
11632 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

MTP: Advancing Remote Sensing Foundation
Model via Multitask Pretraining

Di Wang , Member, IEEE, Jing Zhang , Senior Member, IEEE, Minqiang Xu, Lin Liu, Dongsheng Wang,
Erzhong Gao, Chengxi Han , Student Member, IEEE, Haonan Guo , Student Member, IEEE,

Bo Du , Senior Member, IEEE, Dacheng Tao , Fellow, IEEE, and Liangpei Zhang , Fellow, IEEE

Abstract—Foundation models have reshaped the landscape of
remote sensing (RS) by enhancing various image interpretation
tasks. Pretraining is an active research topic, encompassing su-
pervised and self-supervised learning methods to initialize model
weights effectively. However, transferring the pretrained models
to downstream tasks may encounter task discrepancy due to their
formulation of pretraining as image classification or object dis-
crimination tasks. In this study, we explore the multitask pretrain-
ing (MTP) paradigm for RS foundation models to address this
issue. Using a shared encoder and task-specific decoder architec-
ture, we conduct multitask supervised pretraining on the segment
anything model annotated remote sensing segmentation dataset,
encompassing semantic segmentation, instance segmentation, and
rotated object detection. MTP supports both convolutional neural
networks and vision transformer foundation models with over 300
million parameters. The pretrained models are finetuned on vari-
ous RS downstream tasks, such as scene classification, horizontal,
and rotated object detection, semantic segmentation, and change
detection. Extensive experiments across 14 datasets demonstrate
the superiority of our models over existing ones of similar size and
their competitive performance compared to larger state-of-the-art
models, thus validating the effectiveness of MTP.
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I. INTRODUCTION

R EMOTE sensing (RS) image is one of the most important
data resources for recording ground surfaces and land

objects. Precisely understanding RS images is beneficial to
many applications, including urban planning [1], environmental
survey [2], disaster assessment [3], etc.

Utilizing its inherent capability to automatically learn and
extract deep features from objects, deep learning methods have
found widespread application in the RS domain, particularly for
tasks, such as scene classification, land use and land cover clas-
sification, and ship detection. Typically, ImageNet pretrained
weights are employed in training deep networks for RS tasks
due to their extensive representational ability. However, these
weights are derived from pretraining models on natural images,
leading to domain gaps between natural images and RS images.
For instance, RS images are captured from a bird’s-eye view,
lack the vibrant colors of natural images, and possess lower
spatial resolution. These disparities may impede the model’s
finetuning performance [4], [5]. Moreover, relying solely on
limited task-specific data for training restricts the model size
and generalization capability of current RS deep models due to
the notorious overfitting issue.1

To tackle these challenges, the development of RS vision
foundation models is imperative, which should excel in extract-
ing representative RS features. However, the RS domain has
long grappled with a scarcity of adequately large annotated
datasets, impeding related investigations. Until recently, the
most expansive RS scene labeling datasets were fMoW [6] and
BigEarthNet [7], boasting 132 716 and 590 326 unique scene
instances [8], respectively—yet still falling short of benchmarks
set by natural image datasets, such as ImageNet-1K [9]. Long
et al. [8] addressed this gap by introducing MillionAID, a large-
scale RS scene labeling dataset with a closed sample capacity of
1 000 848 compared to ImageNet-1 K, igniting interest in super-
vised RS pretraining [5], [10]. These studies show the feasibility
of pretraining RS foundation models on large-scale RS datasets.
Nonetheless, supervised pretraining of RS foundation models

1https://github.com/ViTAE-Transformer/MTP
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may not be the most preferable choice due to the expertise and
substantial time and labor costs associated with labeling RS
images.

Constructing large-scale RS annotation datasets is challeng-
ing due to the high complexity and cost of labeling. Despite this
challenge, the advancement of Earth observation technologies
grants easy access to a vast amount of unlabeled RS images.
Efficiently leveraging these unlabeled RS images is crucial for
developing robust RS foundation models. In the realm of deep
learning, unsupervised pretraining has emerged as a promis-
ing approach for learning effective knowledge from massive
unlabeled data [14], [15], [16], [17]. Typically, unsupervised
pretraining employs self-supervised learning (SSL) to learn
effective feature representation. SSL encompasses two primary
techniques: contrastive-based [18], [19], [20] and generative-
based learning [21], [22], [23]. Contrastive learning aims to bring
similar samples closer while maximizing distances between
dissimilar samples through the object discrimination pretext
task. When applied to the RS domain, data characteristics such
as geographic coordinates [24], [25], [26] and temporal infor-
mation [27], [28], [29] are usually leveraged in formulating
the pretext task. However, designing these pretext tasks and
gathering requisite data can be inefficient, especially for training
large-scale models. Generative-based learning, exemplified by
masked image modeling (MIM), circumvents this challenge
by enhancing network representation through reconstructing
masked regions. Many RS studies leverage MIM initialization
for its efficiency [30], [31], [32], [33], [34], [35], [36], [37].
Recent approaches have attempted to combine contrastive-based
and generative-based learning techniques to pretrain more pow-
erful models [38], [39], [40].

However, existing research usually resorts to a single data
source. For instance, the authors in [5] and [30] utilized RGB
aerial images from MillionAID, while the authors in [31] and
[34] utilized Sentinel-2 multispectral images. Despite recent
advancements in RS multimodal foundation models [41], [42],
[43], [44], which are beginning to incorporate more diverse
imagery, such as SAR, they still remain within the realm of
in-domain data, namely pretraining with RS data. However,
restricting pretraining solely to RS images may limit model
capabilities since understanding RS objects requires specialized
knowledge [12]. Can RS foundation models benefit from in-
corporating information from other data sources? [5] suggests
that traditional ImageNet pretraining aids in learning universal
representations, whereas pretraining on RS data is particularly
beneficial for recognizing RS-related categories. To address this,
Huang et al. [45] developed a teacher–student framework that in-
tegrates ImageNet supervised pretraining and RS unsupervised
pretraining simultaneously, while Mendieta et al. [46] employed
representations from ImageNet to enhance the learning process
of MIM for improving RS foundation models. In addition, the
authors in [12] and [11] sequentially pretrain models on natural
images and RS images using contrastive SSL or MAE [23],
respectively, as illustrated in Fig. 1(a).

