in the teacher network by prior informa-
tion, aiming to improve the correctness of the knowledge
learned by the student network.

3) An upsampling method based on subpixel convolution is
proposed, which replaces the traditional deconvolution
method to improve the image quality in the image SR
task. This method uses the subpixel convolution to map the
feature map of the LR image to the pixel space of the HR
image, thus realizing the upsampling operation. Compared
with the traditional deconvolution method, it can make full
use of the network’s own features, and avoid the blurring
problem that may be caused by the zero-padding operation
in the deconvolution.

II. RELATED WORK

A. Transformer Network Theoretical Foundations

The Transformer network is an innovative neural network
architecture that relies on the self-attention mechanism to
achieve sequence-to-sequence mapping and modeling. It has
demonstrated notable achievements in various domains, such
as natural language processing, speech recognition, and image
generation [23]. The self-attention mechanism proves effective
in capturing correlations between positions within a sequence,
thereby enhancing the model’s representational and generaliza-
tion capabilities. In comparison to traditional recurrent neural
networks and CNN, the Transformer network boasts two key
advantages: first, it completely eschews recurrent and convolu-
tional operations, opting solely for self-attention mechanisms
and feedforward networks, resulting in heightened parallelism
and computational efficiency; second, it can handle sequences
of arbitrary lengths without being constrained by fixed windows
or step sizes, making it more flexible and efficient, particularly
in processing lengthy textual data.

Specifically, the self-attention mechanism comprises three
components: 1) query vectors, 2) key vectors, and 3) value
vectors [32]. Assuming the input sequence isX, for each position
i, it can be represented as a d-dimensional matrix hi, where d is
the dimensionality of the matrix. The attention weight for this
position can then be calculated using the following formula:

αi,j =
exp(ei,j)∑n

m=1 exp(ei,m)
(1)

where ei,j is the similarity between location i and location j,
which can be calculated by the dot product of the query matrix
qi and the key matrix kj

ei,j = qT
i kj . (2)

Finally, the weighted sum of the attentional weights αi,j and the
value matrix vj can be used as a representation of position i

hi =
∑n

j=1
αi,jvj (3)

For each position of the input sequence a query matrix q, a
key matrix k, and a value matrix v. These matrices are obtained
by multiplying the embedding vector X of the input sequence
by different weight matrices

q = X ·Wq (4)

k = X ·Wk (5)

v = X ·Wv (6)

where Wq , Wk, and Wv are the weight matrices used to
compute Query, Key, and Value, respectively. These weight
matrices are usually parameters learned through the learning
process of the model.

The self-attention mechanism allows for the calculation of
attention weights for each position based on the interdependen-
cies among positions within the input sequence. Subsequently,
the weighted vectors are utilized as representations for the
respective positions. This mechanism establishes connections
between different positions, enabling comprehensive modeling
of all positions within the sequence.

B. Transformer-Based Super Resolution Model

Compared with CNN, Transformer networks can better cap-
ture the global dependency relationships in images and more
flexibly handle the information at different positions, which is
very important for improving the detail restoration in SR tasks.
In recent years, many image SR methods based on Transformer
networks have been proposed. To fully exploit the advantages
of both, Liang et al. [24] proposed the SwinIR network, which
combines the advantages of convolution and Transformer, and
achieves efficient feature extraction and reconstruction by using
a hierarchical window self-attention mechanism, while reducing
a large number of parameters. Yang et al. [25] proposed the
TTSR network, which transforms the LR image and the Ref
image into query and key, and uses the attention mechanism
to achieve cross-image feature alignment and texture transfer,
thus solving the image registration and magnification problem.
For the SR task of remote sensing images, many methods
based on Transformer networks have also emerged. Shang et al.
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[33] proposed a hybrid-scale hierarchical Transformer network,
which makes full use of the self-similarity and high-dimensional
features of different scales after the upsampling layer, and im-
proves the accuracy and efficiency of the reconstruction. Lei et al.
[34] proposed a Transformer-based multistage enhancement
network, which combines with the traditional SR framework,
successfully integrates the multiscale low-dimensional and high-
dimensional features, and achieves excellent reconstruction per-
formance. Cai et al. [35] proposed a texture transfer module
for shallow texture transfer, which can effectively transfer the
texture features of the reference image to the LR image, and
proposed a feature fusion scheme to balance the reconstruction
effects of texture and smoothness, thus improving the quality of
the reconstructed image.

These studies jointly demonstrate the significant advantages
and potential of Transformer network-based methods in image
SR tasks, but using Transformer networks will incur huge com-
putational overhead, and for their good performance, sufficient
and high-quality training data are required. In remote sensing
tasks, there are a large number of devices with limited computing
power and storage space, such as drones and satellites. For this
purpose, the proposed method aims to comprehensively utilize
the excellent performance of Transformer networks and the
lightweight characteristics of CNN, and design a lightweight
but high-performance SR reconstruction model, to adapt to
the efficient deployment requirements of resource-constrained
remote sensing devices.

