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A Novel Sequence Modeling Network for Multiview
SAR Target Recognition

Wei Zhu

Abstract—Synthetic aperture radar (SAR) is an active remote
sensing system that utilizes radar to produce images of the Earth’s
surface. Due to its ability to operate under diverse weather condi-
tions and throughout the day, SAR has gained significant attention
in both civilian and military domains. The utilization of multiview
SAR sequences enables the acquisition of a more comprehensive
range of information than a single image, and facilitates adaptation
to diverse scenarios, thereby enhancing the ability to accommodate
variations in samples. Drawing inspiration from the Transformer
architecture, this article proposes a multiview SAR target recog-
nition method, called Res-Xformer, that not only deconstructs
the deep learning procedure into single image feature extraction
and sequence feature fusion but also divides the task of sequence
feature extraction into sequence information fusion and feature
channel fusion. Different from the Transformers focusing on the
attention mechanism to fuse sequence information, alternative fu-
sion methods such as multilayer perceptron (MLP) and pooling
are also proposed in this study. Experimental results using the
Moving and Stationary Target Acquisition and Recognition dataset
demonstrate that the proposed method performs well across var-
ious operational conditions, with MLP and pooling as sequence
token mixers yielding comparable performance to the attention
mechanism.

Index Terms—Multiview, Res-Xformer, sequence feature fusion,
sequence modeling architecture, synthetic aperture radar (SAR),
token mixer.

1. INTRODUCTION

YNTHETIC aperture radar (SAR) [1] is an active re-

mote sensing system that utilizes radar to generate high-
resolution images of the Earth’s surface. SAR operates by
emitting microwave pulses toward the ground and subsequently
capturing the reflected signals. By measuring the time de-
lay between signal transmission and reception, SAR can cal-
culate the distance between the microwave sensors and the
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Earth’s surface, ultimately producing a range image. SAR im-
ages represent an estimate of the radar backscatter on the
ground.

As SAR has attracted increasing attention for its ability to
perform in all weather conditions and all day long, not to mention
its increasingly high resolution, it has a variety of civilian and
military applications [2].

Simultaneously, due to the distinct imaging mechanism of
SAR images compared to optical images familiar to the human
visual system, interpreting SAR imagery requires specialized
knowledge in areas such as SAR imaging mechanisms and mi-
crowave scattering characteristics. Consequently, SAR interpre-
tation poses challenges that demand expertise. As a fundamental
issue within the SAR image interpretation system, automatic
target recognition (ATR) for SAR holds direct implications
for practical applications such as ground object identification
and battlefield situational awareness, playing a crucial role in
national defense [3].

In recent years, with the development of high-performance
computing and the geometric growth of data scale, deep learn-
ing methods for automatic feature extraction have played an
important role in lots of fields [5]. In particular, computer vision
has witnessed remarkable progress, attaining state-of-the-art
outcomes in image denoising, semantic segmentation, classi-
fication, and other related fields.

The deep learning methods based on convolutional neural
networks (CNNs) have also exhibited significant advantages
in SAR target detection and recognition tasks. One aspect of
the research focuses on addressing the limited number of SAR
image annotation samples [26], [27], [28], [29]. On another
front, researchers focus on designing network structures suitable
for SAR ATR problems. CNNs [6] have revolutionized computer
vision by enabling accurate recognition and classification of
images by machines. CNN-based networks are increasingly
popular in SAR recognition due to their ability to effectively
extract features from images. For example, Chen et al. [11]
proposed a fully convolutional network for accomplishing target
recognition in SAR images, and Geng et al. [12] designed a
deep supervised contractive CNN for segmenting SAR images
against speckle interference. Under standard operating con-
ditions (SOCs), these methods demonstrate excellent results.
However, their performances decline sharply when confronted
with disparities between training and testing samples, thereby
limiting their practical applicability. To address this limitation,
it is necessary to incorporate additional information, such as
multiview SAR sequences into deep networks.
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The SAR target is highly sensitive to the change of the
observation azimuth, and the multiview SAR image sequence
of the same observation target contains the scattered echoes
from multiple angles, providing more information than the
single-view image [1]. It can capture detailed information about
targets from different perspectives while minimizing errors due
to occlusion or shadowing effects. It exhibits superior resistance
to the sensitivity of SAR images and enables more precise char-
acterization of target scattering properties, thereby enhancing
algorithmic accuracy and robustness.

The neural networks utilized for target recognition using
multiaspect SAR image sequences primarily consist of recurrent
neural networks (RNNs) [9], such as long short-term memory
(LSTM) [10], and CNNs. For multiview SAR processing, the
authors in [19], [20], [21], and [22] used a CNN-based network
to extract features, and then combined sequence information.
As to the use of RNNs, the authors in [23], [24], and [25] fused
sequence information by implementing recurrent units.

Designed to process sequence problems, the Transformer [31]
is a powerful deep learning model architecture that has made
significant contributions to the field of natural language pro-
cessing. By decomposing single image into smaller patches and
processing them individually, a Vision Transformer (ViT) [34]
revolutionarily applies the Transformer in the field of computer
vision.

The application of Transformers in SAR domains remains
limited. Li et al. [42] employed a basic transformer for mul-
tiaspect SAR recognition and utilized attention to integrate
information within the sequence. Wang et al. [41] introduced
convolution into a patch embedding procedure inspired by ViT
to address few-shot learning challenges in SAR ATR tasks. The
Transformer model exhibits its potential for multiview SAR
recognition tasks. It is highly likely that the Transformers will
assume an even more crucial role in SAR image interpretation.

These initial applications of the basic Transformer primarily
focus on using an attention mechanism to integrate information
while neglecting the impact of other components such as its
structure, which is crucial for optimizing its performance in SAR
recognition tasks from our perspective. Motivated by previous
studies on the role of the attention mechanism in Transformers
for natural image classification [35], [36], [37], [38], [39], [40],
we aim to explore the application of the Transformer architecture
for image sequence in the field of multiview SAR recognition.

In this article, we propose a novel target recognition method
for multiview SAR image sequence, which is the first time to
systematically analyze the validity of the Transformer structure
in a multiview SAR area. The main contributions of this article
are as follows.

1) We propose a Res-Xformer method that combines con-
volution and the sequence modeling structure to solve
multiview SAR recognition. The method uses ResNet [43]
to embed single images into feature tokens and Xformer,
inspired by the Transformer structure, to fuse the sequence
of feature tokens, resulting in an output type for the input
sample. “X” represents the changeable token mixer.

2) Instead of treating the network as a black box, the pro-
posed approach deconstructs the deep learning processes
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SAR images of target T62 acquired at varying azimuth angles.

of multiview SAR into single image feature extraction
and sequence feature fusion. The sequence feature fusion
module is further divided into sequence token fusion (STF)
and feature channel fusion (FCF), presenting a framework
for multiview SAR recognition.

3) In contrast to existing applications of the Transformer in
SAR ATR focusing on attention mechanisms, this article
focuses on an aggregation procedure of sequence features
by proposing a framework for sequence signal feature
extraction.

4) The concept of class token for sequence information repre-
sentation is innovatively proposed to duel with multiview
SAR ATR, corresponding to the structure of sequence
feature fusion network.

This article is organized as follows. The proposed Res-
Xformer network for multiview SAR ATR is described in detail
in Section II. Section III presents the formation of the dataset
for the proposed method. The experiments and result discussions
are given in Section IV, while taking into account various factors
such as network parameters. Finally, Section V concludes this
article.

II. PROPOSED METHOD

The proposed Res-Xformer method for multiview SAR image
classification is introduced in this section. The overall frame-
work of the method is presented, along with the architecture and
details of each module.

A. Multiview SAR Target Recognition Framework

Multiview SAR is essentially a combination of multiple SAR
images taken from different azimuth angles. Multiview SAR can
provide a richer set of information for target feature analysis and
classification than single-view SAR.

However, working with multiaspect images also presents
challenges due to their sensitivity to aspect angles. As shown
in Fig. 1, the backscatter imaging mechanism employed in SAR
makes extracted features highly dependent on the acquisition
geometry [4]. To effectively process multiview SAR image
sequences, two dimensions need to be considered.

First, feature information needs to be extracted from each indi-
vidual SAR image within the sequence. Second, these extracted
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Fig. 2.

features must be fused together coherently across the entire
sequence to create a comprehensive representation. This fusion
process aims at integrating complementary information from
different views while minimizing redundancy or conflicting
details.

As depicted in Fig. 2, we propose the Res-Xformer for mul-
tiview target recognition, which consists of three stages: input
embedding, sequence feature extraction, and classification.