While previous RS foundation models have shown remark-
able performance across various RS tasks, a persistent chal-
lenge remains: the task discrepancy between pretraining and

Fig. 1. Comparison of various pretraining methods. (a) The authors in [11]
and [12] sequentially pretrains a foundational model on both natural and RS
images. (b) Wang et al. [13] employs a two-stage pretraining strategy to ini-
tialize task-specific decoders ( e.g., segmentation) using existing foundational
models pretrained on either natural or RS images, preserving the decoder during
subsequent finetuning. We extend (b) by incorporating multitask decoders to
enhance the representation capacity of the foundational model, facilitating easy
transferability across diverse tasks during finetuning, as depicted in (c).

finetuning, which often dictates the effectiveness of migrat-
ing pretrained models to downstream tasks. Research has
highlighted the impact of representation granularity mismatch
between pretraining and finetuning tasks [5]. For instance,
models pretrained on scene-level classification tasks perform
favorably when finetuned on similar tasks but falter on pixel-
level segmentation tasks. To address this issue, recent work [13]
has explored the segmentation pretraining (SEP) paradigm, as
shown in Fig. 1(b), yielding improved finetuning results. This
suggests that enhancing model representation capability through
additional pretraining, particularly on tasks demanding finer
representation granularity, such as pixel-level segmentation,
could be beneficial. Motivated by these findings, we ask: can
we significantly enhance RS foundation models’ representation
ability through additional pretraining incorporating multiple
tasks with diverse representation granularity? To this end, we
investigate the multitask pretraining (MTP) paradigm to bridge
the gap between upstream and downstream tasks and obtain
more powerful RS foundation models, as shown in Fig. 1(c).
Importantly, MTP is designed to be applied to any existing
pretraining models, irrespective of whether trained on RS or
natural images.

Implementing MTP to bridge upstream-downstream task dis-
crepancy necessitates the utilization of a similar or the same
pretraining task as the downstream one, such as SEP for RS
segmentation tasks [13]. Therefore, to cover the common task
types in typical downstream applications, MTP tasks should
encompass dense prediction tasks, such as object detection
and semantic segmentation. Hence, MTP requires a pretraining
dataset with labels for these tasks, ideally, each sample en-
compassing all task labels. However, existing RS datasets often
lack annotations for segmentation and rotated object detection.
Fortunately, recent work [13] introduces Segment Anything
Model annotated Remote Sensing Segmentation (SAMRS), a
large-scale segmentation dataset derived from existing RS ro-
tated object detection datasets via the segment anything model
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(SAM) [47]. SAMRS provides both detection and segmentation
labels, facilitating MTP across RS semantic segmentation, in-
stance segmentation, and rotated object detection tasks. Utilizing
SAMRS, we demonstrate MTP’s efficacy in enhancing RS foun-
dation models, including both convolutional neural networks
(CNNs) and vision transformer foundation models with over
300 million parameters.

The main contributions of this article are three-fold as follows.
1) We address the discrepancy between upstream pretraining

and downstream finetuning tasks by introducing a stage-
wise MTP approach to enhance the RS foundation model.

2) We utilize MTP to pretrain representative CNN and vi-
sion transformer foundation models with over 300 M pa-
rameters on the SAMRS dataset, encompassing semantic
segmentation, instance segmentation, and rotated object
detection tasks in a unified framework.

3) Extensive experiments demonstrate that MTP signifi-
cantly advances the representation capability of RS foun-
dation models, delivering remarkable performance across
various RS downstream tasks such as scene classification,
semantic segmentation, object detection, and change de-
tection.

The rest of this article is organized as follows. Section II
introduces the existing works related to supervised, multistage,
and multitask RS pretraining. Section III presents the details of
MTP, where the used SAMRS dataset and vision foundation
models are also briefly introduced. Experimental results and
corresponding analyses are depicted in Section IV. Finally,
Section V concludes this article.

II. RELATED WORK

A. Supervised Pretraining for RS Foundation Model

Before the rise of SSL-based RS foundation models, re-
searchers have already delved into pretraining deep models
using labeled RS datasets. Tong et al. [48] pretrained an
ImageNet-pretrained ResNet-50 [49] using images from the
GID dataset [48] to derive pseudolabels for precise land-cover
classification on high-resolution RS images. Recognizing the
challenge of labeling large-scale RS images, others sought al-
ternatives to RS annotation datasets. For instance, Li et al. [50]
utilized the global land cover product Globeland30 [51] as
supervision for RS representation learning. They adopted a
mean-teacher framework to mitigate random noise stemming
from inconsistencies in imaging time and resolution between RS
images and geographical products. Moreover, they incorporated
additional geographical supervisions, such as change degree and
spatial aggregation, to regularize the pretraining process [52].
Long et al. [10] subsequently demonstrated the effectiveness of
various CNN models (including AlexNet [53], VGG-16 [54],
GoogleNet [55], ResNet-101 [49], and DenseNet-121/169 [56])
pretrained from scratch on the MillionAID dataset. Their mod-
els outperformed traditional ImageNet pretrained models in
scene classification tasks, indicating the potential of leveraging
large-scale RS datasets for pretraining. Later, Wang et al. [5]
pretrained typical CNN models and vision transformer models,

including Swin-T [57] and ViTAEv2 [58], all randomly ini-
tialized, on the MillionAID. They conducted a comprehensive
empirical study comparing finetuning performance using dif-
ferent pretraining strategies (MillionAID vs. ImageNet) across
four types of RS downstream tasks: scene recognition, semantic
segmentation, rotated object detection, and change detection.
Their results demonstrated the superiority of vision transformer
models over CNNs on RS scenes and validated the feasibility of
constructing RS foundation models via supervised pretraining
on large-scale RS datasets. Bastani et al. [59] introduced the
larger Satlas dataset for RS supervised pretraining. Very recently,
SAMRS [13] introduced supervised semantic SEP to enhance
model performance on the segmentation task. Inspired by Wang
et al. [13], this article revisits the supervised learning approach
by integrating it with existing pretraining strategies, such as
ImageNet pretraining, and exploring MTP to construct distinct
RS foundation models.

B. Multistage Pretraining for RS Foundation Model

Given the domain gap between RS images and natural im-
ages or between various RS modalities, it is reasonable to
conduct multiple rounds of pretraining. Gururangan et al. [60]
demonstrated that unsupervised pretraining on in-domain or
task-specific data enhances model performance in natural lan-
guage processing (NLP) tasks. Building on this insight, Zhang
et al. [11] devised a sequential pretraining approach, initially on
ImageNet followed by the target RS dataset, employing MIM
for pretraining. Similarly, Tao et al. [12] proposed a strategy
inspired by human-like learning, first performing contrastive
SSL on natural images, then freezing shallow layer weights
and conducting SSL on an RS dataset. Contrary to Gururangan
et al.’s [60] work, Dery et al. [61] introduced stronger end-task-
aware training for NLP tasks by integrating auxiliary data and
end-task objectives into the learning process. Similarly, Wang
et al. [13] introduced additional SEP using common segmenters
(e.g., UperNet [62] and Mask2Former [63]) and the SAMRS
dataset, enhancing model accuracy in RS segmentation tasks.
Notably, our objective diverges from Wang et al.’s [13] work in
applying stagewise pretraining. While Wang et al. [13] retains
the segmentor after SEP to enhance segmentation performance,
we aim to enhance the representation capability of RS foundation
models via stagewise pretraining, preserving only the backbone
network after pretraining to facilitate transfer to diverse RS
downstream tasks.