III. PROPOSED METHOD

In this section, the proposed method is elaborated in detail.
First, a mathematical model for remote sensing image SR is
established, representing the relationship between LR and HR
images as a degradation matrix. Consequently, the SR problem
is reformulated as the task of solving this degradation matrix.
Subsequently, a cross-structured KD network is designed, em-
ploying a Transformer network as the teacher network and a
CNN network as the student network. Through KD, the student
network is enabled to learn high-level features and global infor-
mation from the teacher network, enhancing the performance
of the student network. Within the student network, subpixel
convolution layers are employed as the upsampling module,
mitigating the issues of blurring and distortion associated with
traditional upsampling methods, such as bilinear interpolation
or deconvolution, while simultaneously preserving fine details
from the LR image. To further improve the guidance effective-
ness of the teacher network, prior information is introduced to
correct the output of the teacher network. This correction process
eliminates erroneous knowledge within the teacher network,
enabling the student network to acquire more accurate and
reliable information from the teacher network.

A. Super-Resolution Modeling of Remote Sensing Image

The objective of the model designed for SR reconstruction in
remote sensing images is to enhance image quality by restoring
the corresponding HR image from its LR counterpart. In this
context, the LR image is considered the degraded observation

version of the HR image, and its mathematical representation is
articulated as follows:

ILR = K · IHR + η (7)

where ILR represents the observed LR image, IHR denotes the
input HR image, K signifies the degradation matrix, and η is
typically determined by the resolution of the imaging system,
representing additive noise. Generally, the LR image is obtained
through bicubic downsampling operations.

To address the issue of information loss in remote sensing
images caused by downsampling, we introduce a prior term
within the CNN. This prior term, imposing constraints on the
degradation matrix K, aims to resolve the problem outlined
in (7). Through such formulation constraints, the supervised
network integrates global characteristics, thereby enhancing the
CNN ability to learn the overall structure and global contextual
information. In addition, this constraint enables the CNN to more
effectively assimilate global knowledge from the teacher net-
work, thereby improving performance in tasks, such as remote
sensing image SR. This lays the groundwork for subsequent in-
formation distillation between the two networks. The process of
addressing the degradation matrix K to reconstruct HR images
can be formalized as the following optimization problem:

IRC = argmin (IHR, IRC) +N (IHR) (8)

where IRC represents the reconstructed HR image,
argmin(IHR, IRC) denotes the operation of minimizing
the difference between the two images. N(IHR) serves as
a weighted regularization term, imposing constraints on the
solution space derived from prior knowledge. The introduction
of an auxiliary variable g and the decoupling of the data
term and regularization term within the equation result in the
following expression:

(IHR,g) = argmin
1

2
‖IRC −K · IHR‖22 + ωϕ(g)

s.t. g = IHR. (9)

Further, the problem can be relaxed as an unconstrained
problem and the above equation optimization problem can be
transformed into two subproblems by the ADMM technique

(IHR,g) =
1

2
‖IRC −K · IHR‖22 + ωϕ(g)

+ u ‖g − IHR‖22 (10)

IHR
n+1; argmin ‖IRC −K · IHR‖+ u ‖g − IHR‖22 (11)

gn+1 = argminu ‖g − IHR‖22 + ωϕ(g) (12)

where g is the penalty parameter, solving the problem for
IHR
n+1 is a quadratic optimization problem that can be addressed

using a closed-form solution, specifically by computing IHR
n+1 =

D−1ILR. Here, the matrix D and the degradation matrix K
typically have high dimensions. Directly computing the inverse
matrix involves significant computational complexity, making
it less feasible. To overcome this issue, a Newton–Raphson
optimization algorithm is proposed for calculating IHR

n+1. The
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Fig. 1. General structure of the proposed distillation cross network distillation architecture.

equation can be reformulated as

IHR
n+1 = IHR

n −
[

D

KTK+ u

]
(13)

D = KT
(
K · IHR

n − IHR
)
+ u

(
IHR
n − g

)
+P (14)

P = r
n∑

i=0

(
IHR
n+1 − IHR

m

)
(15)

where r is the scale factor, P is the integral term, and g is the
proximity operator computed onϕ(g). After the transformation,
we successfully implement the reconstructed HR image IHR

n+1 by
solving the degeneracy matrix K.

B. Knowledge Distillation for DTCNet

To solve the degradation model described in the previous
section, we propose a KD-based network which is named DTC-
Net in this section, as shown in Fig. 1. The DTCNet is divided
into two main components: 1) the upper segment represents the
teacher network based on the Transformer architecture, while
2) the lower segment corresponds to the student network based
on CNN. The initial LR image undergoes processing through
both networks, yielding two sets of logits results. Initially,
we rectify potential errors in the teacher network by leverag-
ing prior edge information. Subsequently, employing KD, we
guide the student network to acquire more accurate knowl-
edge representations. Through iterative backpropagation, we
continuously optimize the student network, aiming to sim-
plify model complexity while maintaining high performance.
Finally, applying the sigmoid activation function to the logits
results from the student network yields the ultimate HR image
output.

The teacher network consists of three modules: LFE, HFE,
and HIR. The upper part of Fig. 1 shows the details of the
teacher network. The LFE module uses a 3×3 convolution

layer to perform LFE on the input LR image. The HFE module
contains multiple cascaded residual Swin Transformer blocks
and convolution blocks, which split the feature map output
by the LFE module into multiple nonoverlapping patch em-
beddings, and then perform deep feature extraction through
layerwise residual Swin Transformer blocks. Then, the mul-
tiple nonoverlapping patch embeddings are recombined into
a feature map. Finally, through residual connection, the shal-
low feature map and the deep feature map are fused and in-
put to the HIR module to obtain a high-quality reconstructed
image.