Initially, the images in the input multiview sequence are inde-
pendently embedded into feature vectors using ResNet. In addi-
tion, a learnable embedding called class token is concatenated
with these vectors. Drawing inspiration from ViT, the proposed
sequence feature extraction network (SFEN) for multiview SAR
employs N stacked feature extraction layers. Each layer incorpo-
rates two primary blocks, referred to as Xformer, for the fusion of
sequence information. The term “X” denotes its replicable token
mixer design. During the classification stage, a straightforward
classifier consisting of MLP and softmax takes the state of
the class token as a representation for decision-making of the
multiview SAR sequence.

The subsequent sections provide a comprehensive depiction
of the specific modules employed in the proposed method.

B. Input Embedding

The initial step of the proposed methodology involves con-
verting the image sequence into feature tokens, thereby enabling
subsequent stages to effectively extract and integrate both se-
quence tokens and feature channels for accurate classification.

1) Main Flow: Sequence models, such as LSTM and the
Transformer, typically require one-dimensional (1-D) features
as input for each time step. Similarly, in our proposed method,
the SFEN also requires a 1-D vector for each image as input dur-
ing the sequence encoder stage to conveniently process sequence

Overall framework of the proposed Res-Xformer for multiview SAR ATR.

information. This component aims to reduce the dimensionality
of the input by transforming the 2-D images in the sequence into
1-D feature tokens, as illustrated in Fig. 3.

The input sample consists of a sequence of images, where
eachimage is considered as a token with the same shape (H, W).
Since our focus is on the amplitude images, the gray image can be
represented as x!,, € R¥*W j =1 ... L, where L denotes the
length of the sequence sample. After passing through the image
encoders, each image token’s embedding output x; € R%m has
a dimensionality of depp.

To incorporate classification information, we prepend a learn-
able embedding x! as the class token and add positional encod-
ings PE to retain positional information. This procedure can be
described as follows:

Xemp = Concat(x?, InputEncoder(X,,,)) + PE
= [x?,x%, .. ,Xﬂ + PE.

D

where X, € REXH>*W withimage shape (H, W) and sequence
length L, and xf; € Réem with embedding dimension dgpp.

Consequently, the output embedding sequence Xy, has a
dimensionality of (L 4+ 1) X demp. The class token is a learnable
embedding to serve as the representation of the sequence. The
positional encodings are to retain order information.

2) Single Image Encoding: The encoder in the input embed-
ding stage plays a crucial role in reducing dimensionality and
extracting features from individual images within the multiview
SAR sequence. This enables the sequence to be seamlessly trans-
mitted to the subsequent stage for sequence feature extraction.
This procedure can be described as follows:

2

where xi, € RE>W i =1 ... L with image shape (H, W)
and sequence length L, and x} € R%m with embedding dimen-
sion demp.

x; = InputEncoder(x’,,).
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TABLE I
ARCHITECTURES OF INPUT IMAGE ENCODER BASED ON RESNETI18 [43]

Layer Name Layer Detail
3%x3,64,/2
Conv 1 3x3max pool,/2
Conv 2 {3><3, 64}><2
3x3,64
Comv 3 {3 x 3,128} -
3x3,128
Con 4 [3 x 3,256} -
3x3,256
Conv 5 |:3><3,512}<2
3x3,512
Out Average Pool

In this proposed method, ResNetl18 [43] is chosen as the
backbone for input embedding instead of deeper versions since
SAR image datasets typically have much smaller scales com-
pared to natural images. Given that the input SAR images are
grayscale and relatively small in size, the first convolution layer
of ResNetl18 is modified to employ a 3x3 convolution kernel
with one input channel. Furthermore, we remove the classifica-
tion head from ResNet18 as the encoder solely provides feature
vectors rather than classification results. For more details on the
encoder module, refer to Table I, where 3 x364 means the size
of the convolution filters in the layer is 3x3 and the number of
filters is 64, and /2 means stride is 2.

The class token, denoted as x,? € R%m_jgalearnable variable
with identical dimensionality to that of the image embedding
and is transmitted into positional encoding along with the image
embedding tokens for further processing.

3) Positional Encoding: In the subsequent stage, the se-
quence fusion module should be capable of processing the
relative positions of tokens within the input sequence.

Hence, positional encodings are incorporated into the image
token embeddings within a sequence at the input layer of the
SFEN to establish a sense of sequential order among tokens. The
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positional encodings possess equivalent dimensionality demp
as token embeddings and can either be learnable or assigned
[26]. In [27], both approaches for positional encoding were
examined and yielded nearly identical outcomes. We choose the
fixed version of sinusoidal encoding functions in our proposed
method. These functions encompass sine and cosine components
due to their inherent resilience toward variations in sequence
length, which would facilitate our future research. The encoding
functions are defined as follows:

{ PE s 0;) = sin (pos/100002i/demh)

PE g ars1) = cos (pos/100002/4)

where pos is the position in the sequence and i denotes the index
in the embedding vector’s dimension.

In the absence of information regarding the sequential re-
lationships of the input tokens, the network treats them as
an unordered collection, disregarding their inherent order. By
incorporating 1-D positional encoding for each token, the inputs
are perceived as a sequence, enabling the model to leverage the
order information.

C. Sequence Feature Extraction Network

The features of tokens derived from the input sequence are
propagated to this stage of Res-Xformer for subsequent feature
extraction and fusion at the sequence level. The output dimen-
sions remain consistent with the input.

1) Main Structure: The SFEN is presented in Fig. 4, provid-
ing an overview of its functionality. After incorporating the 1-D
embedding of each token within the sequence as input, which
is generated by the preceding stage of encoding, the output
of SFEN maintains identical dimensions to that of the input.
Moreover, each token encompasses integrated information from
other tokens throughout the process. The procedure can be
written as

Xp =[x}, xf, ..., xE]

— SFEN(X ) = [FCF (STF (Xo)]¥ ¥

where X, € RUEFDxdm and X, € RUEFD*dens with se-
quence length L and embedding dimension depp.

The proposed SFEN comprises N repeated layers for encoding
sequence features, each of which consists of two primary blocks:
the STF block and the FCF block. These blocks are dedicated
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to integrating sequence information and fusing feature channels
for individual tokens, respectively. Consequently, following this
stage, the class token in the input embeddings can assimilate
information from all tokens within the sequence.

2) Sequence Token Fusion: The STF block, as depicted in
Fig. 4, takes the sequence image embeddings as input and
comprises three components: layer normalization (Norm), token
information mixer, and a skip connection to facilitate training
and prevent the occurrence of vanishing gradients. The proce-
dure can be described as follows:

XSTF =STF (Xemb) (5)
= TokenMixer (Norm (X,,.,)) + Xemp
where X, € RUEAD e X (0 RUEAD) xdems,

The token mixer should possess the capability of infiltration
and assimilation, implying its ability to incorporate feature
information from all other tokens and integrate it into the current
token. While the basic Transformer employs an attention mech-
anism as its token mixer, we propose that in the SAR ATR field,
the Transformer can be effective due to its structure, thereby
operations with the capability of aggregating information have
the potential to function as a token mixer. In our SFEN, mul-
tilayer perceptron (MLP) and pooling are considered as viable
alternatives for token mixing.

a) Attention mechanism: The attention mechanism [32],

[33] is a fundamental concept that enables the model to selec-
tively focus on specific aspects of input data, exerting a more
pronounced influence on the output. It computes the correlations
between the sequence tokens and generates attention weights,
subsequently utilized for integrating information within the se-
quence.

For an input sequence X € , the scaled dot-product
attention used in the Transformer can be written as

RLXD

{A( ) = Attention(Q, K, V) = softmax (?/Ij— ) v
[Qa Ka V} - XWQKV
(6)

Sequence Feature Fusion

i Token Mixer Channel

' Attention Y Mixer 4
—1 5 o _>- >

g MLP MLP

‘.‘ Pooling

where A € RE*4v and Wy € RP*(2ditdo); queries Q and
keys K have the feature dimension dj, and values V have the
feature dimension d,,

The particular attention used in the Transformer is the multi-
head self-attention (MSA), which projects inputs into multiple
queries, keys, and values & times. This approach facilitates the
model’s ability to capture diverse relationships among tokens
within the sequence and acquire more comprehensive represen-
tations. Mathematically, the multihead attention can be formu-
lated as follows:

MultiHead(Q, K, V) = Concat(heady, . . . , head, )W©®
head; = A; (X) = Attention(Q, K, V)
(N

where WO € R"@*P are the projection matrices.
The procedure of MSA can be written as

MultiHead(Q, K, V)

{TokeanxerMsA (Xp) = (®)

X,, = Norm (X,,.;)

where X, € RUEAD*den and dy, = d,, = demp /h-

b) MLP: The MLP is a type of artificial neural net-
work that consists of multiple layers of interconnected nodes.
Each node receives inputs from the previous layer, performs a
weighted sum of these inputs, and generates an output through
an activation function. This allows the network to learn complex
patterns and relationships in input samples.