C. MTP for RS Foundation Model

Applying multitask learning to enhance the RS foundation
model is an intuitive idea. Li et al. [64] introduced multitask SSL
representation learning, combining image inpainting, transform
prediction, and contrast learning to boost semantic segmenta-
tion performance in RS images. However, it was limited to
finetuning a pretrained model solely on semantic segmentation
tasks, constrained by model size and pretraining dataset capac-
ity. RSCoTr [65] constructs a multitask learning framework to
simultaneously achieve classification, segmentation, and detec-
tion tasks. Unfortunately, the network can only be optimized
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by one task in each iteration during training due to lacking
of multilabel datasets. The aspiration to consolidate multiple
tasks into a single model has been a longstanding pursuit [15],
[17], [42], [58], [66], [67], [68], [69], [70], [71], [72], [73],
[74], [75], aligning with the original goals of the foundation
model exploration. Bastani et al. [59] devised a multitask model
by integrating Swin-Base [57] with seven heads from existing
networks (e.g., Faster-RCNN [76] and UNet [77]), facilitating
training on the multitask annotated Satlas dataset. However,
their approach lacked incorporation of typical RS rotated ob-
ject tasks, focusing solely on transferring the model to RS
classification datasets. Inspired by these pioneering efforts, this
article constructs a unified MTP framework that supports mul-
tiple datasets, where the sample in each dataset simultaneously
possesses multitask labels, which are uniformly processed in
a data loader pipeline. During the training, the model can be
simultaneously optimized through multiple tasks when in each
iteration. Based on this framework, we pretrain RS foundation
models with over 300 M parameters, encompassing semantic
segmentation, instance segmentation, and rotated object detec-
tion tasks using the SAMRS dataset. After pretraining, the back-
bone network is further finetuned on various RS downstream
tasks.

III. MULTITASK PRETRAINING

We utilize semantic segmentation, instance segmentation, and
rotated object detection annotations from the SAMRS dataset
for MTP. Advanced CNN and vision transformer models serve
as the backbone networks to thoroughly investigate MTP. This
section begins with an overview of the SAMRS dataset, followed
by a brief introduction to the selected models. Subsequently, we
present the MTP framework and implementation details.

A. SAMRS Dataset

SAMRS dataset [13] is a large-scale RS segmentation
database, comprising 105 090 images and 1 668 241 instances
from three datasets: SOTA, SIOR, and FAST. These datasets are
derived from existing large-scale RS object detection datasets,
namely DOTA-V2.0 [78], DIOR [79], and FAIR1M-2.0 [80],
through transforming the bounding box annotations using the
SAM [47]. SAMRS inherits the categories directly from the
original detection datasets, resulting in a capacity exceeding that
of most existing RS segmentation datasets by more than tenfold
(e.g., ISPRS Potsdam2 and LoveDA [81]). The image sizes for
the three sets are 1024 × 1024, 800 × 800, and 600 × 600,
respectively. Despite being primarily intended for large-scale
pretraining exploration rather than benchmarking due to its auto-
matically generated labels, SAMRS naturally supports instance
segmentation and object detection. This versatility extends its
utility to investigating large-scale MTP.

2[Online]. Available: https://www.isprs.org/education/benchmarks/
UrbanSemLab/2d-sem-labelpotsdam.aspx

B. Backbone Network

In this research, we adopt Rotated Varied-Size window
Attention (RVSA) [30] and InternImage [82] as the representa-
tive vision transformer-based and CNN-based foundation mod-
els.

1) RVSA: This model is specially designed for RS images.
Considering the various orientations of RS objects caused by
the bird’s-eye view, this model extends the varied-size window
attention in Zhang et al.’s [83] work by additionally introducing
a learnable angle factor, offering windows that can adaptively
zoom, translate, and rotate.

Specifically, given an input feature X ∈ RC×H×W (C,H,W
are the number of channel, height, and width in X), which is
evenly divided into different windows, where the feature of each
window can be formulated as Xw ∈ RC×s×s (s is the window
size), obtaining H

s × W
s windows totally. Then, three linear

layers are used to generate the query feature, and initial key and
value features, which are separately represented as Qw, Kw,
and Vw. We use Xw to predict the variations of the window

Sw, Ow,Θw = Linear(LeakyReLU(GAP(Xw))) (1)

where GAP is global average pooling, Sw = {sx, sy ∈ R1} and
Ow = {ox, oy ∈ R1} are the scale factor and offset in the X- and
Y-axis, while Θw = {θ ∈ R1} is the rotation angle. Taking an
example using the corner points of a window[

xl/r

yl/r

]
=

[
xc

yc

]
+

[
xr
l/r

yrl/r

]
(2)

where xl, yl, xr, yr are the coordinates of the upper left and
lower right corners of the initial window, xc, yc are the coordi-
nates of the window center point. Therefore, xr

l , y
r
l , x

r
r, y

r
r are

the distances between the corner points and the center in hori-
zontal and vertical directions. The transformation of the window
can be implemented using the obtained scaling, translation, and
rotation factors[

x′
l/r

y′l/r

]
=

[
xc

yc

]
+

[
ox
oy

]

+

[
cos θ sin θ
− sin θ cos θ

] [
xr
l/r · sx

yrl/r · sy

]
(3)

x′
l, y

′
l, x

′
r, y

′
r are the coordinates of the corner points of the

transformed window. Then, new key and value feature Kw′

and Vw′ can be sampled from the obtained window, and the
self-attention (SA) can be operated by the following formula:

Fw = SA(Qw,Kw′ ,Vw′) = softmax

(
QwK

T
w′√

C ′

)
Vw′ . (4)

In this formula, Fw ∈ Rs2×C ′
is the feature output by one

SA of one window, C = hC ′, where h is the number of SA.
The shape of final output features in RVSA can be recovered
by concatenating the features from different SAs in the channel
dimension and merging features from different windows along
the spatial dimension.

https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-labelpotsdam.aspx
https://www.isprs.org/education/benchmarks/UrbanSemLab/2d-sem-labelpotsdam.aspx
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Fig. 2. Overall pipeline of MTP. Inside MTP, the feature pyramid from the backbone network is fed into multiple decoders for various tasks, including rotated
object detection, instance segmentation, and semantic segmentation. These tasks are supervised by diverse labels in the SAMRS dataset. Following MTP, the
pretrained model is transferred to different RS tasks for finetuning.

TABLE I
DETAILED CONFIGURATIONS OF DIFFERENT RVSA MODELS

RVSA is used to replace the original multihead full attention
in original vision transformers. To achieve a tradeoff between
accuracy and efficiency, following Li et al.’s [84] work, only
the full attention in 1/4 depth layer is preserved. In the original
paper [30], RVSA is separately used on ViT [85] and ViTAE [72],
whereas ViTAE is a CNN-Transformer hybrid model. In this
article, we employ the ViT-based version to investigate the
impact of MTP on a plain vision transformer. In addition, the
RVSA model in the original paper is limited to the base version
of vision transformers, i.e., ViT-B + RVSA. To pretrain larger
models, we further apply RVSA to ViT-Large, obtaining ViT-L
+ RVSA. Their detailed configurations are presented in Table I.