Due to the presence of attention mechanisms in the residual
Swin Transformer blocks of the teacher network, students can
focus on specific local structures of the image during the training
phase. In addition, given the distinct emphases of Transformer
and CNN, employing a conventional CNN as the student net-
work may encounter challenges in fully assimilating knowledge.
Therefore, modifications were made to the attention mechanisms
and certain convolutional layers of the student network, and an
SRRD along with a linear layer parameterized by matrixDwere
designed.

The specific details of the student network are illustrated in the
lower part of Fig. 1. The student network consists of two parts:
1) feature extraction and 2) image reconstruction, specifically
feature encoding and average pooling, feature decoding, and
upsampling, as shown in Fig. 2. First, the degraded image ILR

passes through three feature encoding layers sequentially. Each
feature encoding layer includes multiple convolutional layers
and ReLU functions. After each round of feature encoding
and downsampling, the extracted feature maps undergo average
pooling to retain essential features and alleviate overfitting.
Similarly, the feature maps obtained through feature extraction
serve as inputs for image reconstruction. After three rounds of
upsampling and feature decoding, the final HR image is obtained
through hierarchical residual connections.
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Fig. 2. SR reconstruction decoder.

Fig. 3. Feature map upsampling reconstruction flowchart.

C. Subpixel Convolution for Image Super-Resolution

To enhance image resolution, the upsampling process typi-
cally employs deconvolution methods, enlarging the image size
by padding the blank pixel regions with zeros. However, the
zero-padded regions do not contain meaningful information, and
the use of conventional deconvolution methods for upsampling
can impede gradient optimization. In addition, since the image
reconstruction segment of the teacher network utilizes subpixel
convolution methods, the application of deconvolution methods
may interfere with the alignment between the student and teacher
networks. Therefore, we have improved the upsampling segment
of the student network by introducing subpixel convolution
methods.

The core concept of subpixel convolution involves taking
a LR image of size H ×W × C as input. After extracting
features from the LR image, n feature maps are generated. In
the upsampling stage, the last convolutional layer adjusts the
channel count to C × r2, and through subpixel operation, the
values at corresponding positions of r × r feature maps are used
to fill and reorganize subpixels, transforming it into a HR image
of size r ·H × r ·W × C.

Fig. 3 illustrates the image reconstruction process. Initially,
the feature maps undergo upsampling through the PixelShuffle
layer, breaking down the features of each channel into the

required multiple of the sampling factor, yielding the prelim-
inary upsampling result. Subsequently, the upsampling result is
added to the corresponding downsampled feature map, serving
as the output of the decoding layer. This upsampling and de-
coding process is repeated until the target resolution is reached.
Finally, through residual connections, the output of the last layer
is added to the original LR image, yielding the reconstructed HR
image.

D. Teacher Knowledge Optimization via Loss Functions

Typically, in a large number of studies, traditional knowledge
extraction techniques are formulated with the common goal of
minimizing the objective function

L = l{fT (x), fS(x)} (16)

where l is a loss function used to penalize the differences
between the teacher and student networks, fT (x) represents the
logits output of the teacher network, and fS(x) represents the
logits output of the student network.

Through extensive research on KD, various KD methods
tailored for different tasks have been identified, such as the
approach proposed by Chen et al. [36] for image retrieval and
Re-ID. Therefore, for KD based on image reconstruction tasks,
a suitable loss function is needed to ensure optimal network
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Fig. 4. Selection of images from (a) NWPU-RESISC45, (b) UCMerced,
(c) AID, and (d) NWPU VHR-10.

performance. In this study, we utilize softmax (with temperature
τ ) and the Kullback–Leibler divergence for l, aiming to extract
logit features from the teacher and student networks during the
training phase. This compels the student network to closely
emulate the teacher network at corresponding feature layers,
ultimately achieving the goal of KD. Specifically, the distillation
loss is computed as follows:

LςR = KL(softmax(fT (x)/τ), softmax(fS(x)/τ)) (17)

where KL represents the Kullback–Leibler divergence loss, and
τ denotes the distillation temperature.

Due to the complexity of remote sensing images, images
reconstructed through SR are prone to containing errors in the
edges. Therefore, further optimization of the loss function LSR

is necessary to prevent erroneous edges in the HR images. In this
context, we introduce an edge correction function to constrain
LSR, with the specific formula given as follows:

L
SR

= KL

(
softmax

(
fT (x)

τ

)
softmax

(
fS(x)

τ

))

− KL (ECF(softmax(fT (x))),ECF(y)) (18)

where y represents the ground truth, and ECF denotes the edge
correction function.

