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Human Communication-Inspired Semantic—View
Collaborative Network for Multispectral
Remote Sensing Image Retrieval

Nan Wu

Abstract—Multispectral images (MSIs) have widespread appli-
cations, and efficiently managing these extensive MSIs via remote
sensing image retrieval (RSIR) is key to boosting their practical
value. While current deep learning-based methods offer strong
image representation learning capabilities, adapting to complex
and dynamic relationships between objects and spectral informa-
tion in MSIs remains challenging. This difficulty arises due to
the distinct attributes of different spectral bands and the lack
of consideration of interactions among spectral combinations in
MSIs, which limits their retrieval performance. For this purpose,
we propose a dynamic learning system inspired by human commu-
nication named the semantic—-view collaborative network (SVC-
Net), which actively promotes the interaction between spectral
and semantic information. By linking multiview learning (MVL)
with graph neural networks (GNNs) to simulate the three stages
of human communication—understanding, communication, and
collective consensus and reflection—SVCNet enhances RSIR with
flexibility in representation extraction. Specifically, each spectral
combination is processed to extract independent representations
as view-specific knowledge. In the communication phase, we de-
vise the graph attention-based multiround communication module
(GACM), which uses GNN to perform graph-structured mod-
eling and adaptive updating of views and semantics. Moreover,
we achieve improved MSI representations by implementing novel
objective functions that align learned semantics with category
information, dynamically differentiating semantic similarities and
disparities in MSIs, and flexibly weighting samples for enhanced
adaptability in a multilabel RSIR environment. SVCNet surpasses
current state-of-the-art methods in three MSI datasets for single
and multilabel retrieval tasks. It effectively handles class imbal-
ances and distinguishes challenging samples, highlighting its ex-
tensive applicability.

Index Terms—Content-based image retrieval, graph neural
networks (GNNs), multiview learning (M VL), multispectral image
(MSI).

I. INTRODUCTION

ATELLITE remote sensing technology captures various
information about the Earth’s surface, greatly enriching
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databases for geographical and temporal analysis in Earth ob-
servation [1]. Multispectral images (MSIs) generated by remote
sensing sensors encompass multiple spectral bands, including
but not limited to visible RGB channels. MSIs are widely applied
in urban development [2], meteorology [3], [4], agriculture, and
environmental monitoring research. Unprecedented advances in
satellite remote sensing technology have led to the rapid expan-
sion of high-resolution MSI archives [5]. However, efficiently
managing these voluminous MSIs poses a challenge. Content-
based remote sensing image retrieval (RSIR) uses remote sens-
ing image (RSI) content to search and identify target images
with similar semantics. The design of RSIR aligns with the way
humans naturally recognize and categorize image content and
improves the organization and application of MSIs [6], [7].

The efficacy of RSIR in returning relevant search results is
based on its ability to extract robust and discriminative image
representations. These are essential for accurately identifying
the complex semantic content of MSI and for conducting ef-
fective image-to-image similarity assessments in subsequent
retrieval processes. Traditional RSIR approaches have employed
handcrafted features, such as texture, spectrum, and shape [8],
as well as advanced global descriptor techniques including
the scale-invariant feature transform (SIFT) for extracting bag-
of-visual words representations [9] and local binary patterns
(LBP) [10]. With the advancement and superior performance
of deep learning (DL) technologies, DL-based image represen-
tation learning (IRL) has shifted the focus from handcrafted
feature extraction to data-driven approaches, thereby revolution-
izing the field of RSIR [5].

Many DL-based RSIR methods aim to improve IRL capabil-
ities for RSI; for example, Hu et al. [3] adapted the ResNet [11]
architecture to extract features from MSI, employing an attention
mechanism to focus onregions of interest. Huang et al. [12] fused
global and local features in RSI, achieving more discriminative
representations of remote sensing images through contrastive
learning. Kang et al. [13] utilized graph structures to link image
representations and labels in RSI, developing a more discrim-
inative metric space for multilabel RSIR tasks. Despite their
effectiveness, existing DL-based RSIR methods typically extract
a unified representation by concatenating channels of MSI or
using synthesized RGB images from three bands. However,
these methods do not fully capture the complexity and dynamism
in the relationship between objects and spectral information,
which is reflected in the way different spectral bands represent
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distinct properties of objects. This limitation hinders their ability
to adequately capture interactions between spectral character-
istics and object properties, potentially restricting adaptability
in extracting contextual representations of spectral and spatial
features.

Multiview learning (M VL) integrates and aligns information
from various aspects into a unified representation space [14],
suitable for handling the diverse spectral information of MSI
due to its capability to process multiple aspects. Recent studies
have explored DL-based methods, akin to the idea of MVL,
to optimize representations in MSIs, enhancing adaptability in
remote sensing tasks across a spectrum from representation ex-
traction to downstream applications. For example, Xu et al. [15]
computed weights for different spectral bands and encoded local
features of the fused spectrum into a spatial graph structure
for MSI representation generation. Zhao et al. [4] focused on
extracting representations from various spectral combinations
and integrating these into a Transformer [16] architecture for
unified representation. Meanwhile, Cong et al. [1] developed
a strategy involving distinct feature extractors for each spectral
group, augmented with a novel spectral group position encoding
to enhance training efficiency. While MVL is a promising tool
for extracting more discriminative spectral representations, ex-
isting advances primarily concentrate on alignment and fusion
across views, limiting their effectiveness in more complex and
dynamic situations where spectral and semantic information
interact intricately according to different contexts.

In our quest to enhance RSIR s flexibility in representation ex-
traction, we recognize the critical role of graph neural networks
(GNNs) [17] in capturing complex relational dynamics. Graphs,
as abstract data types, are adept at capturing complex relation-
ships, offering a robust framework for modeling dependencies
between nodes in multispectral information and object proper-
ties. Recent advances have shown the efficacy of GNNs in RSI,
effectively modeling relationships between samples [ 18], spatial
structures [19], and various views [20], while integration with
causal conditions (categories) remains a challenge. Contrasting
with existing deep learning-based RSIR methods and GNNs, our
work focuses on borrowing from the power of human thought
and communication, which stems from the ability to gather,
integrate, synthesize, and establish relationships from diverse
information sources. Drawing inspiration from the natural au-
tonomous learning and goal-oriented characteristics of human
communication, we aim to refine existing GNNs in RSIR by
incorporating these strategies for more robust IRL capabilities.

We propose a human communication-inspired dynamic learn-
ing system, named semantic—view collaborative network (SVC-
Net), actively promoting interaction between spectral and se-
mantic information. By linking GNNs [17] to the three stages
of human communication—understanding, communication, and
collective consensus and reflection—we endow RSIR with flex-
ibility in IRL. Additionally, the proposed loss functions are tai-
lored to enhance representation optimization during the training
of RSIR methods. Fig. 1 demonstrates how SVCNet differs from
conventional DL-based RSIR algorithms. Specifically, SVCNet
is composed of three components, each drawing inspiration from
different facets of human communication.
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Fig. 1. Contrastive illustration between SVCNet and conventional multispec-
tral retrieval networks. SVCNet serves as a MVL framework, aimed at extracting
more discriminative representations through the collaborative interplay between
views and semantics. (a) Generic representation extraction and retrieval in
remote sensing image analysis. (b) SVCNet in multispectral remote sensing
image retrieval.

View Understanding: We simulate how humans indepen-
dently process and abstract knowledge before communication.
This is achieved using a set of independent spectral representa-
tion extraction layers, each mimicking how humans individually
process information sources to derive spectral representations
from their respective physical properties.

Communication: Recognizing that effective communication
among human information sources is key to collective decision-
making [21] and affects the quality of decisions [22], Jia
et al. [23] have shown that sharing information between views
akin to human communication improves MVL performance.
Benefiting from the capability of GNNs to dynamically cap-
ture the relationships between view and semantic aspects, we
use GNNs to model and extract complex associations between
objects and spectral information as representations to enhance
RSIR. We devise the graph attention-based multiround commu-
nication module (GACM) to simulate the interactions between
objects and semantics, where the semantics are modeled as
learnable anchors connected with view representations in a
graph structure. Utilizing GNNs, GACM extracts and updates
complex associations among view—view, semantic—semantic,
and view—semantic elements, thereby improving IRL for RSIR.