2) InternImage: This model integrates the strengths of recent
vision transformers and large kernels into CNNs via dynamic
sparse kernels, combining long-range context capture, adap-
tive spatial information aggregation, and efficient computation.
It extends deformable convolution [86], [87] with depthwise
and multihead mechanisms and incorporates modern trans-
former designs, such as layer normalization [88], feedforward

networks [89], and GELU activation [90]. We evaluate its perfor-
mance on diverse RS downstream tasks, showcasing its potential
beyond its initial design for natural images. Furthermore, this
choice facilitates investigating the impact of MTP on CNN-
based models. Here, we employ the XL version to match the
model size of ViT-L + RVSA.

C. Multitask Pretraining

We examine MTP using three models: ViT-B + RVSA, ViT-
L + RVSA, and InternImage-XL. As the original RVSA re-
search [30] focuses solely on the base version, we independently
pretrain ViT-L on MillionAID similar to ViT-B + RVSA. These
pretrained weights will be publicly accessible. Fig. 2 shows
the overall pipeline of MTP. Technically, we further train the
pretrained model on the SAMRS dataset, encompassing various
annotations, such as semantic segmentation, instance segmenta-
tion, and rotated object detection tasks concurrently. We employ
well-established classical networks, including UperNet [62],
Mask-RCNN [91], and Oriented-RCNN [92], as segmentors
or detectors. These networks utilize feature pyramids and are
supervised with different labels. To illustrate this process, we
depict the label transformation when generating SAMRS. Ini-
tially, rotated detection boxes (R-Det. boxes) are transformed
into binary masks using SAM, serving as instance-level mask an-
notations. Subsequently, the minimum circumscribed horizontal
rectangle of the binary mask is derived as instance-level box
annotations, with categories inherited from rotated boxes. These
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TABLE II
TRAINING COSTS OF IMPLEMENTING MTP USING DIFFERENT MODELS

instance-level annotations are utilized for instance segmentation.
Semantic segmentation labels are then obtained by assigning
rotated box categories to the masks. The losses stemming from
these labels are Lrod, Lins, and Lsem, employed for the respective
tasks. Notably, the instance segmentation loss comprises two
components: the box annotation loss Lins_b and the binary mask
loss Lins_m. The overall loss for MTP is

L = Lrod + Lins_b + Lins_m + Lsem. (5)

Since SAMRS contains three sets, we have

L =

3∑
i=1

Li
rod + Li

ins_b + Li
ins_m + Li

sem (6)

where i indexes the three subsets: SOTA, SIOR, and FAST.
The other settings of the loss follow the original papers [62],
[91], [92]. In practice, we implement the overall framework
based on MMSegmentation,3 MMDetection,4 and MMRotate.5

However, all these packages only support a single task. So we
integrate the key components from these packages, such as the
dataloader, model structure, loss function, and metric calculator,
into a unified pipeline, to realize the MTP.

D. Implementation Details

The pretraining is conducted on NVIDIA V100 GPUs. All
models are trained for 80 K iterations using the AdamW opti-
mizer [93]. The base learning rates of RVSA and InternImage
are 0.00006 and 0.00002, respectively, with a weight decay of
0.05. We adopt an iterationwise cosine annealing scheduler to
adjust the learning rate. The layer decay rates of RVSA models
and InternImage are 0.9 and 0.94, following original papers [30],
[82]. For ViT-B + RVSA, the batch size and input image size
are set to 48 and 224, which are doubled for training larger
models. Table II lists the training costs of implementing MTP
using different models.

IV. FINETUNING EXPERIMENTS

In this section, we thoroughly evaluate MTP’s performance
by finetuning pretrained models across four classical RS tasks:
scene classification, object detection, semantic segmentation,
and change detection, where the most representative and widely
used benchmarks in the literature for different downstream
tasks are employed for comparison. We also investigate the
characteristics of MTP-based RS foundation models, examining
the relationships between adopted datasets, hyperparameters,
and finetuning performances, measuring accuracy variations

3[Online]. Available: https://github.com/open-mmlab/mmsegmentation
4[Online]. Available: https://github.com/open-mmlab/mmdetection
5[Online]. Available: https://github.com/open-mmlab/mmrotate

TABLE III
OA(%) OF DIFFERENT MODEL PRETRAINING STRATEGIES ON EUROSAT

with reduced training samples, and visualizing the predicted
results.

A. Scene Classification

We first evaluate the pretrained models on the scene classifi-
cation task. It does not need any extra decoder and can reflect
the overall representation capability of the pretrained model.

1) Dataset: We adopt two classical datasets: EuroSAT [94]
and RESISC-45 [95] for scene classification.

1) EuroSAT: This dataset is captured by Sentinel-2 from
Europe for land use and land cover classification. It has
ten classes, a total of 27 000 images with a resolution
of 64 × 64. We adopt the public train/val split [96] by
following [29] and[31].

2) RESISC-45: This is a commonly-used dataset. It con-
tains 31 500 images in a size of 256 × 256 across 45
categories, where each category possesses 700 samples.
Following [5], [30], [32], [42], and [45], we randomly
select 20% of the data for training and 80% of the data for
testing.

2) Implementation Details: In the implementation, all mod-
els are trained with a batch size of 64. The training epochs for
EuroSAT and RESISC-45 are set to 100 and 200, respectively.
The AdamW optimizer is used, where the base learning rate for
RVSA and InterImage are 0.00006 and 0.00002, respectively,
with a weight decay of 0.05. In the first five epochs, we adopt a
linear warming-up strategy, where the initial learning rate is set
to 0.000001. Then, the learning rate is controlled by the cosine
annealing scheduler. The layer decay rates are 0.9 and 0.94 for
RVSA and InternImage models, respectively. For classification,
a global pooling layer and a linear head are used after the
backbone network. To avoid overfitting, we adopt multiple data
augmentations, including random resized cropping, random flip-
ping, RandAugment [97], and random erasing. Since the original
image size of EuroSAT is too small, before feeding into the
network, we resize the image to 224× 224. The overall accuracy
(OA) is used as the evaluation criterion. All experiments are
implemented by MMPretrain.6

3) Ablation Study of Stagewise Pretraining: As aforemen-
tioned, MTP is implemented based on existing pretraining
models since it tries to address the task-level discrepancy. So
an interesting question naturally arises: what about conducting
MTP from scratch? To this end, we experiment by exploring
different pretraining strategies using ViT-B + RVSA on
EuroSAT, and the results are shown in Table III. It can be
seen that, without using pretrained weights, MTP cannot
achieve the ideal performance and even performs worse than

6[Online]. Available: https://github.com/open-mmlab/mmpretrain

https://github.com/open-mmlab/mmsegmentation
https://github.com/open-mmlab/mmdetection
https://github.com/open-mmlab/mmrotate
https://github.com/open-mmlab/mmpretrain
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TABLE IV
OA (%) OF FINETUNING DIFFERENT PRETRAINED MODELS ON EUROSAT AND

RESISC-45 DATASETS

MAE pretraining. These results demonstrate the importance of
performing stagewise pretraining.