Remote sensing images often involve complex terrain struc-
tures, making the accurate restoration of edge information cru-
cial for achieving valuable objectives in land classification,
environmental monitoring, and related scientific research [37].
To effectively drive the learning and optimization of the remote
sensing image SR reconstruction model and better preserve key
edge features in the image, the final loss function is defined as
follows:

Lhard = MSE(softmax(fS(x)),y)

+ MSE(ECF(softmax(fT (x))),ECF(y)) (19)

Lglobal = α·Lhard + (1− α)·LsR (20)

which denotes the proportion of weight given to distillation loss
and standard loss; in this article α = 0.3.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Data and Settings

In this section, experiments were undertaken to verify the
efficacy and versatility of the proposed model using four
publicly available remote sensing image datasets: 1) NWPU-
RESISC45 [38], 2) UCMerced [39], 3) AID [40], and 4) NWPU
VHR-10 [41]. These datasets encompass diverse scenes and
types of remote sensing images, showcasing notable complexity
and variability. Fig. 4 illustrates some of the original and unique
images selected from these datasets.

The NWPU-RESISC45 dataset, with 45 categories of remote
sensing images, comprises 700 images per category. The images
are sized at 256×256 pixels, with pixel resolutions ranging from
30–0.2 m. For training, a random selection of 20 images was
made from each category, resulting in a total of 900 images.

The UCMerced dataset encompasses 21 categories of scene
images, with each category comprising 100 images, totaling
2100 images. The pixel dimensions of the images are 256×256,
and the spatial resolution is 0.3 m. For the test set in this section,
50% of the images were randomly chosen from this dataset,
amounting to a total of 1050 images.

The AID dataset comprises 30 categories of scene images,
totaling 10 000 images, each sized at 600×600 pixels with a
spatial resolution of 0.5 m. Specifically for this section, 2000
images were selected from the dataset for testing purposes.

The NWPU VHR-10 contains 800 HR color images with
resolutions in the range of 0.08–2 m, covering ten different scene
types, each containing multiple target objects. To evaluate the
performance of the method proposed in this article, 30 images
were randomly selected from this dataset as a test set.

To obtain LR data, bicubic interpolation was applied to down-
sample the original images, and SR reconstruction evaluations
were conducted at three different upscaling factors (×2,×3, and
×4). During training, the Adam optimizer was utilized, with β1

and β2 set to 0.9 and 0.999, respectively. The initial learning
rate was set to 0.0005, and it was halved after every 20 000
mini-batch updates. The training and testing were performed in
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an environment using PyTorch 2.1, CUDA 12.2, cuDNN 8.3.0,
and the NVIDIA Tesla A800.

B. Comparison With State-of-the-Art Methods and Evaluation
Indicators

In this article, five state-of-the-art methods have been selected
for comparative tests as well as double cubic interpolation and
six learning-based methods are shown as follows.

1) Remote sensing single-image SR based on a deep com-
pendium model (DCM) [42].

2) Transformer for single image SR (ESRT) [26].
3) Enriched CNN-Transformer feature aggregation networks

for SR (ACT) [20].
4) Transformer-based multistage enhancement for remote

sensing image SR (TransENet) [34].
5) Hybrid-scale hierarchical transformer for remote sensing

image SR (HSTNet) [33].
The DCM method is based on a CNN model, while ESRT,

ACT, TransEnet, and HSTNet are methods based on Trans-
former networks. The selection of these two different types of
models aims to comprehensively compare their performance in
image SR tasks, analyze their strengths and weaknesses, and
identify suitable scenarios for each. Two types of image SR ex-
periments were conducted in this section. One set of experiments
utilized LR images simulated through bicubic downsampling,
while the other set used real remote sensing images. For the
evaluation of results in both experiments, reference PSNR,
SSIM [43], and SAM [44] were employed as assessment metrics
for simulated images. In addition, no-reference metrics, such as
NIQE, Ent, Std, and Grad [45] were used to test the images
reconstructed from real remote sensing data. Through these two
categories of experiments, a comprehensive assessment of the al-
gorithmic performance in different scenarios could be achieved.
The following will elucidate the meanings of various evaluation
metrics and demonstrate how these metrics effectively reflect
the performance of images after SR reconstruction processing.

1) PSNR: The PSNR is one of the commonly used metrics
for assessing image reconstruction quality. It evaluates the
degree of image distortion by comparing the mean square
error between the pixel values of the original image and the
reconstructed image. A higher PSNR value indicates less
difference between the reconstructed image and the orig-
inal image, thus indicating higher reconstruction quality.
The calculation is as follows:

PSNR = 10log10

(
2552

MSE

)
(21)

where MSE is the mean square error which can be calcu-
lated as follows:

MSE =
1

H ×W

H−1∑
i=0

W−1∑
j=0

[I(i, j)−R(i, j)]2 (22)

whereH×W denotes the size of the image, I and R denote
the original and reconstructed image.

2) SSIM: The SSIM is a perceptual model used to evalu-
ate the structural similarity between images. It considers

three aspects: 1) luminance, 2) contrast, and 3) structure,
and integrates their similarities into a single score. The
SSIM values range from -1–1, with a value closer to
1 indicating a higher structural similarity between the
reconstructed image and the original image, and therefore
closer to human visual perception. Consequently, higher
SSIM values correspond to better reconstruction quality.
The calculation formula is as follows:

SSIM =
(2μIμR + c1)(2σIR + c2)

(μ2
I + μ2

R + c1)(σ2
I + σ2

R + c2)
(23)

where μI and μR denote the mean of the pixel intensities
of the original and reconstructed images,σI andσR denote
the std of the pixel intensities of the original and recon-
structed images, and σIR denotes the covariance of the
pixel intensities of the original and reconstructed images.
The constants c1 and c2 are used to maintain stability.