Collective Consensus and Reflection: After communication,
the integration of human viewpoints, assigning importance, and
reflective reevaluation during the post-communication phase
form the basis for better decision-making and groundwork
for future interactions [24], [25]. To this end, we integrate
view—semantic association representations to achieve collec-
tive consensus. Leveraging machine learning’s backpropaga-
tion process to simulate collective reflection, we introduce two
novel objective functions in SVCNet: semantic alignment loss
(SAL) function and tightened graph contrastive loss (TGCL)
function. SAL function works by aligning semantic anchors
with corresponding category information for supervision during
the training of RSIR models, serving as semantic targets to
promote the goal-oriented nature of human communication and
ensuring adaptability to both single-label and multilabel RSIR
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contexts. Meanwhile, TGCL function acts as an assessment and
optimization of communication outcomes, effectively bringing
semantic—view representations closer together in the metric
space when they are semantically similar.

In summary, SVCNet advances beyond existing RSIR meth-
ods by representing content and view—semantic relationships.
SVCNet offers two advantages over current DL-based RSIR
methods. 1) It treats all categories as nodes within the GNN,
ensuring equitable treatment within semantic anchors and ad-
dressing class imbalance challenges. 2) Its relationship-based
modeling naturally accommodates both single-label and multi-
label RSIR tasks. Our main contributions are as follows.

1) We propose SVCNet, a novel framework for RSIR using
MSIs. Distinct from current DL-based RSIR methods,
SVCNet draws inspiration from human communication,
emphasizing the interactions, collaboration, and feedback
between spectral data and semantics.

2) We devise GACM to advance MVL beyond its usual
focus on view fusion and weighting. GACM integrates
relationships among view—view, semantic—semantic, and
semantic—view interactions, leading to more discrimina-
tive MSI representations for RSIR tasks.

3) We introduce two novel objective functions, the SAL and
TGCL functions. These functions optimize MSI repre-
sentations for RSIR tasks and enhance the versatility of
the extracted representations across both single-label and
multilabel scenarios.

4) Experimental results from three MSI datasets in both
single-label and multilabel scenarios show that SVCNet
is competitive with existing methods. Our model partic-
ularly excels in handling imbalanced class distributions
and identifying challenging samples, indicating its broader
applicability in RSIR tasks.

The rest of this article is organized as follows. We start by
introducing related work in Section II, and then present our
SVCNet in Section III. In Section IV, we conduct extensive
experiments on three datasets and compare our approach with
state-of-the-art methods. In Section V, we analyze and discuss
key features of our approach. Finally, Section VI concludes this
article.

II. RELATED WORK
A. Content-Based Image Retrieval

In CBIR, technological implementations involve feature ex-
traction and similarity measure [6], [7]. Before deep learning,
feature extraction in CBIR methods relied on handcrafted de-
scriptors for low-level visual features, such as color, texture,
and shape [8]. Deep learning frameworks, like ResNet [11],
DenseNet [26], and vision Transformer [16], are now widely
adopted in CBIR for their ability to discover discriminative
structures in image content and semantics [6], [7], [27], and
to automatically learn optimal feature representations.

For the similarity measure in the CBIR, traditional meth-
ods utilized combinations of hand-crafted features. Doulamis
et al. [28] introduced the maximum deviation class separa-
tion (MDCS) algorithm for video retrieval, using correlation
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coefficients between feature vectors as a distance metric. In
DL-based methods, deep metric learning (DML) projects inputs
into a metric space where representations of the same class
are brought closer together, while those of different classes are
separated, thus offering an end-to-end approach for extracting
representations in deep learning. In DML implementations,
Siamese networks learn in metric spaces by using comparisons
of similar and dissimilar class pairs [5], [19]. However, the large
volume of sample pairs resulting from extensive datasets in DML
has led to the development of batch optimization methods [27]
and selective pairing of samples [5], improving the performance
of DL-based CBIR methods. In DL-based RSIR methods, a
variety of advanced solutions have been proposed to enhance
feature representation and similarity assessment. For example,
Sumbul et al. [5] introduced a representative triplet selection
scheme for a more effective training of DL RSIR models. Huang
et al. [12] proposed a contrastive learning scheme to improve
similarity comparison.

In early CBIR systems, feature representations and their
weights were fixed. Given the limitations of computer-centered
approaches, relevance feedback (RF) mechanisms emerged, in-
corporating humans as part of the retrieval process [29], [30].
RF automatically adjusts existing queries using user feedback
about the relevance of previously retrieved objects, thereby
better approximating the user’s information needs and enabling
interaction between the user and the CBIR system [29], [31].
RF integrates human communication and thinking capabilities
into the CBIR system. The development of deep learning models
has automated this process through supervised learning of model
features before retrieval [29]. Building on and improving the RF
concept, this article addresses the limitations of existing meth-
ods, which lack interactive integration of various spectral infor-
mation and high-level category information. Building on the RF
foundations [32], [33], SVCNet uniquely emphasizes the crucial
interplay, collaboration, and feedback between spectral data and
semantics, making it exceptionally well suited for MSI retrieval.
In similarity assessment, SVCNet incorporates SAL and TGCL,
specifically designed to optimize MSI representations for RSIR
tasks. These components enhance performance and broaden the
versatility of representations in both single-label and multilabel
contexts.

B. Multiview Learning

MVL aims to harness the consistency and complementarity
between different views for extracting more robust represen-
tations [14]. Current methods are categorized as connection-
based, calibration-based, and hybrid [23]. Connection-based
MVL focuses on extracting and integrating information from
different views into a unified representation. While simple
and effective, this approach may introduce redundant infor-
mation. Calibration-based methods ensure alignment of rep-
resentations from different views within the same semantic
space through feature matching, typically using contrastive
learning [34] or adversarial training [14], but may lose uncal-
ibrated complementary information. Hybrid approaches value
the complex relationships between views. For example, Zhu
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et al. [35] introduced a gating aggregation mechanism to en-
hance information exchange and adaptive weighting between
views. Shuai et al. [36] adaptively quantified latent view rela-
tionships using relative attention blocks and transformer mod-
ules, constructing richer feature representations. Inspired by
human communication, Jia et al. [23] developed a model
in which each view harnesses complementary information
from other views to construct its representation, thus pro-
moting knowledge interaction and integration among different
views.

Compared to the above methods, our proposed SVCNet
employs a hybrid strategy, promoting multilevel, multiround
communication between views within the existing MVL frame-
work. By leveraging GNN, SVCNet effectively bridges semantic
information across different views, making it well suited for
RSIR tasks.

C. Graph Neural Networks

GNN s offer a versatile and efficient framework for learning
from graph-structured data. Their adaptability and potent rep-
resentational capabilities make them apt for various domains,
mainly when data embodies a collection of nodes with predic-
tions contingent on internode relationships. The central premise
of GNNss involves iterative state updates for each node through
interactions with its neighbors. Distinct GNN variants, such
as those in [37], [38], and [39], differ mainly in how nodes
accumulate and assimilate information from neighbors.

Within a GNN layer, node representations are input as {h; €
R? | i € V}. The layer outputs new node representations {h, €
R? | i € V}.Everynodei and its neighboring set \; are updated
using the same parameter function fy

h; = fo (hi,agg ({h; | j € Ni})). (1)

Here, function f and the aggregation agg(-) operation delineate
different GNN variants. For instance, in GraphSAGE [40], the
aggregation entails elementwise averaging, processed through
a linear layer and an ReLU activation as f. In this context,
graph attention networks (GAT) [41], [42], a prominent GNN ar-
chitecture, employs attention mechanisms to compute weighted
averages of neighboring nodes

k= fo (hi, A(h;,{h; | j € N;})) (2)

where A is an attention function. GAT represents a more pow-
erful variant of GNN in DL. Different GAT variants may have
distinct attention functions .A and mapping functions f, yet their
essence remains to more effectively aggregate neighbor nodes.