4) Finetuning Results and Analyses: Table IV shows the
finetuning results. It can be seen that MTP can improve existing
foundation models on scene classification tasks, especially for
the RVSA series. It helps the model achieve state-of-the-art
performances compared to other pretraining models that have
comparable sizes. With the help of MTP, on the RESISC-45
dataset, InterImage-XL surpasses Swin-L-based SkySense [42],
which is pretrained on a tremendously large dataset that has more
than 20 million multimodal RS image triplets involving RGB
high-resolution images and multitemporal multispectral and
SAR sequences. MTP boosts the performance of InterImage-
XL close to the Swin-H-based SkySense (96.27 versus 96.32),
which has more parameters. We also notice the accuracy of
IMP-InterImage-XL is decreased marginally in EuroSAT after
MTP. We will investigate this phenomenon later. Nevertheless,
the obtained model still outperforms SpectralGPT+, which is
pretrained with 1 million multispectral images, where each sam-
ple can be regarded as containing multiple groups of trispectral
images, similar to RGB channels.

B. Horizontal Object Detection

After completing the scene-level task of recognition, we focus
on the object-level tasks, i.e., horizontal and rotated object
detection. Here, we first consider the horizontal detection task.

1) Dataset: We use two public datasets Xview [101] and
DIOR [79] for evaluation. The details are as follows.

1) Xview: This dataset is from the DIUx xView 2018 De-
tection Challenge [101]. It collects Worldview-3 satellite
imagery beyond 1400 km2 in a ground resolution of 0.3m,
involving 60 classes over 1 million object instances. Due
to only the 846 images (beyond 2000 × 2000 pixels) in
the training set are available, following [27] and [37], we
randomly select 700 images as the training set and 146
images for testing.

2) DIOR: This dataset consists of 23 463 images with res-
olutions ranging from 0.5 to 30 m, including 192 472 in-
stances. The images have been clipped to 800× 800 for the
convenience of model training and testing. It involves 20
common object categories. The training set, validation set,
and testing set contain 5862, 5863, and 11 738 samples,
respectively. In this article, we jointly use the training set
and the validation set to finetune models and conduct the
evaluation on the testing set.

2) Implementation Details: For Xview, we train a Reti-
naNet [102] by following [27] and [37] with the pretrained model
for 12 epochs, with a batch size of 8. While Faster-RCNN [76]
is adopted when finetuning on DIOR with the same settings
except for a batch size of 4. We also apply a linear warming-up
strategy with an initial learning rate of 0.000001 at the beginning
of 500 iterations. We keep the same layer decay rates as the
scene classification task. The basic learning rate, optimizer, and
scheduler are the same as Wang et al.’s [30] work. Before input
into the network, the large images are uniformly clipped to 416×
416 pixels. The data augmentation only includes random flipping
with a probability of 0.5. We use MMDetection to implement
the finetuning, where the AP50 is used as the evaluation metric
for the comparison of different models.

3) Finetuning Results and Analyses: The experimental re-
sults are shown in Table V. We can find that the MTP en-
hances the performance of all pretrained models, especially
for ViT-L + RVSA. On Xview, the performance of MAE
pretrained ViT-L + RVSA is not as good as InterImage-XL,
even worse than the smaller ResNet-50-based models. After
utilizing MTP, the performance of ViT-L + RVSA has been
greatly improved. It outperforms CtxMIM [37] and achieves
the best. On DIOR, with the help of MTP, ViT-B + RVSA has
outperformed all existing methods, including the recently distin-
guished method SkySense [42] that employs a larger model. In
addition, MTP also greatly enhances ViT-L + RVSA, setting
a new state-of-the-art. Here, we emphasize that despite the
pretraining dataset SAMRS includes the samples of DIOR [79].
To avoid unfair comparison, following Wang et al.’s [13] work,
the images of the testing set in DIOR have not been used
for MTP. This rule also applies to other datasets that form
the SAMRS, involving DOTA-V1.0 [106], DOTA-V2.0 [78],
DIOR-R [107], and FAIR1M-2.0 [80]. It should also be noted
that the RVSA model is initially proposed by considering the
diverse orientations of RS objects, which are related to the
rotated object detection task. Nevertheless, the models after
MTP demonstrate an excellent capability in detecting horizontal
boxes.
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TABLE V
AP50 (%) OF FINETUNING DIFFERENT PRETRAINED MODELS WITH

RETINANET ON XVIEW AND DIOR DATASETS

C. Rotated Object Detection

We then investigate the impact of MTP on the rotated object
detection task, which is a typical RS task distinguished from
natural scene object detection because of special overhead views.
This is also one of the motivations to implement MTP using
SAMRS.

1) Dataset: We adopt the four most commonly used datasets
for this task: DIOR-R [107], FAIR1M-2.0 [80], DOTA-
V1.0 [106], and DOTA-V2.0 [78].

1) DIOR-R: This is the extended oriented bounding box
version of DIOR [79]. It has 23 463 images and 192 158
instances over 20 classes. Each image in this dataset has
been cropped into 800 × 800. Following [30], [35], and
[42], we merge the original training and validation sets for
training, while the testing set is used for evaluation.

2) FAIR1M-2.0: This is a large-scale RS benchmark dataset,
including more than 40 000 images and 1 million instances
for fine-grained object detection. It collects samples with
resolutions ranging from 0.3 to 0.8 m and image sizes
ranging from 1000 × 1000 to 10 000 × 10 000 from
various sensors and platforms. It contains 37 subcategories
belonging to five classes: ship, vehicle, airplane, court, and
road. In this article, we use the more challenging version
of 2.0, which additionally incorporates the 2021 Gaofen
Challenge dataset. The training and validation sets are
together adopted for training.

3) DOTA-V1.0: This is the most popular dataset for RS
rotated object detection. It comprises 2806 images span-
ning from 800 × 800 to 4000 × 4000 ×, where 188 282
instances from 15 typical categories are presented. We
adopt classical train/test split, that is, the original training
and validation sets are together for training, while the
original testing set is used for evaluation.

4) DOTA-V2.0: The is the enhanced version of DOTA V1.0.
By additionally collecting larger images, adding new cat-
egories, and annotating tiny instances, it finally contains
11 268 images, 1 793 658 instances, and 18 categories. We
use the combination of training and validation sets for
training, while the test-dev set is used for evaluation.