The MLP utilized as the token mixer comprises of two fully
connected (FC) layers and activation functions. The formulation
for the token mixer based on MLP can be expressed as follows:

{TokenMixerMLp X, =0 (0 (XZW?ALH) Wg’ILPt) '
X,, = Norm (X,,;)

©)
and
o(+) is the activation function; dyLp,
is the dimension of the inner layer, which is usually larger than
the input dimension (L+1).

where X, € RUEAD)xdemo

WMLP: ¢ R(L+1)xdwir,
Wg’ILPt c Rémp, x(L+1).
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The two-layer design facilitates interdimensional expansion.
Due to the FC layer, each node in the MLP has a receptive
field encompassing all tokens, enabling the MLP to effectively
amalgamate information from all tokens and function as a token
mixer.

c¢) Pooling: Pooling can be seen as a concatenation method
within its reception field, where it combines neighboring tokens
to form higher level representations. This helps capture local
dependencies and patterns within the sequence. However, due
to the nature of pooling operations, it cannot consider all the
individual tokens’ relationships simultaneously.

To address this limitation, we introduce an additional FC layer
without an activation function before the pooling module. This
layer serves as a bridge between the pooled representations and
the original input tokens by connecting each token with every
other token through weighted connections.

By adding this FC layer, we enable the pooling module to
have access to information from all input tokens directly. The
weights assigned to these connections allow for capturing global
dependencies and long-range relationships among different parts
of the sequence.

The pooling method utilized in this article is the average pool.
The token mixer based on pooling can be expressed as

TokenMixerpooling (Xr) = Pool; (XZ)T
Pool; (X) = AvgPool (XWF*l) 4 X
X, = Norm (X,,;,)

where X, € R(E+1)xdem and Whool: ¢ R (LA (L41),

3) Feature Channel Fusion: Similar to the STF block, the
FCF block also utilizes layer normalization and a residual short-
cut. However, instead of a token information mixer, it employs
a feature channel mixer.

The procedure for the FCF block can be expressed as follows:

X = FCF (Xgpp)
= ChannelMixer (Norm (X¢rp)) + Xgrp

(10)

an

where X € RUEAHD*deno and X, € R+ * ey,

The channel mixer is defined by a channel MLP in most
transformer-like models, which consists of two FC layers and
an activation function. The MLP-based block can be written as

ChannelMizeryip (X) = o (XWI;/ILPC) WL

(12)
X = Norm (Xg¢rp)

where W)Pe ¢ Rdemoxduiee and WHPe ¢ Rewre <demo; ()
is the activation function and GELU [44] is applied here. dyip,
is the dimension of the inner layer, usually larger than the input.

D. Classification Mechanism

By incorporating both sequence information and channel
features, the SFEN introduces a specialized token that is con-
catenated to the sequence embeddings, effectively representing
the comprehensive information of the entire sequence as a
singular entity, which serves as the class token within the ViT
architecture.

The primary function of the class token is to facilitate clas-
sification tasks by aggregating information from all tokens,
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enabling the classifier to generate the prediction for the entire
sequence. Concatenated at the beginning of image embedding
tokens with equal dimensions as other tokens, it serves as part
of the input to SFEN. As these input tokens traverse through
SFEN’s sequence encoding layers, information from image
tokens is incorporated into the class token. Ultimately, this
class token encapsulates comprehensive sequence information
and proceeds through a classifier for final decision-making.
In addition, it should be noted that positional encoding also
encompasses the class token.

The classifier comprises an MLP layer followed by a softmax
function, where MLP converts class tokens into predicted classes
and softmax further transforms predictions into probability es-
timates. The procedure can be written as

{out = OLASS(x}) = softmas (MLPuws (x}) |

MLPys =0 (Norm (x%) WllvlLPclaSS) WIQVILPdass

where Wll\’ILPcmss c ]RdcmbXdMLPclass7 Wg/ILPc]mss c RdMch]asstC"
x% € RYdew and o(-) is the activation function. dyip,,. is
the dimension of the MLP layer, usually larger than the number
of target classes NC.

The class token plays an important role in comprehend-
ing multiview SAR sequences through Transformer-based net-
works, serving as a condensed representation that summarizes
the entire sequence and enables the model to grasp context
and relationships between different images in the sequence
rather than treating them individually, thus facilitating holistic
reasoning about the sequence.

III. RECOGNITION PROBLEM FORMATION

This section first outlines the methodology for forming multi-
view SAR sequences. Subsequently, the recognition tasks for ex-
periments are constructed under different operating conditions.

A. Multiview SAR Sequence Formation

These multiple-view SAR images provide more information
for recognition than single-view, which can be extremely useful
in various applications, such as object detection, tracking, and
classification. By analyzing these images, important attributes
can be extracted to represent the target.

In the practical context of multiview SAR signal acquisition,
the SAR platform captures multiple images of a ground tar-
get from various depression and aspect angles, facilitating a
comprehensive understanding of its features and characteristics.
The geometric model of multiview SAR ATR is illustrated in
Fig. 5(a), where sequential view images are acquired at a given
view interval 6 with k > 1 views to obtain diverse SAR images
from different aspect angles.

The multiview SAR image sequences, generated following
the procedure outlined in [17], are utilized as input for the
proposed method in this article, as depicted in Fig. 5(b). For
X = [x},x2,...,xL] asamultiview SAR sequence with class

label S and sequence length L, the corresponding aspect angles
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(b)

Multiview SAR image sequence acquisition. (a) Schematic diagram of the multiview SAR imaging of a ground target. (b) Image sequence construction.

BTR70

A32 A63

(b)

Fig. 6.

are ¢(x!), which should follow the rules in the following:

P (xs) < (xF) <o
> o> (xb
o (x5) = (x3)| < 0.

The raw SAR images are organized into sequence samples for
the purpose of training and evaluating the proposed Res-Xformer
in this study. These multiview SAR images contain richer infor-
mation for recognition compared to single-view ones, so impor-
tant attributes can be extracted to represent the ground target,
which enables better discrimination between similar objects.

< (XSL) or ¢ (xi) > (x?)
(14)

B. Dataset

Provided by Sandia National Laboratory, the Moving and Sta-
tionary Target Acquisition and Recognition (MSTAR) dataset

Optical image of the targets in the MSTAR dataset and corresponding SAR image. (a) Ten targets. (b) T72 variances.

[7] is utilized for the purpose of conducting recognition exper-
iments in this study. Many studies have been conducted based
on this particular dataset. As such, it has become a benchmark
for evaluating the performance of different ATR algorithms and
techniques.

The images in this dataset have a resolution of 0.3 m x 0.3 m,
captured within the X-band frequency range and employing HH
polarization mode. As depicted in Fig. 6, this dataset comprises
image data related to ten types of ground vehicles at different
depression angles and azimuth angles. It includes vehicle target
images captured at each azimuth angle ranging from 0° to 360°,
making it suitable for establishing a multiview image target
recognition dataset.

This dataset also provides diverse vehicle types and vary-
ing operating conditions. The composition of raw data in the
MSTAR dataset is presented in Tables II and III, providing
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TABLE II
MAIN CONTENT OF THE MSTAR DATASET

Target Serial Depression
Type No. 15° 17° 30°  45°
BTR60 195 256
2S1 274 299 288 303
BRDM2 274 298 287 303
D7 274 299
T62 273 299
ZIL131 274 299
ZSU23/4 274 299 288 303
BTR70 196 233
9563 195 233
BMP2 9566 196 232
C21 196 233
132 196 232
T72 812 195 231
S7 191 228
TABLE III

VARIANTS OF T72 IN THE MSTAR DATASET

. Depression
Serial No.

15° 17°
A04 274 299
AO05 274 299
A07 274 299
Al0 271 296
A32 274 298
A62 274 299
A63 274 299
A64 274 299

detailed information on the quantity of raw SAR images for
each target categorized by different depression angles and type
serials.

By establishing diverse experimental datasets under varying
operating conditions and sample sizes, we can investigate the
influence of factors such as depression angles, target serials,
and training set size on the proposed method.

C. Classification Mission Construct

The MSTAR dataset consists of two categories for acquisition
conditions: SOCs and extended operating conditions (EOC).
SOC includes images from the training set and testing set
that have the same target type and similar imaging configu-
ration. On the other hand, EOC data in the training set and
testing set display greater dissimilarity and pose increased
challenges for identification. EOC can further be divided into
configuration-variant (EOC-C), depression-variant (EOC-D), as
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well as version-variant EOC (EOC-V), which can offer different
challenges for testing image recognition algorithms.

The types of targets and their quantities in the dataset under
SOC condition are presented in Table IV. Samples for training
and testing within the same category share a common model
with slight variations in depression angles, which represents the
most comparable working conditions between training and test
data.