[II. METHODOLOGY
A. Overall Framework

For the RSIR task using MSI, we define a training dataset
Dt = {(T¢, )}, comprising N; images. Here, Z! represents
the ith MSI, while its corresponding one-hot encoded semantic
label is y! € {0,1}¢, with C being the total number of classes.
The query set, D? = {Z }?21’ contains N, images. These MSIs
have multiple bands, each capturing features from different
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TABLE I
BANDS COVERED BY SENTINEL-2’S MULTISPECTRAL IMAGER IN THE EUROSAT
DATASET AND EXPERIMENTAL VIEW PARTITIONING; DATA SOURCED FROM [2]

Center Wave

Attributes Bands Length (um) Groupl Group2 Group3 Group4
B02 0.49 1 1 1 1
RGB B03 0.56 1 1 1 1
B04 0.67 1 1 1 1
BO5 0.70 1 1 2 2
B06 0.74 1 1 2 2
Red edge
BO7 0.78 1 1 2 2
BO8A 0.86 1 1 2 2
NIR BO8 0.84 1 2 3 3
BO1 0.44 — — — —
Water-related B(Q9 0.94 — — — _
B10 1.38 — — — —
BI11 1.61 1 2 3
SWIR
BI2 2.19 1 2 3
Number of views 1 2 3 4

wavelength ranges. A given image Z; can be divided into M
distinct views, each aggregating a subset of these bands. Details
on this division can be found in Section IV-A and Tables I and
II. The multiview set comprising M combinations of spectral
bands for Z; is denoted as V; = {V; 1, Via, ..., Vim}.

The aim of SVCNet is to construct a mapping function
F:V; — RY, transforming the set of views V; derived from a
MSI Z,; into a d-dimensional unified representation e; = F(V;).
By combining and adjusting these individual views, SVCNet
captures the essence of the MSI. It ensures that semantically
similar MSIs have pairwise feature similarity in a metric space,
such as cosine space.

Fig. 2 provides an overview of SVCNet, structured in three
steps inspired by human communication mechanisms. Initially,
in the view understanding phase (Section III-B), each view,
through neural networks, generates high-level feature represen-
tations. These features, combined with decorrelated semantic
anchors, constitute the graph structures in GNN (Section III-C).
Subsequently, the GACM (Section III-D) further processes these
graph representations. Emulating the diversity and goal-oriented
nature of human communication, GACM employs graph atten-
tion mechanisms for multiround, goal-oriented view—semantic
interactions, achieving selective knowledge integration across
views. In the consensus and reflection phase (Section III-E),
the proposed SAL function aligns semantic anchors with corre-
sponding category information for supervision, reinforcing the
goal-oriented nature of human communication and adaptability
in single-label and multilabel RSIR contexts. Concurrently, the
TGCL function enhances communication outcomes, drawing
semantically similar semantic—view representations closer in the
metric space.
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TABLE II
BAND CHARACTERISTICS AND VIEW PARTITIONING IN THE SEA FOG AND
LSCIDMRV2 DATASETS; DATA SOURCED FROM [4]

Center Wave

Attributes  Bands Length (um) Groupl Group2 Group3 Group4t
albeo_1 0.46 1 1 1 1
Visible  albeo_2 0.51 1 1 1 1
albeo_3 0.64 1 1 1 2
albeo_4 0.86 1 1 1 1
Near-infrared albeo_5 1.6 1 1 1 2
albeo_6 2.3 1 1 1 3
tbb_7 3.9 1 2 2 2
tbb_8 6.2 1 2 2 4
tbb_9 7.0 1 2 2 4
tbb_10 7.3 1 2 2 4
Infrared tbb_11 8.6 1 2 2 2
tbb_12 9.6 1 2 3 3
tbb_13 10.4 1 2 3 2
tbb_14 11.2 1 2 3 2
tbb_15 12.3 1 2 3 2
tbb_16 13.3 1 2 3 2
Number of Views 1 2 3 4

1 According to [4], views in Group 4 are partitioned based on the
discriminative characteristics of the bands.
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Fig. 2. Overview of the SVCNet architecture. Modeled after human commu-
nication principles, SVCNet integrates view-based knowledge and semantic ob-
jectives into the learning process. It employs three types of graph structures and
utilizes graph attention mechanisms specifically to highlight view-to-semantic
relationships. SVCNet is optimized for these relationships using two objective
functions, both of which are grounded in the backpropagation mechanism of
deep learning, enhancing consensus and reflection in RSIR.

B. View Knowledge Understanding

It is expensive and ineffective to represent each spectral band
as an individual view for feature extraction in MSI analysis [4].
Feature extraction is performed on selected combinations of
spectral bands using visual feature extractors. Specifically, these
extractors are ResNetl8 [11] models pretrained on ImageNet.
The forward computation for a set of these view combinations,

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

V;, can be defined as
H(V) = {hm (‘/; m)}%zl = {Ui,lavi,27-"a (3)

where H = {hq, ha, ..., has} denotes a set of feature extractors.
Each h,, extracts features from the corresponding view V; ..
Here, v; », € R signifies the feature vector of the mth view
for the ith image.

Inspired by works such as [43] and [44], we recognize the
unique semantic characteristics often associated with different
classes. To capture these attributes, we introduce a set of decorre-
lated semantic anchors to act as semantic representations. These
representations are orthogonalized using the Gram—Schmidt
process before training and are utilized in later stages to enrich
the semantic understanding of our model. Let A € R€*9 be
a randomly initialized matrix of semantic anchors, where C'
denotes the number of classes. We utilize the Gram-Schmidt
orthogonalization to produce a set of decorrelated semantic
anchors, i.e.,

vi M}

N (a;) ifi=1
i—-1 (a;a p

N (ai == (a] ai) a]) ifi>1

where a; is the ith row of the matrix A, representing the seman-

tic anchor prior to orthogonalization. The function N (-) normal-

izes vector to unit length. Following orthogonalization, the an-

chors are assembled into a new matrix A = [@;, @z, . ..,ac|’,
thereby generating a set of decorrelated semantic anchors.

“)

a; =

C. Graph Network Construction

After obtaining the view and semantic anchor representations,
we proceed to construct various forms of graphs to capture their
relationships. To provide context for this construction process,
we introduce some preliminary definitions.

Definition 1. Node-relation tensor: Consider a graph
G=(,E),where V = {V1, Vs, ..., Vi } represents the set of
K nodes, that is, |V| = K. Each node V; is associated with a
d-dimensional feature vector x; € R%. We define the function
R :V — REXKX2d o construct the tensor capturing the rela-
tions between nodes as follows:

C(x1,x1) C(x1,%x2) C (x1,%XK)
R) = | € F2x1) . (5)
C(xK‘,xl) C(XK.,XK)

Here, C(-) denotes the concatenation of two feature vectors, such
that C(x;,x;) = [x;%;]

Definition 2. Multigraph connection tensor: Let two graphs
G =(0,&) and Gy = (Va,&) be given, where Vi =
v v and Vo = (VP VEN, with (V1| = K,
and | V2| = K. Each node Vi(l) possesses a d; dimensional fea-

ture vector xgl) € R%, and eachnode V}(Z) has a do-dimensional

(2

feature vector x; € R?, We define a multigraph connection

tensor constructor Q : V;, Vo — RE1Kax(ditd2) y4 follows:

Q(V1,V2)



WU et al.: HUMAN COMMUNICATION-INSPIRED SEMANTIC-VIEW COLLABORATIVE NETWORK

View Relation
Tensor

11235

)

g

Relation-based
Pooling

[

View-Semantic Relation Tensor

Semantic
Relation Tensor

(b)

)

i

Anchor

[Post-Communication Integration ]

=
o
2]
c
(%]
=
c
S
=
&
Q
o
2
=
c
[
=
(93
2@
=
2
>
o
(5]
=
©
°
Q
=)

Preserve Semantic

|

Iy T Positive
° YK { \‘.\ @ @ Sample Pair . Relevant Anchor
i TN .
i > \ @ Negative . Ground-Truth
/7 _ P@\ ',\ Sample Pair Bl relevant Anch
—> N ) rrelevant Anchor
% { ! { > ’ 5 (") ¢y Initial Tightened
L\ NHEZT S l \.- \..- Metric Space = & -
N\ 4 V\/ J E ategory-level )
(d) N oo 7,;_7 Graph Representations Anchor Representation
m/’\ Some 5 o /\ ) Cosine Metric Space

Fig. 3.