2) Implementation Details: Since the large-size image is not
suitable for training, we first perform data cropping. For DOTA-
V2.0, we adopt single-scale training and testing by following Xu
et al.’s [130] work, where the images are cropped to patches in
size of 1024× 1024 with an overlap of 200. For DOTA-V1.0 and
FAIR1M-2.0, we implement the multiscale training and testing,
i.e., the original images are scaled with three ratios: (0.5, 1.0,
1.5). Then, the DOTA-V1.0 images are cropped to 1024 × 1024
patches but with an overlap of 500, while FAIR1M-2.0 images
adopt a patch size of 800 and an overlap of 400. The batch sizes
are set to 4, 16, 4, and 4 for the DIOR-R, FAIR1M, DOTA-V1.0,
and DOTA-V2.0 datasets, respectively. The other settings during
training are the same as horizontal object detection. We adopt the
Oriented-RCNN network implemented in MMRotate. During
training, input data is augmented by random flipping and random
rotation. The mean average precision (mAP) is adopted as the
evaluation metric.

3) Finetuning Results and Analyses: Table VI shows the fine-
tuning results. Except for DIOR-R, we find the MTP pretrained
models cannot always demonstrate obvious advantages com-
pared to their counterparts. Since the volumes of FAIR1M-2.0,
DOTA-V1.0, and DOTA-V2.0 are much larger than DIOR-R,
we speculate that after long-time finetuning, the benefit of MTP
becomes diminished. We will further explore this issue in later
sections. Nevertheless, owing to the excellent structure, RVSA-L
outperforms the ViT-G-based foundation model [35] with over
1 billion parameters on DOTA-V2.0. Compared to the powerful
SkySense model [42], our models achieve better performance
on the DIOR-R. While on FAIR1M-2.0, except SkySense, our
models surpass all other methods by a large margin. Generally,
our models have comparable representation capability as Sky-
Sense, although it has over 600 M parameters and utilizes 20
million images for pretraining. We also notice the performances
of our models still have gaps compared with the current advanced
method STD [135] on DOTA-V1.0. It may be attributed to the
adopted classical detector Oriented-RCNN [92], which limits
the detection performance.

D. Semantic Segmentation

We further consider finetuning the pretrained models on the
finer pixel-level tasks, e.g., the semantic segmentation task. It is
one of the most important RS applications for the extraction and
recognition of RS objects and land covers.
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TABLE VI
MAP (%) OF FINETUNING DIFFERENT PRETRAINED MODELS ON THE DIOR-R, FAIR1M-2.0, DOTA-V1.0, AND DOTA-V2.0 DATASETS

1) Dataset: We separately take into account both single-
class geospatial target extraction and multiclass surface element
perception through two RS semantic segmentation datasets:
SpaceNetv1 [137] and LoveDA [81]. The details are as follows.

1) SpaceNetv1: This dataset is provided by SpaceNet Chal-
lenge [137] for extracting building footprints. It is made
up of the DigitalGlobe WorldView-2 satellite imagery
with a ground sample distance of 0.5m photoed during
2011–2014 over Rio de Janeiro. It covers about 2544
km2, including 382 534 building instances. Since only
the 6940 images in the original training set are available,
following [31] and [37], we randomly split these images
into two parts, where the first part containing 5000 images

being used as the training set, and another part will be used
for testing.

2) LoveDA: This is a challenging dataset involving both ur-
ban and rural scenes. It collects 0.3 m spaceborne imagery
from Google Earth, where the images were obtained in
July 2016, covering 536.15 km2 of Nanjing, Changzhou,
and Wuhan. It has 5987 images in size of 1024 × 1024,
involving seven types of common land covers. We merge
the official training and validation sets for training and
conduct evaluation using the official testing set.

2) Implementation Details: Except that the models are
trained with 80 K iterations with a batch size of 8, and
the warming up stage in the parameter scheduler lasts 1500
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TABLE VII
MIOU (%) OF FINETUNING DIFFERENT PRETRAINED MODELS WITH UPERNET

ON THE SPACENETV1 AND LOVEDA DATASETS

iterations, most of the optimization settings are similar to the
scene classification section. We use the UperNet [62] as the
segmentation framework, where the input image sizes during
training are 384 × 384 and 512 × 512 for SpaceNetv1 and
LoveDA, respectively, through random scaling and cropping.
We also adopt random flipping for data augmentation. All exper-
iments are implemented by MMSegmentation, where the mean
value of the intersection over union (mIOU) is adopted as the
evaluation metric.

3) Finetuning Results and Analyses: The results presented
in Table VII demonstrate that MTP is also useful for enhancing
the models’ performance on semantic segmentation tasks. Com-
pared to SpaceNetv1, the improvements on the classical land
cover classification dataset: LoveDA, are even more significant.
As a result, on this dataset, our models surpass all previous
methods except the BillionFM [35], which utilizes a model
with over 1 billion parameters. On the SpaceNetv1, our models
set new state-of-the-art accuracy. Nonetheless, probably due
to overfitting, the results of SpaceNetv1 also indicate that the
performances on simple extraction tasks do not improve as in-
creasing model capacity. We have also noticed the performance
of ViT-L + RVSA on SpaceNetv1 is decreased when adopting
MTP. We will conduct further exploration in later sections.

E. Change Detection

Finally, we pay attention to the change detection task, which
can be regarded as a special type of segmentation by extracting
the changed area between the RS images taken at different

times in the same location. Here, we mainly consider the most
representative bitemporal change detection.

1) Dataset: We conduct the finetuning on the datasets
of different scales: Onera satellite change detection dataset
(OSCD) [190], Wuhan University Building Change Detection
Dataset (WHU) [191], the learning, vision, and remote sensing
change detection dataset (LEVIR) [192], and the season-varying
change detection dataset (SVCD) [193], which is also called
“CDD.”

1) OSCD: This is a small-scale dataset. It contains 24 pairs
of Sentinel-2 multispectral images involving all bands
and in an average size of 600 × 600. These images are
obtained during 2015–2018 to record urban changes. We
follow the same train/val split as Daudt et al.’s [190] work,
where training and validation sets include 14 and 10 pairs,
respectively.

2) WHU: This dataset is used for detecting building changes
in a single view. It contains two large-scale images with a
ground resolution of 0.3 m and in size of 32 507 × 15 354.
They are collected in 2012 and 2016, containing 12 796
and 16 077 instances, respectively. Since there is no official
data split, the 70%, 10%, and 20% patches of the cropped
images are randomly selected as training, validation, and
testing sets as suggested by Zhao et al. [186].

3) LEVIR: This dataset contains 637 pairs of 1024 × 1024
images with a spatial resolution of 0.5m. These images are
acquired between 2002 and 2018 from 20 different regions
in Texas, USA. It contains 31 333 change instances. We
adopt the official split, where training, validation, and
testing sets contain 445, 64, and 128 pairs, respectively.