In comparison to SOC, EOC presents a more realistic test-
ing environment due to the larger data difference between the
training set and test set, not only in depression angle but also
in image configuration and target type. As such, EOC more
closely approximates real-world testing conditions. In EOC-C,
the primary difference between the training and test sets lies
in the configuration type of images. As given in Table V, the
main training set comprises BTR70, BRDM2, BMP2, and T72
targets, while the test set includes two different configurations
of BMP2 and T72 targets.

Meanwhile, EOC-V aims to assess the performance of the
method for different versions of a singular target category, with
its primary training dataset being identical to that of EOC-C,
while its test dataset comprises distinct versions of the T72.
Table V presents the distributions of the training and test sets
under EOC-V conditions.

Unlike other operating conditions, EOC-D is associated with
larger variations in depression angle. There are four types of
targets in EOC-D, as given in Table VI. The training set has a
depression angle of 17°, while the test set has a depression angle
of 30°.

IV. EXPERIMENTS AND RESULTS

To validate the efficacy of the proposed approach, we first
specify the network architecture setup. Subsequently, the perfor-
mance of the proposed method is evaluated through experiments
conducted under diverse conditions. Finally, we compare the
performance of the proposed method with other methods.

A. Experimental Setup

1) Environment: All the experiments are conducted on a
laptop with an 11th Gen Intel(R) Core (TM) i9-11950H at
2.60 GHz, and a NVIDIA RTX A4000 Laptop GPU.

The proposed method in this study is implemented using the
deep learning framework PyTorch (version 1.12.1), along with
the Torchvision library (version 0.13.1), under Python 3.10.
The attention mechanism in SFEN is implemented with the
help of the vision_transformer.Encoder module in the torchvi-
sion.models. The Xformer with alternative token mixer MLP
and Pooling is implemented with the help of layers in timm
0.4 library. ResNet18 is implemented with the help of torchvi-
sion.models.ResNet. To accommodate SAR grayscale images,
modifications are made to ResNetl8 by rewriting its first layer
Conv. Since ResNet serves solely for feature extraction pur-
poses, the subsequent dimension transformation and recognition
components are excluded.

2) Dataset Setup: We generate experimental sequences in
accordance with the methodology outlined in Section III-A,
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TABLE IV
DATASET FOR EXPERIMENT UNDER SOC

No. of Samples

Target  Serial

Train(17°) Test(15°)
Type No. ; ; ; - - .
Image 2-View 3-View 4-View Image 2-View 3-View 4-View
BTR60 256 509 760 1009 195 387 577 765
281 299 595 889 1181 274 545 814 1081
BRDM2 298 593 886 1177 274 545 814 1081
D7 299 595 889 1181 274 545 814 1081
T62 299 595 889 1181 273 543 811 1077
ZIL131 299 595 &89 1181 274 545 814 1081
ZSU23/4 299 595 889 1181 274 545 814 1081
BTR70 233 463 691 917 196 389 580 769
BMP2 9563 233 463 691 917 195 387 577 765
T72 132 232 461 688 913 196 389 580 769
TABLE V
DATASET FOR EXPERIMENT UNDER EOC-C AND EOC-V
Operating . Target  Serial No. of Samples
Condition Depression Type No. Image 2-View 3-View 4-View

BTR70 256 463 691 917

EOCC " 1rain  BRDM2 299 593 886 1177

EOSé_V (17°) BMP2 9563 233 463 691 917

T72 132 232 461 1241 913
9566 428 850 1268 1682

C21 429 852 1271 1686

812 426 846 1262 1674

ECC 5T<>eit7°) A4 573 1140 1703 2262
’ T72 A05 573 1140 1703 2262

A07 573 1140 1703 2262

A10 567 1128 1685 2238

S7 419 832 1241 1646

A32 572 1138 1700 2258

BMP2

EOCV S’Teig) T72  A62 573 1140 1703 2262
A63 573 1140 1703 2262
A64 573 1140 1703 2262
TABLE VI
DATASET FOR EXPERIMENT UNDER EOC-D
Depression Target  Serial No. .Of Sampl‘es -
Type No. Image 2-View 3-View 4-View

2S1 299 595 889 1181

Train BRDM2 298 593 889 1177

17°) ZSU23/4 299 593 886 1181

T72 132 232 461 688 913

281 288 573 856 1137

Test BRDM2 287 571 856 1137

(30°) ZSU23/4 288 573 856 1137

T72 A64 288 573 853 1133
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with a sequence length of L = 4. Within each sequence, the
maximum interval between images’ view angles is restricted
to 45°. Moreover, the images within the same sequence are
arranged in ascending or descending order based on their view
angles to demonstrate the evolving characteristics with vary-
ing azimuth angles in the multiview sequence. The number
of sequence samples under different working conditions and
sequence lengths is given in Tables IV-VI.

3) Network Setup: The input embedding dimension
dembedding 18 set as either 512 or 1024, while the middle
layer dimensions of feature channel mixer MLP dypp, is
defined as 1024 and dyLp, = dpooi = 10 in token mixer. GELU
[44] is applied here as an activation function.

The batch size is set to 32, and the probability of dropoutis 0.2.
Adam optimizer is adopted for training the network along with
cross-entropy loss function. The learning rate is set to 0.00005,
and the amount of training epochs is 30.

In addition to evaluating the performance of different token
mixers in SFEN, our experiments also investigate the impact
of varying the number of stacked layers on SFEN’s perfor-
mance. Specifically, we examine how setting the number of
experimental layers to 1, 3, 6, 8, and 16 affects performance.
Furthermore, we explore the influence of different numbers of
heads on multihead attention’s effectiveness. For a single layer,
we configure it with four heads; for the three-layer network, it is
equipped with either four or eight heads; and for the eight-layer
network, it is configured with either 8 or 16 heads.

B. Overall Performance

The performances of the proposed Res-Xformer with different
token mixers under different operating conditions are given
in Table VII. The results of the normal-scale model generally
demonstrate a slight advantage over those of the larger-scale
model.

In terms of the number of layers in SFEN, an increase in
the number of layers initially leads to an improvement in the
overall recognition rate, followed by a decline. The optimal
performance is observed at the third and fourth layers, indicating
that insufficient layers impede feature extraction while excessive
layers result in overfitting. Conversely, for large-scale models,
superior results are achieved with one or two layers, highlighting
the occurrence of accelerated overfitting when model size is
increased.

Like other methods, Res-Xformer performs well under SOC
and the accuracy rates are over 99% while obtaining near-perfect
accuracy for each mixer type under EOC-V, demonstrating that
the proposed method can effectively adapt version-variant of
targets. The accuracies are slightly lower under EOC-C but still
achieve an accuracy rate exceeding 98%. On the other hand,
it performs the poorest under EOC-D, indicating that variants
of depression angles pose a greater challenge for the proposed
method.

While the performances of the proposed Res-Xformer with
various types of parameters under EOC-D are comparatively
worse than those observed in other operation conditions, it is
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important to note that achieving 97% accuracy still demonstrates
a reasonably high level of performance.

C. Results and Discussions Under SOC

As given in Table VII, there is not much fluctuation caused
by changes in model parameters, with a recognition rate main-
tained at 99%. Among different token mixers, pooling shows
the best performance, while attention performs the worst. In
terms of model size, larger models have worse performance,
and stacking more layers leads to poorer results. This suggests
that recognition tasks under SOC exhibit a relatively low level
of complexity, thereby causing complex models to suffer from
overfitting, resulting in a decline in recognition accuracy.

When considering the layer count of SFEN, the proposed
method with MLP as a token mixer achieves optimal results
with one—three layers, and the most favorable outcome is ob-
served with a single layer. Due to its utilization of FC lay-
ers for information aggregation, MLP exhibits relatively high
computational complexity. Consequently, the highest recogni-
tion rate is attained using a one-layer encoder. Simultaneously,
the performance of large-scale models starts to significantly
deteriorate beyond three layers. The performance of pooling is
slightly degraded by a single layer, but as the number of stacked
layers increases, the performance initially improves and then
deteriorates. The optimal performance is achieved when four
layers are stacked. This is because pooling is a relatively simple
calculation, so when the number of layers in the encoder is
small, the network fails to effectively capture the characteristics
of the data. Therefore, it is necessary to stack more layers
to increase the complexity of the feature extraction network.
Attention exhibits a similar tendency, yielding optimal outcomes
when employing a three-layer encoder and four heads of MSA.
Overall, the impact of the number of heads in MSA is relatively
modest; however, an excessive number of heads can lead to a
decline in recognition accuracy. Utilizing either four or eight
heads yields superior performance.

When examining the model scale and overall size effect, it is
often found that using one or two layers can yield optimal results
due to the higher complexity of the entire model, allowing for
a better representation of target characteristics and mitigating
overfitting issues.