Graphical representation of key components in the proposed SVCNet. (a) GACM, which updates the interrelationships among views, semantics, and

view—semantics. (b) TGCL, a loss function designed for refined learning in multilabel settings. (¢) SAL function for aligning labels with learned semantic signals.
(d) Initialization procedure achieved via anchor decorrelation through Schmidt orthogonalization. (a) Graphical representation of graph attention-based multi-round
communication module(GACM). (b) Diagram of tightened graph contrastive loss. (c) Diagram of semantic alignment loss. (d) Anchor de-correlation via Schmidt

orthogonalization.

cxV,xP) eV x$)

Clxi xig)
e, V)
C(xgz,x?)) C(xgz,x%)

Building on Definitions 1 and 2, we explore three distinct
types of high-order connections within the graph: connections
between views, connections between semantic anchors, and
connections between views and semantic anchors, as illustrated
in Figs. 2 and 3(a). Among these, the view relation tensor
aims to highlight key views, while the semantic relation tensor
emphasizes crucial semantics formed by contributions from
multiple views. As for the connections between views and
semantic anchors, this relationship primarily underscores the
interdependence between views and semantic information. The
construction details are as follows.

1) View Relation Tensor: The view relation graph G com-
prises nodes V¥ = {v1,va,..., v}, representing the multi-
view set from Section III-A (we omit the sample index 7 for
simplicity). With |[V¥| = M, each node in G" signifies a distinct
view. We define the view relation tensor as E, € RM*xMx2d
which can be constructed using the node relation tensor function
R from Definition 1 as E, = R(VV) € RM*M>x2d

2) Semantic Relation Tensor: Similar to the construction of
the view relation tensor, the semantic relation graph G* includes
nodes V* = {@;, @z, ..., ac}, where @ are the orthogonalized
semantic anchors formed according to (4). With |V*| = C, the
semantic relation tensor E, = R(V*) € RE*¢*24 aims to learn

the relationships between different semantics and to foster con-
nections that are semantically representative.

3) View—Semantic Relation Tensor: The view—semantic re-
lation graph G*Y consists of nodes V*¥ = V* U V". Based
on (6) from Definition 2, the view—semantic relation tensor
Esv _ Q(VS, V”) c RCxszd_

We opt for relation tensors instead of mere similarity scores
to describe the connections between views and semantics. This
approach enriches the relationship by concatenating features,
offering a more comprehensive representation of the traits shared
between two nodes. Compared to relying solely on a single
similarity score, such feature concatenation captures more com-
plex and multidimensional relationships and interactions among
nodes. This not only facilitates the construction of intricate
graph network structures but also enables more efficient learning
of various characteristics of the relationships based on these
structures.

D. Graph Attention-Based Multiround Communication
Module

Fig. 3(a) illustrates the computational process of the GACM,
which emulates the multiround human communication process
in information acquisition, evaluation, and knowledge updating.
To achieve this, we employ two parallel sets of graph attention
networks to handle the encoding of view and semantic rela-
tion tensor, respectively. After the view understanding phase
described in Section III-B and before commencing with the com-
munication phase, we obtain initial view and semantic relation
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tensors corresponding to multiview representations and initial
semantic representations. These are denoted as Eq(JO)7 Ego), and

Eg?,) , which are assembled according to the methods detailed in
Section III-C, forming the view relation tensor, semantic relation
tensor, and view—semantic relation tensor. The procedure for the
rth round of communication is as follows.

1) Computing communication weights: Initially, attention
weights w; ,, are calculated based on the relational as-
sociations among nodes. Here, ¢ signifies the ith node.
The set A/ (i) represents all nodes that are connected to
node 7. Thus, n € N (7) U {i} refers to the index set of all
nodes connected to node ¢, including 7 itself. Specifically,
the attention weight w; ,, that governs the communication
between the ¢th and nth nodes is computed as follows:

W, = softmax (!172 (a (!Pl (EET;”)))) 7

where Egrn_ Ve R represents the relationship tensor
between nodes after the » — 1th round of communication.
The functions ¥, : R2¢ — R? and U5 : RY — R serve
as learnable linear mappings. The dimension d’ is the
hidden layer dimension post-linear layer mapping, and the
activation function o (+) is the LeakyReLU function.

2) Node relationship update: The updated node representa-
tion in a round of communication can be computed as

n
X; =Y wi;Us(x;),
j=1

where U3 : R? — R denotes a learnable linear mapping.
This formulation applies to connections between both
views and semantic anchors. Specifically, for the seman-
tic relation graph, x; = @; and x; =@, with n = C.
For the view relation graph G",x; = v; and x| = v
with n = M. After computing all the updated represen-
tations, we sequentially assemble them into updated rela-
tionship tensors E!" = R([@},ah,...,a.]) and E{) =
R([v),vh, ..., V]).

3) Postcommunication aggregated representation: After
multiple rounds of communication, we assemble the up-
dated graph nodes, denoted as V| = {v),vh,..., v}
for view nodes and V., = {@}, a5, ..., a,} for semantic
nodes. These are then processed through a graph-based
aggregation mechanism. Specifically, the aggregation op-
eration is formulated as

B, o (VLB +95,000LV)) - ®)
where the notation (-); ; specifies elementwise updates
for each row and column vector in E;;, Wl ©2 :

R?¢ — R? are learnable linear mappings, i = 1,...,C

and j =1,..., M, Q being defined in Definition 2, (6).

We then proceed to a final pooling step to aggregate

these relationships. The aggregated representation is cal-

culated as: e = 7 chﬂ Zj\il (E.,): ;. This aggre-
gated representation serves as a summarized yet com-
prehensive encapsulation of the relationships and features
learned across the network. Furthermore, all the updated
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semantic anchors are retained for subsequent optimiza-
tion, as discussed in Section III-E.

E. Objective Functions

In traditional retrieval methods, two challenges arise when
dealing with semantically rich, multispectral, multilabel scenar-
ios. First, conventional classification loss functions often force
features to converge toward class centers, resulting in a lack
of diversity. Second, these traditional approaches struggle with
ambiguous boundaries between positive and negative samples
in semantically rich, multilabel environments, leading to rep-
resentations with limited discriminative power. To tackle these
issues and achieve more precise semantic learning, as well as to
foster enhanced collective consensus and collective reflection,
we introduce two novel optimization techniques: SAL function
and TGCL function.

We use the updated set of semantic anchors A’ = [a@),

L ap]T € RO from Section III-D as representatives for
specific labels or categories, thereby enriching the model with
additional semantic information. Cosine similarity is used as a
metric to compute the relationship between each d-dimensional
sample feature e € R¢ and each semantic anchor. Specifically,
the category similarity vector s € R® is computed as follows:

—/
D C1./0 )
lefl2 - [[azll,
Here, (-) denotes the inner product, and s. €s Vcé€

{1,...,C}L

The proposed SAL aims to align the similarity between se-
mantic anchors and the correct categories. It utilizes a weighted
version of the cross-entropy loss £ E to achieve this alignment.
The standard cross-entropy loss LS E is given by

L (se,y,) = — [y log (sc) + (1 — y.)log (1 — s.)] (10)

and
1 &
L34 = gznc (1 —exp (£5F))" £EF (11)
c=1
where 7. and y function as weighting coefficients that prioritize
the contribution of rarer categories to the loss function.

In retrieval tasks, optimization methods based on contrastive
learning between sample pairs are critical. Typically, samples
sharing zero overlapping labels are treated as negative pairs.
However, in semantically rich multilabel settings, the boundary
between positive and negative samples becomes blurred due to
partial label overlap. To tackle this, we introduce a tightening
coefficient to fine-tune the delineation between these samples.
In an optimization batch containing b samples, let the sample
label matrix be denoted as Y = [y, ..., y,]7 € R®*C In the
context of a multilabel setting, the threshold vector d is computed
as follows:

S=YY' —diag(YY")

(Si;), i=1,2,...b
1

b
1
6_—[)_1 2 12)

J
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here, S € R**" serves as the label sharing matrix, capturing
the degree of label overlap between pairs of samples within
an optimization batch. The threshold vector § further reflects
the level of label sharing for each label within the batch.
Samples surpassing this level of sharing are likely to belong
to highly similar remote sensing scenes and should be pulled
closer in the metric space. Conversely, samples falling below
this threshold should be pushed apart. To maintain optimization
flexibility, we employ cosine similarity as the metric space for
feature optimization, an improvement based on [27]. We define
sets of relatively positive and negative samples as P; = {j |
S;,j > ‘sia.j = 1327' s ab’.] 7é Z} aHdM = {.] | S;,j S 5L7.] =
1,2,...,b;j #i}. These sets include sample indices that dis-
play a notable level of semantic similarity (or dissimilarity) with
sample ¢, as determined by the threshold §;, losses for relatively
positive samples and relatively negative samples are then defined
accordingly