3) SAM: The SAM is employed to measure the spectral
differences between pixels in images. It assesses the dis-
parity between the spectral accuracy of the reconstructed
image and the original image. Lower SAM values indicate
a closer spectral resemblance between the reconstructed
image and the original image, thus indicating higher re-
construction quality. The calculation formula is as follows:

SAM = cos−1

( ∑n
i=1(χi · χ̂i)√∑n

i=1 χ
2
i ·
√∑n

i=1 χ̂
2
i

)
(24)

where χi and χ̂i represent the spectral vectors of the
corresponding pixels in the two images, respectively, and
n is the dimension of the spectral vector.

4) NIQE: The NIQE is a metric used for assessing the quality
of natural images. It performs quality feature extraction
through an NSS model and models the features using a
MVG model, representing the evaluated image quality as
the distance between the two MVG distributions. Lower
NIQE scores indicate higher image quality. The calcula-
tion formula is as follows:

NIQE =

√[
(v1 − v2)

T
(∑

1
−
∑

2

)−1

(v1 − v2)

]
(25)

where v1 and v2 represent the MVG model for natural
and distorted images, respectively, and

∑
1 and

∑
2 de-

note the variance matrix for natural and distorted images,
respectively.

5) Ent: The Ent of an image measures its complexity or
uncertainty. In image reconstruction, a lower Ent value
may indicate that the image has more structure and pre-
dictability. The calculation formula is as follows:

Ent = −
255∑
i=0

pi log pi (26)

where i denotes the grey value of the pixel and pi denotes
the probability of occurrence of a pixel point with grey
value i.
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TABLE I
PSNR AND SSIM RESULTS FOR ×2, ×3, AND ×4 UPSAMPLING RATIOS ON THE

UCMERCED DATASET

6) Std: The std measures the degree of variation in pixel
values within an image. A higher std typically indicates
that the image has greater contrast or more details. The
calculation formula is as follows:

Std =

√
1

H ×W

∑H−1

i=0

∑W−1

j=0
[R(i, j)− μ] (27)

where μ is the mean value of pixel intensity in the image.
7) Grad: The mean gradient represents the average rate of

change of pixel values within an image. A higher mean
gradient typically indicates that the image has more edges
and textures. The calculation formula is as follows:

Grad =
1

H ×W

H−1∑
i=0

W−1∑
j=0

√
∂2
h + ∂2

v

2
(28)

where ∂h and ∂v are the gradient of the image in horizontal
and vertical directions, respectively. In this paper, for all
tabulated data, the indicator parameters for the optimal
method have been highlighted using bold font, while
for the sub-optimal results, red font has been used for
labelling.

C. Super-Resolution Reconstruction Results on Different
Datasets

1) UCMerced Dataset Test Result: Table I presents the quan-
titative evaluation results of remote sensing SR methods on
the UCMerced dataset. From the data analysis, a significant
difference is observed between traditional interpolation methods
and current learning-based techniques. It is noteworthy that the
proposed remote sensing SR method achieved optimal PSNR,

TABLE II
PSNR AND SSIM RESULTS FOR ×2, ×3, AND ×4 UPSAMPLING RATIOS ON THE

AID DATASET

SSIM, and SAM results at three different upscaling factors com-
pared to other methods. Specifically, compared to the second-
best method, the proposed method exhibited an average PSNR
improvement of 0.92 dB and an average SSIM improvement
of 0.0165 across the three upscaling factors, both of which
are statistically significant. SAM is employed for assessing the
spectral similarity between two images, where a smaller SAM
value indicates a higher spectral similarity between the images.
The data results presented in the table demonstrate that the
images reconstructed through the proposed algorithm exhibit
superior spectral quality.

This indicates the successful restoration of image details
and textures by the proposed method, further enhancing visual
quality and perceptual effects. In comparison to existing SR
methods, the proposed approach demonstrates more robustness
and generalization capability, suitable for various image scenes
and content.

For further analysis of the proposed method’s SR performance
in different scenarios, Table III provides the average PSNR
values for 21 scene categories in the UCMerced dataset. The
table reveals that the proposed method achieved the highest
PSNR values in 18 out of 21 scene categories, indicating its
adaptability to diverse image content and features, resulting in
high-quality image restoration. In the remaining four scene cate-
gories, the proposed method ranked just below the DCM method,
with the PSNR difference between them not exceeding 1 dB,
demonstrating the continued competitiveness of the proposed
method.

Fig. 5 illustrates the reconstruction results of the proposed
method and six other SR methods on the UCMerced dataset.
It is evident from the two images that the proposed method
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TABLE III
AVERAGE PSNR FOR EACH CATEGORY OF THE UCMERCED DATASET WITH A SCALING FACTOR OF ×3

Fig. 5. Visualization results of (a) airplane image with ×3 factor, (b) runway image with ×4 factor.
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Fig. 6. Visualization results of stadium image with ×3 factor.