In order to compare the effects of different token mixers, the
confusion matrix is calculated using a three- or four-layer SFEN
that is generally considered optimal. Table VIII displays the
confusion matrices of the Res-Xformer model with MSA, MLP,
and pooling as token mixers, respectively. The rows represent
the true category of the target, while the columns indicate the
predicted label generated by the Res-Xformer.

When four-head MSA is used as a token mixer, the
Res-Xformer demonstrates good recognition performance for
BTR60, BRDM?2, ZSU23/4, BTR70, and T72 without any false
identification. However, a small number of 2S1 instances are
mistakenly identified as T62 and BTR70, with the maximum
misidentification being 2S1 as T72. D7 and T62 exhibited oc-
casional misidentifications as ZIL131; moreover, they are more
frequently mistaken for ZSU23/4. In addition, there are sporadic
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TABLE VII
PERFORMANCES FOR EXPERIMENTS UNDER DIFFERENT WORKING CONDITIONS

Model Token Recognition Rate (%)
Layers Heads
Scale  Mixer soC EOC-V EOC-C EOC-D
| 4 99.5 100.0 97.1 96.2
8 99.7 100.0 97.3 96.4
4 99.8 100.0 97.5 95.5
MSA 3 8 99.6 100.0 98.5 96.6
16 99.1 99.9 97.6 96.6
3 8 98.7 99.8 98.4 97.2
16 99.0 99.8 98.2 97.1
1 - 99.8 100.0 99.1 97.7
2 - 99.7 100.0 98.3 96.3
3 - 99.8 100.0 98.1 97.2
Normal MLP 4 - 99.2 100.0 97.8 95.1
6 - 99.6 99.8 98.1 97.8
8 - 99.6 100.0 98.2 95.9
16 - 99.3 99.9 98.1 95.4
1 - 99.3 100.0 98.5 94.8
2 - 99.9 100.0 98.4 94.9
3 - 99.9 100.0 98.9 95.2
Pooling 4 - 99.9 100.0 98.8 91.8
6 - 99.4 100.0 98.1 96.1
8 - 99.6 99.9 98.6 96.9
16 - 98.9 100.0 97.0 96.0
| 4 98.9 100.0 96.7 96.3
8 99.7 100.0 96.7 95.7
4 98.1 100.0 97.0 96.6
MSA 3 8 98.9 99.8 98.3 95.6
16 99.0 100.0 98.5 95.5
3 8 97.7 99.9 91.7 953
16 97.0 99.8 97.9 95.7
1 - 99.6 100.0 98.0 97.0
2 - 99.8 99.8 97.8 95.5
3 - 98.7 100.0 97.7 97.8
Big MLP 4 - 99.2 100.0 98.0 96.4
6 - 99.1 100.0 97.9 96.6
8 - 99.4 99.9 98.0 96.8
16 - 99.1 99.8 98.4 96.1
1 - 99.6 99.9 97.1 94.0
2 - 99.9 100.0 98.6 95.1
3 - 99.0 100.0 99.0 96.4
Pooling 4 - 99.1 100.0 98.0 95.7
6 - 99.1 100.0 97.6 95.2
8 - 99.3 99.9 98.3 97.2
16 - 98.7 99.9 97.7 95.9
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cases where ZIL131 is incorrectly recognized as ZSU23/4. The
recognition accuracy is 99.76%.

When MLP is a token mixer, the proposed method achieves
an overall recognition rate of 99.82%. However, the misiden-
tified categories are relatively scattered. BTR60, BRDM?2, D7,
BMP2, and T72 are mistakenly identified in small quantities
as BRDM2, ZIL131, ZSU23/4, BTR60, and T62 respectively.
2S1 is occasionally misidentified as BTR60 and T62. ZIL131
is occasionally misidentified as T62 and ZSU23/4. BTR70 is
occasionally misidentified as 2S1 and BMP2.When pooling
is used as a token mixer, Res-Xformer achieves an overall

recognition rate of 99.92%, surpassing all other token mixers
in performance. The experimental results demonstrate that the
Res-Xformer incorporating a superposition of three layers of
SFEN closely approximates the recognition rate achieved by
four-layer SFEN. The types of mistakenly identified samples
are more concentrated in the four-layer condition, with no false
identification observed for ZIL131, ZSU23/4, BMP2, BTR70,
and T72. In the condition of three-layer SFEN, S1, BRDM2, D7,
ZIL131, and T7 are, respectively, misidentified as T62, ZIL131,
7ZSU23/4,7SU23/4,T62, BTR70, and a few BTR70 samples are
misidentified as BTR60 and BRDM?2. The general recognition
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TABLE VIIT
CONFUSION MATRICES OF RES-XFORMER WITH DIFFERENT TOKEN MIXERS UNDER SOC (RECOGNITION RATE: ATTENTION 99.76%, MLP 99.82%, POOLING
99.92%)
11;;1;:1 Target Recognition Rate (%)
(No.of  Type
Layers) BTR60 2S1 BRDM2 D7 T62  ZIL131 ZSU23/4 BMP2 BTR70 T72 ALL
BTR60  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
281 0.00 99.54 0.00 0.00 0.09 0.00 0.00 0.00 0.09 0.28
BRDM2  0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D7 0.00 0.00 0.00 99.63 0.00 0.09 0.28 0.00 0.00 0.00
MSA T62 0.00 0.00 0.00 0.00 99.26 0.19 0.56 0.00 0.00 0.00 99.76
(3-4) ZIL131 0.00 0.00 0.00 0.00 0.00 99.81 0.19 0.00 0.00 0.00 ’
ZSU23/4  0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
BMP2 0.26 0.26 0.00 0.00 0.00 0.00 0.00 99.48 0.00 0.00
BTR70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
T72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00
BTR60 99.87 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2S1 0.09 99.72 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00
BRDM2  0.00 0.00 99.81 0.00 0.00 0.19 0.00 0.00 0.00 0.00
D7 0.00 0.00 0.00 99.81 0.00 0.00 0.19 0.00 0.00 0.00
MLP T62 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 99.82
3) ZIL131 0.00 0.00 0.00 0.00 0.09 99.72 0.19 0.00 0.00 0.00 ’
ZSU23/4  0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
BMP2 0.13 0.00 0.00 0.00 0.00 0.00 0.00 99.87 0.00 0.00
BTR70 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.39 99.48 0.00
T72 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 99.87
BTR60  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2S1 0.00 99.91 0.00 0.00 0.09 0.00 0.00 0.00 0.00 0.00
BRDM2  0.00 0.00 99.91 0.00 0.00 0.09 0.00 0.00 0.00 0.00
D7 0.00 0.00 0.00 99.81 0.00 0.00 0.19 0.00 0.00 0.00
Pool T62 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 99.88
3) ZIL131 0.00 0.00 0.00 0.00 0.00 99.63 0.37 0.00 0.00 0.00 ’
ZSU23/4  0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
BMP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
BTR70 0.13 0.00 0.13 0.00 0.00 0.00 0.00 0.00 99.74 0.00
T72 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 99.87
BTR60  100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2S1 0.00 99.72 0.09 0.00 0.19 0.00 0.00 0.00 0.00 0.00
BRDM2  0.00 0.00 100.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
D7 0.00 0.00 0.00 99.63 0.00 0.09 0.28 0.00 0.00 0.00
Pool T62 0.00 0.09 0.00 0.00 99.91 0.00 0.00 0.00 0.00 0.00 99.92
4) ZIL131 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00 0.00 ’
ZSU23/4  0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00 0.00
BMP2 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00 0.00
BTR70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00 0.00
T72 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 100.00

rate reaches 99.88%. Regarding four-layer SFEN, only three
types of samples are misidentified: 2S1 as BRDM2 and T62;
D7 as ZIL131 and ZSU23/4; and T62 as 2S1. This results in an
overall recognition rate of 99.92%.

These results demonstrate that the three types of token mixers
yield comparable outcomes. When attention is employed as the
token mixer, increasing the number of layers leads to improved
performance. Conversely, pooling as a token mixer produces
comparable outcomes across different layer numbers. In gen-
eral, MLP and MSA exhibit similar recognition results, while
pooling performs slightly better and has the lowest computa-
tional complexity. Although MLP’s computation is influenced
by the dimension of its middle layer, it remains relatively higher
compared to MSA.

D. Results and Discussions Under EOC

1) EOC-C: As given in Table VII, the recognition rate under
EOC-C is generally a bit lower than SOC. The gap between
large-scale models and regular ones in terms of recognition rate
is minor, but large-scale models with different numbers of layers
slightly outperform regular ones when pooling is used as a token
mixer.