4) SVCD/CDD: This dataset focuses on seasonal variations.
It initially contains 11 pairs of images obtained from
Google Earth in different seasons, with spatial resolutions
ranging from 0.03 to 1m. It now has been cropped to 16 000
pairs of patches in size of 256 × 256 by Ji et al.’s [191]
work. The 10 000/3000/3000 pairs are separately used as
training, validation, and testing sets.

2) Implementation Details: Following [29] and [42], we crop
the OSCD images to 96 × 96 patches with no overlapping, ob-
taining 827/385 pairs for training/testing. However, the training
is difficult to converge due to the extremely small input size,
thus we rescale the image to 224 × 224 before inputting it into
the network. For the WHU dataset, we separately have 5334,
762, and 1524 images for training, validation, and testing, after
cropping the image to patches in size of 256 × 256 without
overlaps. A similar operation is conducted for LEVIR, generat-
ing training, validation, and testing sets containing 7120, 1024,
and 2048 samples, respectively. The training epochs on OSCD,
WHU, LEVIR, and CDD are separately set to 100, 200, 150,
and 200. The batch size of all datasets is uniformly set to 32.
We adopt the same optimization strategy as the scene classi-
fication task. To fully leverage the feature pyramid produced
by foundation models, we adopt a UNet [77] to process the
differences between different temporal features. The training is
implemented through Open-CD,7 where the data augmentation
includes random rotation, random flipping, random exchange

7[Online]. Available: https://github.com/likyoo/open-cd

https://github.com/likyoo/open-cd
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TABLE VIII
F1 SCORE (%) OF FINETUNING DIFFERENT PRETRAINED MODELS WITH UNET ON THE OSCD, WHU, LEVIR, AND SVCD/CDD DATASETS

temporal, and color jitters that randomly adjust brightness, con-
trast, hue, and saturation of images. The F1 score of the changed
class is adopted as the evaluation metric.

3) Finetuning Results and Analyses: To comprehensively
assess the finetuning performance of pretrained models, we
conduct the comparison by collecting existing advanced change
detection methods, as shown in Table VIII. It should be noted
that, since the original WHU dataset does not provide an
official train/test split, various split strategies are adopted in
different methods. Therefore, on this dataset, we only list the
accuracy value of the methods that employ the same settings

as us or training with more images. It can be seen that MTP
effectively improves the performances of pretrained models on
these datasets. Especially, our models perform well on three
large-scale datasets: WHU, LEVIR, and SVCD/CDD. Even if
adopting simple UNet [77] and the RVSA model of the base
version, the finetuning performances have been competitive and
surpassed many advanced approaches. When utilizing larger
models, the performance can be further boosted. Finally, they
achieve the best accuracy on the WHU and LEVIR datasets by
outperforming almost all existing methods, including the recent
SkySense [42] that builds a larger change detection network with
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TABLE IX
DETAILED HYPERPARAMETER SETTINGS IN FINETUNING PRETRAINED MODELS ON DIFFERENT DATASETS

over 600 M parameters, ChangeCLIP [188] that uses CLIP [17]
to obtain additional knowledge from language modalities, and
the newly proposed adapter BAN [189], where the ability of ex-
isting foundation model and change detection approaches can be
exploited. Different from large-scale scenes, on the small-scale
dataset OSCD, although MTP is still useful, the performances
of our models have relatively large gaps compared to current
works. We attribute the reason to data discrepancy and image
size. Specifically, our models are pretrained on high-resolution
RS images, which are similar to another three change detection
datasets. However OSCD images are captured by multispec-
tral sensors with lower resolutions. In addition, OSCD images
are only cropped to 96 × 96 during training, which may be
unsuitable for feature extraction, especially for nonhierarchical
vision transformers. In the comparison methods, MATTER [24],
SkySense [42], and GFM [46] use pyramid feature networks.
Among them, MATTER and SkySense adopt Sentinel-2 mul-
tispectral image in pretraining, while GFM crops the OSCD
image to a larger size, i.e., 192 × 192. In contrast, a relatively
small image size (128 × 128) restricts the performances of ViT
in SpectralGPT [34]. These results suggest that it is necessary
to conduct further explorations to enhance the model finetuning
performance on out-of-domain datasets with small volumes and
input sizes.

F. Further Investigations and Analyses

Besides evaluating the performances of pretrained models,
we conduct further investigations to obtain deeper insights into
the characteristics of MTP, including the influence factors of
MTP, finetuning with fewer samples, and parameter reusing of
decoders.

1) Influence Factors of MTP: Up to now, to comprehensively
assess the impact of MTP, we have finetuned three types of
foundation models, on five RS downstream tasks, involving
a total of fourteen datasets. From the finetuning results (see
Tables IV–VIII) we find that MTP improves these foundation
models in most cases. But there are still some datasets, on which
MTP does not perform well as expected, i.e., not all accuracies
of three models are increased. To figure out the reason, we
explore the influence factors related to the performance of MTP,
as shown in Table IX. Intuitively, we suppose MTP may be
affected by the characteristics of finetuning datasets and consider
a series of variables, including “training image number” (NTrIm),
“training epoch number” (NTrEp), “Batch Size” (SB), and “train-
ing image size” (STrIm). The “training image number” means:
for each dataset, the number of images used for training. For
example, the NTrIm of DIOR is 11 725 since the original training
and validation sets are together used for training. While “training
image size” represents the image size after data augmentation
and preprocessing. Theoretically, we have

NToIt =
NTrIm ·NTrEp

SB
(7)

where NToIt means the number of training iterations for model
parameter updating under the minibatch optimization strategy.
In Table IX, we observe that as NToIt increases, there is a
tendency for MTP to have a negative impact on finetuning per-
formance for a given task. However, this trend is not universally
applicable, as evidenced by varying results among pretrained
models in segmentation tasks, all with the same NToIt. In addi-
tion, we account for dataset difficulty by considering the number
of classes NC and use the “average iteration per class” (AIC) to
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represent each dataset as

AIC =
NToIt

NC
. (8)

Surprisingly, Table IX reveals a notable trend: a relatively
large AIC corresponds to a negative impact of MTP for the
same task. This suggests that, over extended finetuning periods,
MTP models lose their advantage compared to conventional
pretrained models. We propose a bold conjecture regarding this
internal mechanism: the benefits of MTP diminish gradually due
to excessive network optimization. This discovery prompts a
reconsideration of the tradeoff between longer training times for
accuracy gains and the benefits of pretraining when finetuning
models. However, determining the critical point of AIC remains
challenging due to limited experimentation, necessitating further
investigation. It is important to note that this phenomenon differs
from overfitting, as our models continue to outperform existing
methods at this stage.

In addition to training duration, we consider dataset capacity,
introducing the index “average pixels per class” APC , which can
be formulated by

APC =
NToSa · STrIm

NC
(9)

where NToSa = NTrIm ·NTrEp denotes the quantity of images
processed during training. Consequently, APC approximately
reflects the data volume encountered during finetuning. Table IX
reveals that APC exhibits similar trends to AIC , yet the corre-
lation between APC and MTP performance is less discernible
compared to AIC , possibly due to the presence of redundant
pixels in RS images.