1 (S
EgOGSC = alog 1+ Z e~ (Six 1)1
keP;
1
LT8¢ = 5log |1+ > eﬁ(s’”“_l)] (13)
k‘E./\/’i

where S;; represents the cosine similarity between the graph
representations of the ith and kth samples. Specifically,
it is calculated as: S, = (e’ -e") /(|| € ||z -|le*]2), a=
S s LS, > 8;) and B =Y0_, L I(S) ; < &;) serve
as weighting factors. These are calculated based on the number
of relatively positive and negative samples, respectively, and
are utilized to balance their respective influences, Z denotes
the indicator function. Note that in a single-label environment,
TGCL degenerates into a standard metric loss in [27], as the
number of shared labels for positive samples always exceeds
the threshold, while for negative samples it always falls below
the threshold. Ultimately, the aggregate loss £ is computed as
weighted sum of the SAL and the TGCL
SA TGC TGC
L= L7 + 2 (Lpow + Loy )-

pos neg

(14)

Semantic .
Pairwise contrast

Here, A = 0.5 serves as a hyperparameter to balance the contri-
butions of the two loss terms in the overall loss function L.

IV. EXPERIMENTS
A. Datasets

To evaluate SVCNet’s retrieval performance in Earth observa-
tion datasets, experiments were conducted on three MSI datasets
for single-label and multilabel RSIR tasks. These datasets sup-
port arange of satellite remote sensing applications, from remote
sensing scene recognition to large-scale, multilabel cloud and
weather system identification, and fine-grained meteorological
disaster recognition.

EuroSAT [2]. Single-label land use and land cover dataset:
The Sentinel-2-sourced EuroSAT dataset contains 27 000 la-
beled MSIs across 10 single-label land-use classes, spanning
13 spectral bands. View partitioning and band characteristics
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are detailed in Table I. RGB images are generated from Bands
B2, B3, and B4; near-infrared (NIR) and red-edge features are
captured by Bands BS5 to B8; and short-wave infrared (SWIR)
information is provided by Bands B11 and B12. Bands B1, B9,
and B10 are discarded as they are primarily used for detecting
aerosols or atmospheric water vapor. We randomly allocated
50% of the data for training and validation, while the remaining
50% was reserved for testing.

LSCIDMRv2 [4]. Multilabel land cover, cloud, and weather
systems recognition dataset: The LSCIDNRvV2 dataset, sourced
from the Himawari-8 satellite, comprises 16 spectral bands and
17 diverse labels in a multilabel setting. However, the dataset
exists in a condition of significant class imbalance; for instance,
Ocean accounts for 90% and Cirrus for over 80%. Classes such
as frontal surface (FS) and westerly jet (WJ) are minimally
represented, making up less than 1%, which complicates model
training. To mitigate this issue, we curated a subset that focuses
on five critical weather systems: tropical cyclone (TC), extra-
tropical cyclone (EC), FS, WJ, and stratus (St). Any sample
containing at least one of these five labels was included in this
subset. The label count statistics for this adjusted dataset are
depicted in Fig. 4(a). Despite these adjustments, the low sample
sizes for categories like WJ and FS continue to pose challenges
for retrieval and recognition. Further details on view partitioning
and band characteristics are provided in Table II. The division
of the dataset into training, validation, and testing sets follows
the guidelines provided by the dataset creators.

Sea Fog [3]. Single-label fine-grained meteorological hazard
recognition dataset: The Sea Fog dataset, sourced from the
Himawari-8 satellite, features 16 spectral bands and includes
four types of image labels: Clear Sky, Low Clouds, Mid-High
Clouds, and Sea Fog. The distribution of these labels is illus-
trated in Fig. 4(b). Notably, as shown in Fig. 4(c), the physical
properties of Low Clouds and Sea Fog are remarkably similar,
presenting a significant challenge for differentiation based on
this dataset [3]. For dataset partitioning, we follow the method-
ology outlined in [3], dividing the data into training/validation
and test sets. Fig. 4(b) provides further details on label
distribution.

B. Implementation Details

Experimental Setup: We implemented the proposed model
using the PyTorch framework and conducted all experiments
on an NVIDIA 3080Ti GPU with 16 GB of memory. During
the training phase, we employed the ADAM optimizer with a
learning rate set at 0.0001 and a batch size of 100. We used
random rotation and vertical flipping for data augmentation. In
the SAL, denoted in (11), the weight 7. was specifically set to
20 for rare classes, such as FS and W], in the context of the
LSCIDMRvV?2 dataset, with a «y value of 5. In other datasets, the
weight vector 7. in (11) was set as an all-ones vector, and ¥ was
set to 0.

The datasets were all subjected to fivefold cross-validation,
wherein 20% of the training data was randomly partitioned into a
validation set. This validation set was employed during the train-
ing process for hyperparameter tuning. The best-performing set
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Fig. 4. Data label statistics and sample examples from the Sea Fog Dataset.
(a) Label distribution in LSCIDMRV2 dataset. (b) Label distribution in Sea Fog
dataset. (c) Examples of different categories in Sea Fog dataset. In (c), RGB
color images were generated for display purposes using bands B03, B04, and
BO5 sourced from the Himawari-8 satellite.

of hyperparameters was subsequently chosen for the final model.
Upon identifying the optimal hyperparameters, the model was
retrained, and the version demonstrating the best performance
on the validation set was saved for further evaluation on an
independent test set.

Evaluation Protocol: In multilabel retrieval tasks, we em-
ployed three multilabel retrieval evaluation metrics: average cu-
mulative gain (ACG), weighted mean average precision (WAP),
and normalized discounted cumulative gain (NDCG) [45]. ACG
measures the average number of shared labels between the
query and the retrieved images. NDCG serves as a normalized
measure for assessing the quality of the ranking in the retrieval
results. wAP represents the average retrieval precision across
all query images. For single-label retrieval tasks, we employed
three metrics—mean average precision (mAP), precision (Prec),
and NDCG—to evaluate performance.

To objectively assess the model’s performance and applica-
tion potential, we also report on the recognition (classification)
performance based on retrieval results. Specifically, we consider
the top-k retrieval results, where if a category appears more than
k/2 times among the returned k& MSIs, the sample is classified
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as belonging to that category. This method is applicable to both
single-label and multilabel classification tasks, with k set to
100 in all our experiments. For multilabel classification based
on retrieval results, we adopted classwise average Fl-score
(cF1), classwise average accuracy (cACC), and average pre-
cision (AP) as evaluation metrics, following [4]. For single-
label classification, we used cACC, cF1, and Recall to assess
performance.

Competing Methods: To comprehensively assess the perfor-
mance of our proposed SVCNet, we selected a variety of state-
of-the-art (SOTA) retrieval and classification algorithms from
the literature as comparison benchmarks. To ensure the fairness
of the evaluation, we meticulously replicated all the compared
methods mentioned in the literature. These were retrained, and
their results were reported within the same training, validation,
and testing set environments across the three datasets. For
hyperparameter selection, we followed the recommendations
provided by the original authors of each competing method. Like
SVCNet, we employed a fivefold cross-validation scheme to
identify the optimal hyperparameters, reporting results obtained
under these optimal settings. Below are detailed descriptions of
the methods specifically chosen for comparison.

1) Baseline Models: To ensure a fair comparison, we employ
ResNet50 [11], DenseNet121 [26], and Vision Transformer
(ViT) [16] as our baseline models (we utilize the ViT-base
variant based on experimental validation). All are pretrained
on ImageNet. In these baselines, we concatenate all spectral in-
formation along the channel dimension. The models are trained
using the same tightened contrastive loss as used in (13) for
multilabel retrieval. Additionally, we incorporate appropriate
classification losses for both single-label and multilabel settings
to improve the baseline performance.

2) MS-GOGO [4]. Multilabel multiview satellite image clas-
sification method: It uses a set of convolutional layers for mul-
tiview feature extraction and integrates geographic and spectral
data to improve classification robustness. We replicated this
method and evaluated its performance on the LSCIDMRv2
dataset.