TABLE IV
MEAN PSNR, SSIM AND SAM METRICS OVER THE NWPU VHR-10 TEST DATASET

can more accurately restore the details and textures of the
images, making them closely resemble the original HR images.
In contrast, other methods, especially traditional interpolation
methods, result in significantly blurred reconstructed images.
Among the other methods, there are noticeable blurry transi-
tions at the wing edges and ground edges, as well as edge
blurring issues in the runway images, particularly in Bicubic,
DCM, ACT, and TransEnet methods. In comparison, the images
reconstructed using the proposed method exhibit clear and sharp
edges, indicating a significant advantage in enhancing the visual
quality and perceptual effects of the images. Whether from qual-
itative or quantitative results, the proposed algorithm demon-
strates outstanding remote sensing image SR reconstruction
capabilities.

Both qualitatively and quantitatively, the proposed algorithm
exhibits excellent remote sensing image SR reconstruction ca-
pabilities.

2) AID Dataset Test Results: To validate the robustness of
the proposed method, experiments were conducted not only on
the UCMerced dataset for comparative analysis but also on the
AID dataset for testing. The results are presented in Table II and
Fig. 6. Quantitatively, the proposed method achieved optimal
PSNR, SSIM, and SAM results across all three upscaling fac-
tors in the AID dataset, highlighting its competitiveness across
different datasets. In terms of visual comparisons, the HR images
reconstructed by ESRT, ACT, and HSTNet resulted in a blurred
central white spot in the soccer field. Conversely, the images
reconstructed using the proposed method distinctly exhibit rec-
ognizable lawn textures and prominent white circular patterns.
These findings provide compelling evidence of the efficacy and
resilience of the proposed method, suggesting its applicability

to diverse SR reconstruction tasks in various remote sensing
scenarios.

3) NWPU VHR-10 Dataset Test Results: Compared to the
UCMerced and AID datasets, the NWPU VHR-10 dataset pos-
sesses higher spatial resolution and richer image semantic in-
formation. Consequently, it can capture finer image details, and
the reconstruction testing on this dataset provides a better eval-
uation of the various methods’ performance in reconstructing
target information in remote sensing images. The quantitative
and qualitative results are presented in Table IV and Fig. 7,
respectively.

The results in Table IV indicate that the proposed method con-
tinues to exhibit optimal reconstruction performance on higher
resolution datasets. Specifically, the proposed method achieves
higher PSNR, SSIM, and SAM values by 0.63 dB, 0.0127,
and 1.00, respectively, compared to the second-best method. In
contrast, TransENet, while demonstrating good performance on
the other two datasets, exhibits a noticeable decline on the HR
dataset. From the Fig. 7, it can be seen that the reconstructed
image by the proposed algorithm is very close to the original
HR image in terms of detail, clarity, and color, while the recon-
structed image by other methods suffers from a certain degree of
blurring, distortion, and off-color. All these results indicate that
the proposed algorithm is able to effectively preserve and recover
the information of the HR image and improve the reconstruction
quality.

D. Real Remote Sensing Image Super-Resolution Test Results

In the previous section, the reconstruction experiments of
remote sensing images were conducted by simulating LR images
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Fig. 7. Results comparisons of ×4 reconstruction on the NWPU VHR-10
dataset for different methods. (a) HR. (b) LR. (c) Bicubic. (d) DCM. (e) ESRT.
(f) ACT. (g) TransENet. (h) Proposed.

through bicubic downsampling, and the performance of various
algorithms in the reconstruction of simulated LR images was
compared. To comprehensively evaluate the performance of
these algorithms in real-world applications, this section em-
ployed authentic remote sensing images with resolutions of 8
and 3.2 m/pixel, obtained from the Gaofen-1 and Gaofen-2
satellites. These real remote sensing images were used to test the
reconstruction performance of each algorithm, and no-reference
metrics were employed to objectively evaluate the performance
of each algorithm.

Figs. 8–11 display images of scenes, such as rivers, facto-
ries, elevated roads, and paddy fields captured by the Gaofen
satellites. By zooming in on the corresponding regions, the
performance of each algorithm in SR reconstruction is com-
pared more clearly. The data captured by the Gaofen satellites
consist of 600×600-sized images, providing richer information
compared to the 256×256-sized images used for training. It
is observed from the four images that the proposed method
exhibits a significant advantage in handling complex real-world
scenarios, effectively utilizing available information to generate
clearer and more accurate HR images.

In Fig. 9, the proposed method accurately reconstructs the
texture information of the factory roof. In Fig. 10, compared to

Fig. 8. River image acquired by Gaofen-1 satellite and its ×3 upsampling
factor result figure. (a) Input. (b) Bicubic. (c) DCM. (d) ACT. (e) HSTNet.
(f) Proposed.

Fig. 9. Factory image acquired by Gaofen-1 satellite and its ×4 upsampling
factor result figure. (a) Input. (b) Bicubic. (c) DCM. (d) ACT. (e) HSTNet.
(f) Proposed.

other methods showing blurry textures on the highway and vehi-
cles, the proposed method reconstructs these important details
more accurately. This is crucial for subsequent tasks, such as
image segmentation and object recognition.

In this section, four no-reference evaluation metrics were
employed to assess the quality of the reconstructed images:
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Fig. 10. Overpass image acquired by Gaofen-2 satellite and its×3 upsampling
factor result figure. (a) Input. (b) Bicubic. (c) DCM. (d) ACT. (e) HSTNet.
(f) Proposed.