Compared to under SOC, where the Res-Xformer with pool-
ing as the token mixer achieves the best performance, models
with pooling as the token mixer slightly lag behind those with
MLP under EOC-C, and larger-scale models perform even better
than regular ones. This fully demonstrates that EOC-C is more
complex than SOC and requires more sophisticated components
or larger structures of Res-Xformer to achieve better results.
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TABLE IX
CONFUSION MATRIX OF RES-XFORMER WITH DIFFERENT TOKEN MIXERS UNDER EOC-C (RECOGNITION RATE: ATTENTION 98.51%, MLP 99.15%, POOLING
98.89%)
Token Recognition Rate (%)
Mixer
(No. of Target Type BTR70 BRDM2 BMP2 T72 ALL
Layers) Serial No. 9563 132
C21 0.00 0.00 87.90 12.10
BMP2 9566 0.00 0.00 94.89 5.11
MSA 812 0.00 0.00 0.18 99.82
(3-4) A04 0.00 0.00 1.81 98.19 97.52
T72 A05 0.00 0.00 0.62 99.38
A07 0.00 0.00 0.04 99.96
A10 0.00 0.00 0.00 100.00
C21 0.71 0.77 97.57 0.95
BMP2 9566 232 0.42 94.23 3.03
MSA 812 0.30 0.00 0.12 99.58
(3-8) A04 0.00 0.71 1.41 97.88 98.51
T72 A05 0.00 0.00 0.71 99.29
A07 0.00 0.00 0.00 100.00
Al0 0.00 0.00 0.00 100.00
C21 0.12 1.90 97.63 0.36
BMP2 9566 1.43 0.00 96.55 2.02
MLP 812 0.18 0.00 0.66 99.16
(1) A04 0.00 0.00 0.35 99.65 99.15
T72 A05 0.00 0.00 0.00 100.00
A07 0.00 0.00 0.00 100.00
Al0 0.00 0.00 0.00 100.00
C21 0.12 0.24 97.63 2.02
BMP2 9566 0.00 0.65 97.44 1.90
MLP 812 0.00 0.00 0.90 99.10
3) A04 0.00 0.00 4.64 95.36 98.14
T72 A05 0.00 0.00 0.44 99.56
A07 0.00 0.00 2.08 97.92
A10 0.00 0.00 0.04 99.96
C21 0.00 1.96 96.50 1.54
BMP2 9566 0.06 0.65 96.37 291
Pooling 812 0.00 0.00 0.00 100.00
3) A04 0.00 0.18 1.41 98.41 98.89
T72 A05 0.00 0.00 0.00 100.00
A07 0.00 0.00 0.00 100.00
Al10 0.00 0.00 0.00 100.00

The confusion matrices of the proposed method with three-
layer SFEN under EOC-C are given in Table IX. The rows rep-
resent the true category of the target, while the columns indicate
the predicted label generated by the trained Res-Xformer using
the four-class dataset. Since the one-layer Res-Xformer with
MLP as a token mixer achieves the best performance, we have
also included the confusion matrix of this model in Table IX.

When MSA is used as a token mixer, the MSA of eight heads
outperforms that of four heads. For comparison with the SOC
mode, we also give the confusion matrix of MSA of four heads.

When taking four-head MSA as a token mixer, the Res-
Xformer has the lowest recognition rate, but its misidentifica-
tions are relatively concentrated and only occur between BMP2

and T72, indicating that the model struggles to distinguish
BMP2 from T72 very well with these parameters. Compara-
tively, SN_9566 in BMP2 has a higher recognition rate than
SN_C21. The overall accuracy of T72 recognition is relatively
high, with A0O4 being mistakenly identified as BMP2 most
frequently. When using eight-head MSA, the recognition rate
reaches 98.51% with the improved classification of SN_C21 in
BMP2, thus classified better. However, BMP2 and T72 can be
misidentified as BTR70 and BRDM2, and SN_9566 in BMP2
is most mistaken for T72 and BTR70. The A04 still remains the
worst identified among T72.

When taking MLP as a token mixer with one-layer SFEN,
the recognition situation of Res-Xformer is similar to that of
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eight-head MSA but with a higher accuracy of 99.15%. The A0S,
A07, and A10 are all correctly recognized, and the SN_9566 is
identified better than when using MSA. When the number of
layers in SFEN increases to three, the recognition rate, on the
contrary, decreases to 98.15%. The different versions of BMP2
are more accurately recognized, whereas the different versions
of T72 are less effectively recognized with misrecognition to-
ward BMP2. This indicates that the recognition complexity of
different versions of BMP2 is higher, and more complex models
exhibit superior recognition capabilities. However, for T72, an
excessively complex model leads to overfitting and results in a
decline in recognition accuracy.

When pooling is used as a token mixer in Res-Xformer, the
performance is a little better than MSA, and slightly worse
than MLP, reaching 98.89%. The model with these parameters
recognizes T72 well, only A04 exists misrecognition. However,
in the case of BMP2, the misrecognition occurs for all four target
types. Given that the complexity of pooling operations is lower
than that of MLP, this also suggests that recognizing the different
versions of T72 is easier than BMP2. It is also worth noticing
that the recognition rate of large-scale models is slightly higher
than that of ordinary models under this condition, reaching 99%,
which indicates that increasing the complexity of Res-Xformer
slightly helps with the recognition under EOC-C.

2) EOC-V: When it comes to EOC-V, as given in Table VII,
Res-Xformers with all three token mixers achieve excellent
results, with a recognition rate reaching 100%. Therefore, we do
not provide confusion matrices here. Only a few models exhibit
minimal misidentifications, and their recognition performance
even surpassed that under the SOC condition, thereby demon-
strating that the proposed method is suitable for recognition tasks
under EOC-V.

3) EOC-D: The results under EOC-D of different types of
the proposed Res-Xformer with different numbers of layers are
given in Table VII. Compared to other operation conditions, the
performances of the proposed Res-Xformer with various types
of parameters under EOC-D are the worst, achieving only about
97% accuracy. This indicates a significant discrepancy between
the training set and test set, making it more challenging for the
proposed method.

When considering the layer count of SFEN, the proposed
method with MLP as a token mixer achieves optimal results
with one—three layers, but best with six layers. As the number of
layers increases, there is generally a decline in performance. But
when MSA and pooling are taken as token mixers, they exhibit
opposite patterns and perform best when the layer count is eight.
The complexity of MLP is higher than MSA and pooling, which
leads to overfitting and affects the performance of Res-Xformer
when the number of layers is too large. As task under EOC-D is
more complex than SOC and EOC-C, the Res-Xformer needs to
increase its complexity when using MSA and pooling as a token
mixer.

To compare the effects of different token mixers and maintain
consistency with other conditions, we calculated the confusion
matrix of the proposed method using three-layer SFEN under
EOC-D. The results are given in Table X. The rows represent
the true category of the target, while the columns indicate
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the predicted label generated by the Res-Xformer. Since the
one-layer Res-Xformer with MLP as token a mixer and eight-
layer Res-Xformer with MSA and pooling achieve the best
performances, we have also included their confusion matrices in
Table X.

When using MSA as a token mixer, a three-layer Res-Xformer
has similar discriminative performance on the targets with an
eight-layer one but the accuracy is lower. They can accurately
identify BRDM2 and ZSU23/4, but their identification accuracy
for 2S1 is poor. They often mistake 2S1 for T72 and T72 for
ZSU23/4. However, the recognition performance of the eight-
layer model for T72 is slightly better, resulting in an overall
recognition rate of 97.21%, which is a little better than Pooling,
and slightly worse than MLP.

When MLP is used as a token mixer, the recognition perfor-
mance of the three-layer Res-Xformer is similar to that of the
one-layer one, but with a slightly higher rate of misidentification.
Compared to using MSA, the types of misidentifications are a
little more diverse. The one-layer model with MLP has a higher
accuracy in recognizing 2S1 than when with MSA, resulting in
the highest recognition rate achieved at 97.69%.

When pooling is used as a token mixer in Res-Xformer,
the eight-layer model achieves a recognition rate of 98.89%,
which is the lowest among the three kinds of token mixers.
The three-layer model performs well in identifying 2S1 and
ZSU23/4 but poorly for the other two targets. As the eight-layer
model improves accuracy in recognizing BRDM?2 and T72, the
recognition rate for the other two targets decreases slightly,
resulting in a final recognition rate of 96.92%. This indicates
that due to the lower complexity of Pool, it cannot effectively
differentiate all categories in EOC-D problems.