3) C-Tran [44]. Multilabel image classification framework:
C-Tran uses Transformer architectures and semantic embed-
dings to handle complex multilabel image classification tasks.
We tested this method’s effectiveness on the LSCIDMRv2
dataset.

4) GRN [13]. Multilabel remote sensing image retrieval al-
gorithm based on graph relation network: GRN employs graph
structures in its network to model relationships between samples
(or labels), and utilizes a scalable discriminative loss with binary
cross-entropy to enhance training accuracy for retrieval tasks.

5) DMMVH [35]. Deep metric learning-based multiview re-
trieval method: This method employs gating mechanisms to
learn the multiview interactions between multiview features
(e.g., text and image). We have appropriately adapted this
method, using features extracted by ResNetl8 from different
spectral combinations as view features and fusing them.

6) CSQ [43]: A method for both single-label and multilabel
retrieval that employs metric learning and center loss to capture
rich semantics.
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TABLE III
COMPARATIVE PERFORMANCE OF CATEGORY-SPECIFIC F1 SCORES AND OVERALL RETRIEVAL AND CLASSIFICATION METRICS ON THE EUROSAT DATASET; THE

BEST RESULTS ARE HIGHLIGHTED IN BOLD RED

, WHILE THE SECOND-BEST ARE IN BOLD BLUE

Metric Type Class/Metric ResNet50 DenseNetl21 ViT CSQ SCFR DMMVH AWNet DAH DGSSH SVCNet
Annual Crop 87.72 92.28 9420 92.78 90.38 95.43 9382 9479  95.93 96.98
Forest 96.65 96.68 98.15 97.63 95.79 95.75 9594 96.76  96.87 99.13
Vegetation 85.34 88.62 93.70 92.00 90.57 91.05 90.65 9349  93.07 94.59
Highway 88.10 89.46 88.53 90.76  90.26 94.92 9593 96.14  96.46 97.06
F1 per Class Industrial 94.92 96.05 9426 9572 95.16 98.10 96.65 97.11  96.70 98.57
(%) Pasture 87.46 89.40 90.56 90.96 88.51 90.85 89.85 9226 91.95 94.94
Crop 80.74 87.26 87.71 89.55 87.72 90.30 90.01 9221  92.85 93.30
Residential 94.48 95.52 9392 9580 95.73 98.66 96.94 9732  97.61 98.97
River 97.07 97.21 96.17 9793 97.76 96.86 96.53 97.63  97.95 97.95
Sea Lake 99.87 99.73 99.63 99.83  99.90 99.47 99.46  99.40  99.57 99.73
Retrieval Metrics mAP 91.81 93.36 93.88 94.59 93.35 94.75 92.15 9346  94.65 97.35
(%) Precision 90.08 92.53 92.99 9380 9245 93.99 91.50 9342  93.94 97.03
NDCG 95.54 96.11 96.57 96.64  96.09 97.24 95.10 9595 9645 98.30
Recognition cACC 91.35 93.13 93.79 94.14 93.20 95.09 94.61 95.64 95.81 97.09
Metrics(%) cF1 91.23 93.22 93.68 9430 93.18 95.14 96.57 95771  95.89 97.12

TABLE IV

COMPARATIVE PERFORMANCE OF CATEGORY-SPECIFIC F1 SCORES AND OVERALL RETRIEVAL AND CLASSIFICATION METRICS ON THE SEA FOG DATASET

Metric Type Class/Metric  ResNet50 DenseNet121 VIiT CSQ SCFR DMMVH AWNet DAH DGSSH SVCNet(Ours)
Clear Sky 99.56 100.00 99.56 97.00 99.56 100.00 99.56 99.11 98.26 100.00
F1 per Class Sea Fog 87.93 88.24 89.87 61.60 88.60 90.76 85.05 90.13  90.13 92.11
(%) Mid-high Cloud 90.73 91.95 91.76 85.62 93.60 90.14 90.66 9236  93.06 93.20
Low Cloud 82.07 84.00 86.12 6498 86.15 83.33 8298 8539  85.82 87.12
Retrieval Metrics mAP 87.69 90.25 89.54 73.16 90.54 89.84 77.88 78.08  79.54 91.32
(%) ’ Precision 85.92 89.15 88.25 70.40 89.62 88.09 76.86 74.87  79.13 90.40
NDCG 94.33 95.28 9496 88.00 94.61 95.35 88.74  90.65  89.66 96.00
Recognition cACC 90.11 91.13 91.74 7772 91.94 91.17 89.35 9170 91.94 93.03
Metrics(%) cF1 90.07 91.04 91.83 77.30 91.98 91.06 89.56 91.74 91.81 93.10

The highest results are highlighted in bold red, while the second-highest are in bold blue.

7) FDRL [46]. Multilabel remote sensing image retrieval
method: This method employs feature disentanglement guided
by label similarity and mutual learning. Using the BNInception
network for multiscale feature extraction, it partitions features
into high and low correlation categories to enhance multilabel
retrieval robustness.

8) SCFR [12]. Supervised contrastive learning for single-
label remote sensing image retrieval: This method uses su-
pervised contrastive learning to refine feature distributions and
incorporates a dynamic center loss to improve retrieval perfor-
mance.

9) DGSSH [47]: A deep global semantic structure-preserving
RSIR framework that utilizes the Swin Transformer architecture
to extract global and multiscale features of RSI. DGSSH intro-
duces a corrective triplet loss to learn discriminative and stable
remote sensing image representations.

10) DAH [48]: A deep attention-based retrieval method with
distance-adaptive ranking. The deep attention mechanism cap-
tures critical details of the remote sensing images and suppresses
irrelevant regional responses. It also introduces a balanced
pairwise weighted loss function with a distance-adaptive ranking
strategy to fully leverage class information.

11) AWNet [49]: An adaptive weighted learning network for
RSIR, AWNet dynamically adjusts the weighting parameters of
the combined active—passive loss function based on two metrics,
enhancing the discriminative ability and retrieval accuracy of
RSI representations.

C. Experimental Results for Single-Label Retrieval Task

In this section, we evaluate the performance of our proposed
SVCNet and compare it with other SOTA methods on the
EuroSAT and Sea Fog datasets. Numerical results are detailed
in Tables III and IV, and visual comparisons are illustrated in
Fig. 5.

1) Main Results on EuroSAT:: Table III and Fig. 5 present
the principal findings on the EuroSAT dataset. As indicated by
these results, SVCNet performs better in overall performance
compared to the other methods. Observations from Table III
reveal that multiview methods, specifically DMMVH and SVC-
Net, hold a distinct advantage over traditional single-view mod-
els that merely concatenate multispectral data along the chan-
nel dimension. The marginal performance differences among
single-view methods further emphasize the importance of MVL.
Moreover, among the multiview approaches, SVCNet demon-
strates the highest accuracy, exceeding DMMVH by 1.98% in F1
score. This suggests that SVCNet’s integration of graph-based
learning is effective in capturing both view-specific and semantic
information, leading to more discriminative representations.

2) Main Results on Sea Fog:: In the Sea Fog dataset, sea
fog acts as a natural hazard, making its accurate identification
particularly crucial. Although the contrastive learning method
SCFR is capable of extracting discriminative representations, its
performance on identifying sea fog may leave something to be
desired, closely resembling the baseline methods. Our proposed
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TABLE V
COMPARISON OF MULTILABEL RETRIEVAL AND RECOGNITION PERFORMANCE ON THE LSCIDMRV2 DATASET

Retrieval Metrics

Classification Metrics

Algorithm Task Type Method
ACG NDCG(%) WAP ACC(%) FI(%) AP(%)
- C-Tran [44] _ _ _ 87.92 74.86 8741
Classification MS-GOGO [4] _ _ _ 89.55 81.10 88.49
ResNet50 [11] 6.52 8228 6.58 86.01 75.69 84.44
DenseNetl21 [26] 6.64 8358 6.70 87.71 79.47 86.58
ViT [16] 6.70 8435 6.77 87.96 79.49 85.95
Retrieval FDRL [46] 6.47 8218 6.54 86.37 7572 83.61
DMMVH [35] 6.44 8208 6.53 86.68 79.17 86.98
GRN [13] 6.08 78.33 6.15 84.63 66.91 7953
CSQ [43] 6.22 80.22 6.30 8328 6739 7475
AWNet [49] 6.82 8547 6.87 89,31 79.93 85.83
DAH [48] 6.87 86.08 6.92 89.50 80.24 86.61
DGSSH [47] 6.91 86.76 6.97 89.71 80.51 86.80
SVCNet (Ours) 7.00 86.86 7.03 89.52 8273 89.02

The highest results are highlighted in bold red, while the second-highest are in bold blue.
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Fig. 5. Retrieval and classification performance across a range of returns on
EuroSAT and Sea Fog datasets. (a) EuroSAT. (b) Sea Fog.