Fig. 11. Paddy fields image acquired by Gaofen-2 satellite and its ×4 upsam-
pling factor result figure. (a) Input. (b) Bicubic. (c) DCM. (d) ACT. (e) HSTNet.
(f) Proposed.

1) NIQE, 2) Ent, 3) Std, and 4) Grad. NIQE gauges the overall
naturalness of the image, with lower values indicative of im-
ages resembling natural scenes more closely. Ent measures the
information Ent of the image, with higher values suggesting
a greater diversity of information in the image. Std quantifies
the std of the image, with higher values pointing to a broader

TABLE V
NONREFERENCE METRICS RESULTS FOR RIVER IMAGE SUPER-RESOLUTION

TABLE VI
NONREFERENCE METRICS RESULTS FOR FACTORY IMAGE SUPER-RESOLUTION

TABLE VII
NONREFERENCE METRICS RESULTS FOR OVERPASS IMAGE SUPER-RESOLUTION

TABLE VIII
NONREFERENCE METRICS RESULTS FOR PADDY FIELDS IMAGE

SUPER-RESOLUTION

distribution of pixel values and increased image contrast. Grad
assesses the average gradient of the image, with higher values
indicating more prominent edges, details, and enhanced image
clarity. Tables V–VIII present the numerical values of these four
metrics for the reconstructed images. It can be observed from
the tables that the proposed method obtained optimal results for
all images and upscaling factors. In addition, it is found that in
images captured by the Gaofen-2 satellite, the proposed method
averaged 13.47% better than the second-best method across all
metrics.

E. Comparison of Different Model Sizes

Existing SR reconstruction methods often require the use of
deep neural networks to improve reconstruction quality, leading
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TABLE IX
RESULTS OF THE ABLATION EXPERIMENTS FOR THE UCMERCED DATASET WITH SCALE FACTOR ×4

TABLE X
COMPLEXITY COMPARISON OF VARIOUS MODELS AT ×4 UPSAMPLING FACTOR

to significant computational expenses and performance over-
head. This is deemed unacceptable for remote sensing tasks with
limited computational resources. Therefore, a lightweight SR
reconstruction model is proposed, aiming to reduce model com-
plexity and resource consumption while ensuring reconstruction
quality. Table X presents a comparison of resource consump-
tion between the proposed model and several state-of-the-art
SR reconstruction models. From the table, it can be observed
that the proposed model’s parameter count and floating-point
operations are second only to the ESRT model. However, in the
results from the previous section, images reconstructed using
the proposed method surpassed all other models in terms of
PSNR and SSIM. Taking the ×4 upsampling factor on the AID
dataset as an example, the proposed model achieved a PSNR
of 28.73 dB and SSIM of 0.7904, outperforming the ESRT
model by 1.32 dB and 0.0419, respectively. On the other hand,
HSTNet, which has comparable performance to the proposed
method, incurs computational costs tens of times higher. This
indicates that the proposed model strikes a favorable balance
between performance and efficiency, highlighting its advantages
in efficient resource utilization and exceptional performance
with a relatively small model size. This further underscores
the positive implications of the proposed method for achiev-
ing outstanding SR reconstruction in resource-constrained
environments.

Fig. 12 illustrates, on the same platform, the training times
per epoch for a ×4 task and the testing reconstruction times on
the 64×64 UCMerced dataset for the same ×4 task. The times
are measured in seconds. The training time results indicate that
the training efficiency of ESRT and ACT algorithms is relatively
low, with an average training time exceeding 3 min per epoch.
In contrast, the proposed algorithm exhibits training times only
slightly inferior to the DCM algorithm, ranking second with an
average training time of 15.9 s per epoch. The testing time results

Fig. 12. Average training time and test time comparison for each model.
(a) Training time comparison. (b) Testing time comparison.

further emphasize the superiority of the proposed algorithm. In
the same testing environment on the identical platform, due to
the smaller model size of the proposed algorithm, the processing
time for each image is only 0.025 s, significantly outperforming
other reconstruction models. Overall, considering both training
and testing times, the proposed algorithm demonstrates a pro-
nounced efficiency advantage, accomplishing the training and
testing processes in a shorter timeframe while ensuring a high
level of reconstruction quality.

F. Ablation Experiment

This section evaluates the performance of the proposed model
by performing a number of ablation experiments, which examine
how different components affect the reconstruction results. We
employ metrics, such as PSNR, SSIM, parameter count, and
floating-point operations to gauge the quality of reconstructed
images and the complexity of the model. The outcomes of the
ablation experiments are summarized in Table IX. As shown in
the table:

1) the teacher network significantly enhances the reconstruc-
tion results. When there is no teacher network, the PSNR
and SSIM of the reconstructed images are reduced by
1.22 dB and 0.0351, respectively, indicating that both
the naturalness and structural similarity of the images are
significantly weakened;

2) subpixel convolution positively affected the reconstruc-
tion results. When the inverse convolution was used to re-
place the subpixel convolution for upsampling, the PSNR
and SSIM of the reconstructed image were also reduced
by both 0.15 dB and 0.0034, although the number of
parameters decreased slightly by 0.45 M, which indicates
that the clarity of the image and the detail reproduction
were reduced to some extent;
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Fig. 13. Effect of a priori information on edge detection in airport images. (a) Real edges. (b) Edge detection results without a priori correction. (c) Edge detection
results with a priori correction.