E. Comparison With Other Methods

The performance of the proposed Res-Xformer is compared
with eight other methods, including iterative graph thickening
(IGT) [16], conditional Gaussian model (CGM) [15], sparse
representation-based classification (SRC) [17], multiview deep
convolutional neural network (MVDCNN) [20], bidirectional
convolutional-recurrent network (BCRN) [24], multiview deep
feature learning network (MVDFLN) [25], deep feature extrac-
tion and fusion network (FEF-Net) [22], and convolutional-
Transformer network (CTN) [42], which are classical or re-
cently published in SAR recognition field. IGT and CGM are
methods for single SAR images, so the performances cannot
surpass sequence ones. The BCRNs with sequence lengths of 5
and 15 are denoted as BCRN-S5 and BCRN-S15, respectively.
CTN-L6 denotes CTN using a six-layer-Transformer encoder.
Our Res-Xformers with MSA, MLP, and pooling as token
mixers are denoted as Res-MSAformer, Res-MLPformer, and
Res-Poolformer, respectively. The Res-Xformers with one-layer
and three-layer SFEN are denoted as Res-Xformer-1 and Res-
Xformer-3, respectively.

As given in Table XI, the proposed Res-Xformer achieves
better or comparable recognition rates under different working
conditions compared to other methods, only lagging behind
BCRN-S15. However, the performance of BCRN-S15 should
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TABLE X
CONFUSION MATRIX OF RES-XFORMER WITH DIFFERENT TOKEN MIXERS UNDER EOC-D (RECOGNITION RATE: ATTENTION 97.21%, MLP 97.69%, POOLING
96.92%)
;?il;?; Target Recognition Rate (%)
I(}\IO' of  Type 281 BRDM2  ZSU23/4 T72-132  ALL
ayers)
251 92.26 1.85 0.18 5.72
MSA BRDM2 0.09 99.82 0.00 0.09 96.57
(3-8) ZSU23/4 0.00 0.00 99.82 0.18 ’
T72-A64 1.14 0.00 4.49 94.37
251 92.08 0.35 0.00 7.56
MSA BRDM2 0.09 98.50 0.00 1.15 9721
(8-16) ZSU23/4 0.00 0.00 99.65 0.35 ’
T72-A64 0.18 0.09 1.14 98.59
2851 94.99 0.00 0.09 4.93
MLP BRDM2 3.97 95.85 0.00 0.18 97.16
3) ZSU23/4 0.09 0.09 99.21 0.62 '
T72-A64 0.18 0.00 1.23 98.59
251 97.63 0.97 0.00 1.41
MLP BRDM2 0.62 98.94 0.09 0.35 97.69
(1) ZSU23/4 0.97 0.00 98.77 0.26 '
T72-A64 2.55 0.00 2.02 95.43
251 99.56 0.00 0.00 0.44
Pool BRDM2 6.35 92.85 0.44 0.35 9562
3) ZSU23/4 0.70 0.00 98.86 0.44 '
T72-A64 5.28 0.00 3.52 91.20
281 95.69 1.14 0.00 3.17
Pool BRDM2 0.26 99.29 0.26 0.18 96.92
®) ZSU23/4 0.00 0.00 93.58 6.42 '
T72-A64 0.26 0.00 0.62 99.12
TABLE XI
PERFORMANCE COMPARISON WITH OTHER METHODS
Method Recognition Rate (%)
soC EOC-C EOC-V EOC-D
IGT 95 - 85 80
CGM 97.18 81.22 79.30 -
SRC 98.94 96.78 - -
MVDCNN 98.52 95.45 95.46 94.61
BCRN-S5 97.82 90.84 95.77 93.3
BCRN-S15 99.97 99.81 98.93 99.54
MVDFLN 99.62 97.84 99.10 97.12
FEF-Net 99.34 - - -
CTN-L6 99.9 98.5 99.78 -
Res- MSAformer-3 99.76 98.51 100.00 96.57
Res-MLPformer-1 99.82 99.15 100.00 97.16
Res-MLPformer-3 99.80 98.14 100.00 97.69
Res-Poolformer-3 99.91 98.89 100.00 95.62
Res-Poolformer-8 99.65 98.63 99.91 96.92

not be directly compared due to its significantly longer se-
quence length than other methods. Under SOC, Res-Poolformer-
3 outperforms other methods, while Res-MSAformer and Res-
MLPformer only slightly trail behind CTN-L6. Under EOC-D,
although our Res-Xformers do not perform well and do not
exhibit exceptional performance compared to other methods,
we still achieve comparable results. Notably, Res-MLPformers

slightly outperform other methods, while Res-Poolformer-8 and
Res-MSAformer-3 have slightly lower performance than MVD-
FLN. Under EOC-C and EOC-V, all three types of Res-Xformers
demonstrate superiority over other methods, thereby demon-
strating the superiority of our proposed method and validating
the effectiveness of our proposed structure for multiview SAR
sequence recognition.
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TABLE XII
PERFORMANCE COMPARISON WITH DIFFERENT NUMBER OF VIEWS OF SAR AS INPUT

Token No. of No. of Recognition Rate (%)

Mixer Views Layers SOC EOC-V EOC-C EOC-D

) 3-4 98.5 99.8 97.8 92.5

Attention 3-8 99.0 99.7 97.2 96.1

3 3-4 98.9 99.8 97.0 94.5

3-8 98.2 99.9 95.9 94.0

) 1 99.3 99.9 97.7 91.5

MLP 3 98.7 99.6 96.4 94.0

3 1 99.7 100.0 98.2 96.9

3 99.2 99.8 98.0 96.7

) 1 99.0 99.6 95.9 90.6

Pooling 3 98.7 99.9 97.1 93.1

3 1 98.6 99.7 98.4 95.5

3 99.0 99.9 98.8 92.1

F. Comparison With Different Numbers of Views

The larger the number of views in the SAR image sequence,
the more information the Res-Xformer can obtain, which is
expected to result in improved recognition outcomes. In order
to evaluate the effectiveness of our approach, we conducted
experiments under all four operating conditions, specifically
investigating how varying the number of views impacts the
performance. The results are given in Table XII.

The results demonstrate that the overall recognition perfor-
mance slightly decreases when using 2-view or 3-view SAR
sequences as inputs compared to the 4-view case. This suggests
that having access to more views enhances the model’s ability
to accurately classify objects. In addition, more complex tasks,
such as those under EOC-D, are influenced to a greater extent
by the number of views. This can be easily understood because
when there is less input information and taking into account the
inherent difficulty of recognition problems, missing information
has a larger impact leading to decreased recognition perfor-
mance. Moreover, this also proves that our proposed method can
indeed effectively integrate sequence information and reflect the
changes in the input sequence information.

G. Discussion

Previous studies have primarily focused on feature extraction
based on CNN variants while lacking in-depth research on
the fusion of features from multiview SAR sequences. From
the various types of experiment results mentioned above, our
designed Res-Xformer effectively represents the information of
multiview SAR and achieves a state-of-the-art recognition rate.
This is because, on the one hand, our method is based on ResNet
for extracting features of a single image, which lays a solid
foundation for sequence feature extraction in the next step. On
the other hand, The SFEN module, consisting of a token mixer
and a channel mixer, is designed to integrate features of tokens
within the sequence, allowing the class token to represent the
entire sequence. As a result, the proposed methods have achieved
favorable outcomes.

Unlike previous studies that focus on using attention mecha-
nisms to fuse features, our emphasis lies in the combination of
token mix and channel mix as the key to sequence fusion. The
introduction of our replaceable token mixer further verifies that
although MSA has an effect, it is not the main focus of sequence
feature extraction and fusion.

Our proposed model fits well under SOC and EOC-V condi-
tions, achieving arecognition rate close to 100%. Despite experi-
encing a slight decrease in recognition accuracy under EOC-C,
it still surpasses 98.5%, establishing itself as the state-of-the-
art method for SAR target recognition performance. However,
our method falls slightly short when dealing with tasks under
EOC-D.

The performance of the proposed Res-Xformer under EOC-D,
although being the worst among all the operating conditions,
still manages to achieve a recognition rate that is comparable
to other approaches. While it may be considered relatively low
compared to other operation conditions where higher accuracies
have been achieved by the proposed Res-Xformer, this does not
necessarily imply poor overall performance.

For the three types of token mixers, pooling, MSA, and MLP,
their complexity increases in turn. At the same time, increasing
the number of layers in the SFEN also enhances its complexity.
However, for simple tasks, overly complex networks can lead
to overfitting and a decrease in recognition performance. For
complex tasks, on the other hand, overly simple networks cannot
effectively model the characteristics of each target category and
fail to accurately represent them.

Therefore, for tasks under SOC, EOC-C, and EOC-V condi-
tions, one-layer Res-MLPformer, three-layer Res-MSAformer,
and three-layer Res-Poolformer can achieve optimal results,
while too many layers may cause overfitting and reduce gen-
eralization performance leading to lower recognition rates. As
for EOC-D, which is relatively more complicated than others, a
model that is too simple may not have enough learning capacity,
so a less layered Res-Poolformer performs slightly worse while
Res-MLPformer achieves better recognition results.