20 40 60 80 1
Number of Returns

20 40 60 80 100
Number of Returns

method outperforms the second-best method, SCFR, by 3.51%
in sea fog identification accuracy and surpasses other multiview
methods by 1.35% in accuracy. In terms of overall performance,
our proposed method exceeds the second-best method by 1.12%,
demonstrating its superior ability to learn discriminative se-
mantics in fine-grained samples, thereby achieving improved
retrieval and identification.

D. Experimental Results for Multilabel Retrieval Task

Table V and Fig. 6 show how SVCNet compares to bench-
marked methods on the LSCIDMRV?2 dataset across retrieval
and classification tasks. Based on these results, the following
main observations emerge.

1) Optimal performance: SVCNet achieves the best
performance, highlighting the efficacy of incorporating

human-communication-inspired MVL to effectively mine se-
mantic information. This allows for more accurate multilabel
retrieval in complex remote sensing environments. Compared
to the second-best method, ViT, SVCNet improves the ACG by
0.30, indicating its ability to retrieve samples with more shared
labels while maintaining multilabel accuracy. Additionally, it
surpasses the advanced graph-relation-based retrieval method,
GRN, by increasing the category-average F1 score by 15.82%,
which suggests that the retrieved multilabel samples are both
more similar and more accurate.

2) Multiview advantage: Methods that employ MVL, such as
SVCNet, MS-GOGO, and DMMVH, stand out in classification
metrics like F1 and multilabel AP, underscoring the advantages
of MVL.

3) Discriminative feature representation: While SVCNet is
not specifically tailored for classification, it either matches or
outperforms specialized classification methods like MS-GOGO
and C-Tran. This suggests robust discriminative feature repre-
sentation within SVCNet.

E. Robustness Analysis in Multiview Settings

We conducted experiments to evaluate the robustness of SVC-
Net in varying MVL contexts. Spectral bands were classified
based on their physical properties, as detailed in Tables I and II.
Results for different view groupings on the Himawari dataset,
corresponding to LSCIDMRvV2 and Sea Fog datasets, are de-
picted in Fig. 8, while findings related to the Sentinel-2 satellite
(corresponding to the EuroSAT dataset) are presented in Fig. 8.
Key observations from Figs. 7 and 8 include the following.
1) Adding more views in multilabel retrieval enhances perfor-
mance. Specifically, the ACG rises from approximately 6.6 in
a single-view setting (Group 1) to around 6.9 in a multiview
context (Group 2). 2) In single-label retrieval tasks, fewer views
can occasionally result in reduced performance, particularly in
complex scenarios such as sea fog detection. This limitation
is mitigated by incorporating more views, leading to more
accurate detection and corroborating our initial hypothesis that
MVL offers advantages in handling complex tasks. 3) Overall,
partitioning data into multiple spectral bands facilitates better
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feature extraction as described in Section III-B. ResNet18 is em-
oo o ployed for feature extraction from each view, followed by con-
g fosso catenation and dimensionality reduction via a fully-connected
68 layer. To ensure a fair comparison, the base model is optimized
0.825 . . .
using metric loss [27] for retrieval and cross-entropy loss for
6.7 .
0.800 semantic enhancement.
o6 e 2) Base+GACM: Building on the “Base” configuration,
we extend the model by incorporating the GACM module
U e A e as outlined in Section III-D. Semantic anchors are initial-
(b) ized randomly and subjected to graph pooling to produce
multiview sample representations. These are subsequently as-
Fig.7. Bar chart of experimental results on view groups from the Himawari-8  sessed for sample similarity using multisimilarity loss [27]

satellite. Definitions for Groups 1—4 can be found in Table II. (a) Retrieval
performance and classification performance across different view groups in
the Sea Fog dataset. (b) Retrieval performance and multilabel classification
performance across different view groups in the LSCIDMRv?2 dataset.

information exchange within graph networks, thereby boosting
performance in satellite image recognition.

F. Module Functionality Analysis

To rigorously explore the effects of individual components
and steps on model performance, we executed a set of ablation
studies. These experiments scrutinize key elements: GACM,
decorrelated semantic anchors (DSA), TGCL, and SAL. Let us
first delineate the following core configurations.

and further enriched with cross-entropy loss for semantic
guidance.

3) Base+GACM+DSA: Building on the “Base+GACM”
setup, this configuration incorporates DSA as described in Sec-
tion III-B, aiming to further enhance the discriminative power
of class representations.

4) Base+GACM+DSA+SAL: Extending the above configu-
ration, we replace the conventional classification loss with the
SAL introduced in Section III-E.

5) Base+ GACM+DSA+TGCL: In multilabel retrieval tasks,
we only utilize TGCL as the metric loss for training our SVCNet.

As shown in Tables VIand VII, we analyzed the LSCIDMRv?2
dataset in Table VI and the EuroSAT and Sea Fog datasets in
Table VII. Our main findings are the following. 1) In multilabel
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TABLE VI
ABLATION EXPERIMENT IN LSCIDMRV2

LSCIDMRv2
Base GACM DSA SAL TGCL wAP NDCG(%) F1(%) AP(%)
[ ] @) @) @) @) 6.61 82.42 78.18 86.43
o ([ J @) @) @) 6.97 86.36 80.80 88.29
[ o [ J @) O 6.99 86.57 81.35 88.37
o [ ] [ ) [ } O 7.02 86.61 81.58 88.80
[ ] ([ J [ J O [ ] 6.99 86.76 82.48 88.93
[ ] o [ J [ ) [ ) 7.00 86.86 82.73 89.02
The highest results are highlighted in bold.
TABLE VII
ABLATION EXPERIMENT IN SEA FOG AND EUROSAT (%)
Sea Fog EuroSAT

Base GACM DSA SAL

mAP NDCG F1 mAP NDCG Fl

(] O O O 89.10 9441 91.51 9478 97.03 94.99
(] [ ] O O 8754 9423 9093 97.05 98.11 96.85
(] [ J @® O 8932 9492 9291 97.29 9828 97.07
[ ] [ ([ ® 9132 96.00 93.10 97.35 98.30 97.12

The highest results are highlighted in bold.

image retrieval tasks, the employment of the GACM for multi-
view information communication notably enhanced the model’s
performance. Specifically, compared to the straightforward con-
catenation of multiview features, the wAP on the LSCIDMRv2
dataset for multilabel retrieval tasks increased from 6.61 to 6.97,
and the classification Fl-score rose from 78.18% to 80.80%.
This validates the efficacy of our GACM approach in multilabel
retrieval and identification tasks. 2) It is worth noting that the
stand-alone application of GACM on the Sea Fog datasetled to a
slight decline in performance. Interestingly, under the guidance
of DSA, the model’s performance improved relative to the
“Base” model. This indicates that the use of initialized semantic
anchors serves a positive role; it not only guides semantic learn-
ing more effectively but also adapts well to scenarios where the
sample size is relatively limited. 3) The proposed loss functions,
TGCL and SAL, have a positive impact on both single-label and
multilabel retrieval tasks. Their combination outperforms the
standard approach of metric loss combined with cross-entropy
classification loss, enhancing retrieval performance. Notably,
employing TGCL alone shows superior performance over this
standard combination, highlighting TGCL’s efficacy in multil-
abel retrieval tasks. 4) In summary, with the incremental imple-
mentation of the proposed components, performance across the
three datasets was gradually enhanced in most scenarios, thereby
substantiating the effectiveness of each individual component.