2) Fewer Sample Finetuning: The efficacy of SEP has been
demonstrated in scenarios with limited samples [13]. While
MTP represents an extension of SEP, it is reasonable to an-
ticipate that MTP could excel in analogous contexts. Moreover,
as noted earlier, MTP primarily addresses the discrepancy be-
tween upstream pretraining and downstream finetuning tasks.
This encourages us to consider that fewer downstream training
samples might better showcase MTP’s efficacy in facilitating
efficient transfer from pretraining models. To explore this,
we finetune InterImage-XL on EuroSAT and ViT-L + RVSA
on SpaceNetv1, respectively, progressively reducing training
samples. The results are depicted in Fig. 3. Initially, MTP’s
performance is slightly inferior to its counterparts when the
training sample proportion is 100%, as illustrated in Tables IV
and VII. However, as training samples decrease, the performance
curves converge until the training sample proportion is 10%,
at which point MTP’s impact is minimal. Subsequent reduc-
tions in training samples lead to decreased accuracies across
all models, yet the distances between the curves progressively
widen. This trend suggests that the benefits of MTP are be-
ginning to emerge, becoming increasingly significant. These
findings validate our hypotheses, underscoring the benefit of
MTP for finetuning foundational models on limited training
samples.

Fig. 3. Finetuning accuracy of different pretrained models with varying train-
ing sample sizes. (a) InternImage-XL on EuroSAT. (b) ViT-L + RVSA on
SpaceNetv1.

TABLE X
ACCURACIES OF FINETUNING VIT-B + RVSA ON VARIOUS DATASETS WITH

AND WITHOUT REUSING PRETRAINED DECODER WEIGHTS

3) Decoder Parameter Reusing: MTP utilizes task-specific
decoders for segmentation and detection tasks. Hence, reusing
these decoder weights during finetuning seems a natural choice,
and we conduct experiments accordingly using a backbone of
ViT-B + RVSA. Specifically, aside from the backbone network,
we also initialize the corresponding decoders with pretrained
weights during finetuning. However, only semantic segmenta-
tion and rotated detection decoders are eligible for reuse, as per
the segmentor or detector used in existing methods. Therefore,
we performed the experiment on the corresponding six datasets,
and the results have been presented in Table X. Among four
detection datasets, decoder parameter reusing (DPR) proves
beneficial in three scenarios, which are actually employed in
performing MTP. Nevertheless, on another classical dataset
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Fig. 4. Visualization of the horizontal object detection predictions of MAE + MTP pretrained ViT-L + RVSA. The images of the first and the second rows are
from Xview and DIOR testing sets, respectively.

Fig. 5. Visualization of the rotated object detection predictions of MAE + MTP pretrained ViT-L + RVSA. The images in four rows are from the testing sets of
DIOR-R, FAIR1M-2.0, DOTA-V1.0, and DOTA-V2.0, respectively.

Fig. 6. Visualization of the semantic segmentation predictions of MAE + MTP pretrained ViT-L + RVSA. The samples of the first and the second rows are from
SpaceNetv1 and LoveDA testing sets, respectively.
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Fig. 7. Visualization of the bitemporal change detection predictions of MAE + MTP pretrained ViT-L + RVSA. The samples in four rows are from the testing
sets of OSCD, WHU, LEVIR, and SVCD/CDD, respectively. (a), (b), (e), and (f) depict bitemporal images of different samples, with (c) and (g) representing
corresponding ground truth labels. Our prediction maps are shown at (d) and (h).

DOTA-V1.0, which can be regarded as a subset of DOTA-
V2.0, DPR is insufficient useful. On segmentation tasks, the
performances of DPR models are decreased. We speculate
that besides the domain differences compared to pretraining
datasets, current models may be additionally affected by the
segmentation labels in pretraining. This is because decoders
typically encode task-specific information. However, given that
the SAMRS dataset used for pretraining involves annotations
generated by SAM [47], they inevitably contain errors, jeopar-
dizing the quality of pretrained decoders. Finally, based on the
above-mentioned considerations, we conclude that after MTP,
the performances of reusing pretrained decoder parameters in
finetuning may depend on the similarity between pretraining and
finetuning scenarios and the quality of pretraining annotations.

G. Visualization

To further show the efficacy of MTP in enhancing RS foun-
dation models, we present the predictions of MAE + MTP
pretrained ViT-L + RVSA across detection, segmentation, and
change detection tasks in Figs. 4–7. For detection, we demon-
strate results across diverse scenes using horizontal or rotated
bounding boxes. For segmentation, we display the original im-
ages alongside segmentation maps, highlighting building ex-
traction masks in red. For change detection, we provide the
bi-temporal images, ground truths, and predicted change maps.
Our model accurately detects RS objects, extracts buildings,
classifies land cover categories, and characterizes changes across
diverse types. In summary, MTP enables the construction of an

RS foundation model with over 300 parameters, which achieves
superior representation capability for various downstream tasks.

V. CONCLUSION

In this article, we introduce the MTP approach for building
RS foundation models. MTP utilizes a shared encoder and
task-specific decoder architecture to effectively pretrain CNNs
and vision transformer backbones on three tasks: semantic seg-
mentation, instance segmentation, and rotated object detection
in a unified supervised learning framework. We evaluate MTP
by examining the finetuning accuracy of these pretrained models
on 14 datasets covering various downstream RS tasks. Our re-
sults demonstrate the competitive performance of these models
compared to existing methods, even with larger models. Further
experiments indicate that MTP excels in low-data finetuning
scenarios but may offer diminishing returns with prolonged
finetuning on large-scale datasets. We hope this research encour-
ages further exploration of RS foundation models, especially
in resource-constrained settings. In addition, we anticipate the
widespread application of these models across diverse fields
of RS image interpretation due to their strong representation
capabilities.

APPENDIX

We present detailed finetuning accuracies of the three models,
i.e., ViT-B + RVSA, ViT-L + RVSA, and InternImage-XL, on
the DIOR, DIOR-R, FAIR1M-2.0, DOTA-V1.0, DOTA-V2.0,
and LoveDA datasets in Tables XI–XVI.
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TABLE XI
DETAILED ACCURACIES OF DIFFERENT MODELS ON DIOR DATASET

TABLE XII
DETAILED ACCURACIES OF DIFFERENT MODELS ON DIOR-R DATASET
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TABLE XIII
DETAILED ACCURACIES OF DIFFERENT MODELS ON FAIR1M-2.0 DATASET

TABLE XIV
DETAILED ACCURACIES OF DIFFERENT MODELS ON DOTA-V1 DATASET
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TABLE XV
DETAILED ACCURACIES OF DIFFERENT MODELS ON DOTA-V2 DATASET

TABLE XVI
DETAILED ACCURACIES OF DIFFERENT MODELS ON LOVEDA DATASET
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