Fig. 14. Illustration of different SR frameworks. (a) CNN-based framework. (b) Transformer-based framework. (c) Proposed framework.

3) a priori information can be effective in correcting erro-
neous knowledge. From the results presented in the table, it
can be observed that introducing prior information during
the distillation process to correct the knowledge of the
teacher network leads to a significant improvement in
the performance of reconstruction, without affecting the
complexity of the network. Meanwhile Fig. 13 shows the
results of the edges of the reconstructed airport image
before and after the addition of a priori information to the
proposed algorithm. As can be seen from the right wing
of the aircraft above in the image, the reconstructed image
without the network corrected with a priori information
shows broken edges, while the network corrected with
a priori information improves the edge completeness of
the image, thus improving the quality of the final image
reconstruction.

V. DISCUSSION

Distillation, CNN, and Transformer represent relatively ma-
ture technologies in the field of remote sensing. However, their
integration poses a nontrivial challenge. Fig. 1 illustrates the
SR reconstruction frameworks based on CNN and Transformer
networks. The SR method based on CNN, depicted in Fig. 14(a),
employs convolutional and upsampling layers to progressively
enhance the image resolution. On the other hand, the SR method
based on Transformer, illustrated in Fig. 14(b), utilizes self-
attention mechanisms to capture long-range dependencies in the
image, thereby enhancing fine details and textures. Therefore,
the intelligent fusion of their respective advantages is a research
question of significant interest.

Currently, KD methods effectively enable small models to
mimic the outputs of pretrained large models within the same
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network architecture. Most existing KD methods assume iden-
tical network architectures between teacher and student models,
such as ResNet-34 and ResNet-18 [29], or Swin-S and Swin-
T [30]. However, this assumption restricts the applicability of
KD, as in practical scenarios, teacher and student models may
possess different network architectures. Cross-architecture KD
presents a challenging problem since models from different
architectures may exhibit significant feature disparities, leading
to difficulties in feature alignment. Thus, the design of effective
methods for cross-architecture KD is a topic worthy of investi-
gation.

In this article, for the cross-architecture KD problem in neural
network architecture search, a CNN network based on mathe-
matical model constraints is proposed, and the network structure
is shown in Fig. 14(c), which is able to efficiently extract the
global features of an image and achieve the feature alignment
between different architecture networks under the condition of
satisfying certain linear constraints. In addition, this article uses
prior knowledge to correct the output of the teacher network so
as to eliminate the error of the teacher network and deliver more
accurate and reliable knowledge to the student network. Through
experiments on multiple datasets and tasks, this article demon-
strates that the proposed approach can significantly reduce the
complexity of the model while ensuring high performance.

VI. CONCLUSION

This article introduces a lightweight CNN model, which is
meticulously crafted and fine-tuned for the SR reconstruction of
remote sensing images. To enhance the representational capacity
of the CNN model, a KD approach is employed. This involves
using an advanced Transformer network as the teacher model,
transmitting the high-level semantic features it extracts to the
CNN model as the student model. This guidance enables the
CNN model to more effectively capture global and structural
information in the images. Following this, experiments were
conducted on publicly accessible remote sensing datasets to
compare the proposed method with various popular SR recon-
struction methods. The experimental findings illustrate that the
proposed network attains superior image quality and visual ef-
fects, all the while upholding reduced computational complexity
and memory consumption.

Through the proposed framework, it can be extended to other
resource-constrained scenarios, such as real-time SR reconstruc-
tion. However, this extension introduces new challenges and
issues that require in-depth research and exploration for viable
solutions. First, facing lower computational resources and higher
real-time requirements necessitates the exploration of methods
to further compress and accelerate the proposed CNN network
without compromising reconstruction quality. It is imperative to
ensure that critical feature extraction and knowledge absorption
capabilities are maintained even under limited computational re-
sources. Second, different image application scenarios demand
customized Transformer and CNN network structures to achieve
optimal distillation and reconstruction effects. Selecting appro-
priate structures and parameter configurations, and considering

the specificity of different tasks and scenes, will be a crucial
direction for future research.

In summary, the framework proposed in this article offers a
novel approach for SR reconstruction of remote sensing images
in resource-constrained scenarios. However, there are also some
limitations. First, although the combination of Transformer and
CNN can effectively capture image features, the proposed stu-
dent network is a smaller CNN network in terms of parameters.
When dealing with extremely HR images, the limited parameter
count of the student network restricts its capability to capture
image features, potentially leading to performance bottlenecks.
In other words, despite the network requiring more processing
time, it may not achieve the desired performance level. Sec-
ond, the proposed algorithm. Furthermore, experimental results
demonstrate that the method achieves excellent performance
in SR reconstruction tasks of both simulated and real images.
However, even though the processing time for a single image
is only 0.03 s, this processing speed is still insufficient for
real-time processing of dynamic high-speed video streams. In
future work, we will continue to delve into researching and ad-
dressing the aforementioned issues to enhance the performance
and adaptability of the framework. Our aim is to provide more
comprehensive and effective solutions for tasks, such as SR
reconstruction in resource-constrained scenarios.
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