Further investigation into optimizing parameters, specifically
for EOC-D and the augmentation method of the training set,
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TABLE XIII
PERFORMANCES OF RESNET18 UNDER DIFFERENT WORKING CONDITIONS

No. of Recognition Rate (%)

Views SOC EOC-V EOC-C EOC-D
2 99.3 98.8 96.6 90
3 99.1 98.9 97.5 95.1
4 99.7 99.1 97.8 94.9

could potentially improve the generalization performance of the
model.

V. ABLATION EXPERIMENTS AND DISCUSSION

The ablation experiments are conducted under SOC and EOCs
to compare the effect of the SFEN module, class token, positional
embedding (PE), and the design of the FC layer in the pooling
mixer.

A. ResNet Without Xformer

The main parts related to the representation of the multiview
SAR sequence in our proposed method are the single image
encoding and SFEN-based Xformer.

ResNet has been widely applied in the field of computer
vision and has achieved excellent results. Therefore, we adopted
ResNet8 in the single-image encoding stage to enhance the
overall performance of the network. To verify the role of our
proposed SFEN, we conduct ablation experiments by removing
the Xformer structure and retaining only ResNet18. As a result
of removing the sequence fusion part, we concatenate the images
within multiview SAR sequence as the input of ResNet18. The
results are depicted in Table XIII.

As given in Table XIII, ResNet18 achieves a good recognition
rate but is inferior to Res-Xformer. It shows similar results
compared to other algorithms in Table XI. For tasks under SOC,
achieving a recognition accuracy of over 99% with ResNet18
is relatively easy, similar to other CNN-based methods. The
performance of ResNet18 is similar under EOC-V as it is under
SOC. However, when it comes to the EOC-C condition, the
recognition rate is weaker compared to models with Xformer,
and it decreases even more noticeably under EOC-D, which
presents greater challenges.

While ResNet can extract image features well, it performs
decently under SOC and EOC-V conditions. However, its per-
formance declines for more complex tasks. The lack of design
for fusing sequence features prevents the effective utilization
of sequential information, limiting its ability to capture spatial
correlations among images within a sequence and thus affecting
its effectiveness.

This demonstrates that our Res-Xformer design, on the one
hand, builds a solid foundation for extracting sequence features
by leveraging ResNet to extract features of images within the
sequence. On the other hand, through the design of the SFEN
module, it integrates sequence information and achieves good
results. In contrast to previous studies focusing on using atten-
tion mechanisms to fuse sequence information, our designed
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TABLE XIV
ABLATION EXPERIMENTS OF RES-POOLFORMER ON FC IN POOLING MIXER
UNDER DIFFERENT WORKING CONDITIONS

No. of Recognition Rate (%)
Layers SOC EOC-V__EOC-C EOC-D
1 x 99.4 100 98.5 93.6
v 99.3 100 98.5 94.8
3 x 99.4 99.9 98.3 93.6
v 99.9 100 98.9 95.2
x 99.6 100 97.9 95.8
8 v 99.6 99.9 98.6 96.9

replaceable token mixer further verifies that MSA is not the
key factor in sequence feature fusion. Instead, the design of
a combination of token mixer and channel mixer should be
emphasized in the fusing sequence feature.

B. Fully Connected Layer in Pool-Mixer

The purpose of adding an FC layer in the pooling token mixer
is to address the limitation of the reception field of pooling
operations. This means that each time we perform pooling, the
information of all tokens within the sequence is related directly
to the current token. This is because when the sequence length
is greater than the pooling size, not all token information can be
associated. Here, ablation experiments are conducted to test the
role of the FC, and the results are given in Table XIV.

In Table XIV, the “y/” denotes that is involved in the token
mixer of pooling, while the “X” denotes that the FC is not
involved. For more complex recognition tasks, such as under the
EOC-D condition, it can be observed that FC notably improves
recognition rates. Under other conditions, the presence of FC
slightly enhances classification performance but its effect is not
significant.

Although the effect of FC is not obvious, we still believe
that this design is necessary. Because in principle, we added FC
layers to consider the impact of receptive fields when pooling
operations are limited by pooling size. For example, in 4-view
SAR recognition tasks, for a pooling operation with a pooling
size of 3, there is no direct interaction and fusion of information
between the first and last tokens. Of course, as the number
of SFEN layers increases, the information between these two
tokens will also be perceived implicitly through pooling with
other tokens. However, this also means that these two tokens are
not treated equally compared to other tokens. Perhaps when the
sequence length is long enough, FC layer can play a better role
and demonstrate its effectiveness.

C. Class Token and Positional Embedding

PE and class token are designed for multiview SAR recogni-
tion problems. PE provides sequential information to the feature
extraction network, while the class token is used to synthesize
sequence features. Unlike methods that concatenate or average
sequence features after feature extraction of tokens within the
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TABLE XV
ABLATION EXPERIMENTS ON CLASS TOKEN AND PE UNDER DIFFERENT WORKING CONDITIONS

Token No. of Class Recognition Rate (%)

Mixer Layers Token SOC EOC-V EOC-C EOC-D

x x 99.5 99.3 96.2 87.5

3.4 x 4 99.1 99.5 94.3 90.8

v x 99.5 99.3 95.7 82.9

v 4 99.8 100.0 97.5 95.5

MSA x  x 99.0 99.9 95.9 89.8

3-8 x v 99.3 99.9 95 95.4

v x 98.9 99.9 95.8 93.1

v v 99.6 100.0 98.5 96.6

x x 99.8 99.5 97.6 95.7

| x v 99.8 99.7 98 90.0

v x 99.8 99.6 97.6 90.0

v v 99.8 100.0 99.1 97.7

MLP x x 99.3 99.5 97.1 86.1

3 x 4 99.5 99.6 98.4 92.8

v x 99.6 99.6 98.1 95.6

v v 99.8 100.0 98.1 97.2

x x 99.1 99.8 96.7 90.6

| x 4 99.2 99.9 98.3 92.5

v x 99.3 99.8 97.4 94.4

Pooling v v 99.3 100.0 98.5 94.8

x x 99.8 99.9 98.4 95.1

3 x v 99.9 99.9 96.9 94.3

v x 99.9 99.9 97.4 94.9

v v 99.9 100.0 98.9 95.2

sequence, the class token is involved in the entire sequence fea-
ture extraction process and gradually learns the characteristics
of the sequence during the fusion of sequence features. This
design has a more explicit role and a delicate feature fusion
process.

The ablation experiments on PE and class token are conducted
in a4-view scenario. Based on the results analysis in the previous
section, for target recognition problems under different con-
ditions, both three-layer Res-MSAformer and Res-Poolformer
and one-layer Res-MLPformer show the best recognition per-
formances. Therefore, this part of the ablation experiment is
also based on models with these parameters. When PE is not
involved in the model, the features of all the sequence tokens are
averaged as the sequence feature for classification. The results
are summarized in Table XV, where “y/” denotes that the module
is involved, while “X”” denotes that the module is not involved.

We design PE to enable the model to establish a sense of
sequential order among tokens from a theoretical perspective.
However, its effectiveness may not be as apparent when dealing
with sequences not long enough.

In most cases, the models generally perform poorly when
neither PE nor class token is involved, whereas the recognition
rate is highest when both are included. The ablation experiments
show that PE and class token can bring different degrees of
performance improvement, with class token having a greater im-
pact. Itis worth noting here that the effect of involving individual
class token or PE alone is not as obvious. However, when they are
used together in SFEN, significant performance improvement

can be achieved. This indicates that their combination works
better than when they are involved separately.

We believe that this is because the addition of individual PE
allows the network to perceive the location information of tokens
during the process of sequence feature extraction and fusion.
However, due to the averaging operation of the tokens’ feature
for final token feature aggregation, this diminishes the impact
of such positional information. On the other hand, without
involving PE, there is no consideration of position information
for class token during feature fusion. Therefore, combining both
modules highlights their respective roles and leads to improved
accuracy in recognition.

VI. CONCLUSION

In this study, we focus on deconstructing the deep learning
processes of multiview SAR image recognition tasks and provid-
ing a more flexible way to model the multiview SAR sequence.

We divide this task into feature extraction of the single image
within the multiview SAR sequence and feature extraction of
the entire sequence. We decompose the SFEN into an STF
module that fuses information across different images within
each sequence, and an FCF module that combines information
from different feature channels.

Unlike previous studies that focus on using attention mech-
anisms to fuse features, the emphasis of our study lies in the
combination of token mixer and channel mixer as the key to
sequence fusion. We focus on analyzing the structure of the
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Transformer architecture itself rather than MSA and propose a
replaceable token mixer by analyzing the functions of each mod-
ule. By analyzing and decomposing multi-SAR ATR problems,
we reason the design of each module in the proposed network,
and the experiments conducted in this article have proven the
effectiveness of our proposed method.

Our future work will involve exploring other modules as
potential alternatives for sequence token mixers in Xformer
and investigating their impact on the SAR image sequence
recognition tasks.
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