Moreover, to further assess the contribution of the metric loss,
we tested the performance under different conditions by varying
the weighting function coefficient A in (14). The results reported
in Table VIII indicate a performance decline for two datasets
when A = 0. Conversely, when A > 0.2, there is a marked
improvement in performance. This suggests that appropriately
increasing the weight of the TGCL contributes positively to the
enhancement of retrieval results.
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TABLE VIII
RESULTS OF HYPERPARAMETER TUNING FOR THE BALANCE FACTOR A IN (14),
WITH THE BOLDED A INDICATING THE SETTING ADOPTED IN THIS STUDY; THE
BOLDED EXPERIMENTAL RESULTS REPRESENT THE OPTIMAL OUTCOMES

A LSCIDMRv2 Sea Fog
wAP F1(%) mAP(%) F1(%)
0 6.80 79.09 87.79 90.55
0.1 6.90 80.00 85.65 91.50
0.2 6.96 81.13 87.95 92.13
0.3 6.98 80.80 88.65 92.19
0.4 7.00 82.05 90.89 92.18
0.5 7.00 82.73 91.32 93.10
0.6 7.00 82.50 90.19 93.05
0.7 7.01 81.61 81.05 94.05
0.8 6.98 81.58 89.86 93.53
0.9 6.99 81.56 85.79 92.79
1 7.01 82.05 89.31 92.90

The highest results are highlighted in bold.

TABLE IX
PERFORMANCE COMPARISON IN SELECTED CATEGORIES ON THE LSCIDMRvV2
DATASET, WHERE BOTH RECALL AND AP REPRESENT THE RECALL AND
AVERAGE PRECISION FOR EACH CATEGORY, RESPECTIVELY

Method FS Wi
Recall(%) AP(%) Recall(%) AP(%)
MS-GOGO [4] 23.21 31.74 68.89 58.15
DMMVH [35] 21.43 39.42 62.22 59.96
ViT [16] 12.50 25.11 62.22 63.52
Ours 76.69 44.15 77.07 64.86

The highest results are highlighted in bold.

TABLE X
PERFORMANCE COMPARISON IN SELECTED CATEGORIES ON THE SEA FOG
DATASET, WHERE BOTH RECALL AND AP REPRESENT THE RECALL AND
AVERAGE PRECISION FOR EACH CATEGORY, RESPECTIVELY

Method Sea Fog Low Cloud
Recall(%) F1(%) Recall(%) F1(%)
ViT [16] 87.93 89.86 91.66 86.12
DMMVH [35] 93.10 90.75 83.33 83.33
SCFR [12] 87.06 88.59 84.84 86.15
Ours 90.52 92.10 87.12 87.12

The highest results are highlighted in bold.

G. Quantitative and Qualitative Analysis of Challenging
Samples

In the LSCIDMRV?2 dataset, the categories FS and WJ, which
have a limited number of samples, present particular challenges
for accurate retrieval. In the Sea Fog dataset, the differentiation
between low clouds and sea fog presents a challenge due to their
similar physical properties. To demonstrate the effectiveness of
our proposed method in these challenging identification tasks,
we selected two models with superior overall performance for
comparative experiments: a well-performing baseline model,
ViT, and a MVL model, DMMVH. Qualitative results are pre-
sented in Figs. 9 and 10, while quantitative outcomes are detailed
in Tables IX and X, the reported Recall, AP, and F1 in the tables
are all category-specific values.

Figs. 9 and 10 demonstrate that when faced with multi-
label query samples, our proposed SVCNet model exhibits
superior retrieval performance. In contrast, alternative meth-
ods frequently misclassify FS and WJ as EC. In the task of
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Fig. 9. Case study results for retrieval in classes with low sample sizes, comparing SVCNet with select methods.
Rank | 1st 50, 100, 500, 10om,  Methods TABLE XI
Query (Acc@100). COMPARISON OF TRAINING AND RETRIEVAL TIMES IN DIFFERENT METHODS
» m SVCNet(ours) P .
8 | ¢ ‘ (0.85) Parameters Tramn.lg time  Retrieval time
Sea Fog SeaFos ”Sea foo Sea Fog Sea Fog Model ™M) (sfiter)  (ms/100 queries)
w ' ResNet50 [11] + MS loss [27] 25.5 0.88 15
b, B! ViT [16] + MS loss [27] 27.1 2.18 130
B, Sl —— el el DenseNet121 [26] + MS loss [27] 8.0 1.35 76
SeaFog CSQ [43] 25.4 0.23 13
it SCFR [12] 58.18 1.35 170
§ (0.26) DMMVH [35] 51.0 2.64 110
SeaFog  Sea Fog LowCloud  LowCloud  Low Cloud GRN [13] 67.1 2.56 580
‘ AWNet [49] 26.4 0.29 32
i G 1 DAH [48] 25.9 0.55 85
SV%‘?@‘)’WS) DGSSH [47] 50.6 2.99 275
"
Low Cloud Low Cloud  Low Cloud SVCNet (1 view) 12.9 1.26 65
SVCNet (2 views) 24.1 1.49 83
DMMVH SVCNet (3 views) 353 1.64 102
Low Cloud ©023) SVCNet (4 views) 46.6 1.69 135
Sea Fog Sea Fog Sea Fog Sea Fog Sea Fog
ViT
(0.38) . .
Seafog  SemFos  LowCloud  SeaFog  LowCloud GPU with 16 GB of memory. The results are shown in Table XI.
The training time refers to the time taken for one iteration with a
Fig. 10.  Case study results for retrieval in hard-to-distinguish classes (low  patch size of 100, excluding data preprocessing time. Retrieval

clouds and sea fog), comparing SVCNet with select methods.

distinguishing between sea fog and low clouds, SVCNet also
manifests optimal performance, while other techniques are
prone to conflating the two categories. Tables IX and X cor-
roborate these findings by showing that, among all samples with
specific labels, our proposed method achieves the highest recall
rates, outperforming other techniques by over 10%. Notably, in
the identification tasks involving low clouds and sea fog, our
method exhibits the highest overall performance.

H. Model Efficiency Evaluation

We conducted experiments to evaluate the efficiency of the
proposed SVCNet compared to all compared deep learning
models, including model parameters, training time, and retrieval
time. All models were trained and tested on an NVIDIA 3080Ti

time refers to the time taken during testing to process a batch of
100 queries and return the database index results, measured in
milliseconds.

For the baseline methods trained with multisimilarity (MS)
loss function [27], the parameter count and training/retrieval
time of SVCNet increase with the number of views, as different
view encoders are not shared. We evaluated the parameter count
and retrieval time with different numbers of views. The results
show that the proposed method has certain advantages compared
to some advanced methods, but consumes more time compared
to lightweight general retrieval methods, such as the baseline
model, CSQ, and DMMVH.

V. DISCUSSION

We introduce a MVL framework called SVCNet, inspired
by human communication mechanisms, designed to explore the
intricate associations between various spectra and semantics for
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more discriminative MSI representations. In this framework,
multiview feature extraction serves as the understanding phase,
while the GACM corresponds to the communication phase.
Additionally, we incorporate two improved loss functions aimed
at facilitating more precise semantic learning.

The overall effectiveness of the proposed method is substan-
tiated by the results presented in Tables III-V. When compared
to multiple SOTA approaches across three datasets, SVCNet
achieved the best overall performance, demonstrating its ca-
pability to generate more discriminative representations than
alternative methods. The efficacy of the individual components
is further validated in Tables VI and VII. As various components
are replaced by those proposed, a consistent improvement in
model performance is observed. Notably, even without employ-
ing SAL and TGCL, our method achieved a wAP score of 6.97
when the GACM module was included. This surpasses many ad-
vanced remote sensing multilabel methods, such as GRN (wAP
of 6.15) and FDRL (WwAP of 6.54), highlighting the effectiveness
of multiview graph learning in mining remote sensing images
and further attesting to the utility of GACM. Moreover, the two
loss function components we propose further promote a better
consensus and reflection, especially the combination of SAL and
GACM, which achieved F1 scores 0f 92.91% and 97.07% on the
Sea Fog and EuroSAT datasets, respectively, outperforming all
other methods in Table IV. Figs. 7-10, along with Tables IX
and X, further demonstrate the model’s robustness and addi-
tional gains, notably the robustness of MVL and the enhanced
recognition of rare categories.

Despite achieving the promising results, this study has several
limitations. While our model demonstrates strong performance
in multispectral settings and performs well under the single-view
conditions depicted in Figs. 7 and 8, we have not yet empirically
validated it on datasets featuring only single-view RGB remote
sensing images. Additionally, the LSCIDMRV?2 dataset exhibits
a long-tailed distribution of labels. Certain rare weather system
categories, such as FS and WIJ, appear with a frequency of
less than 1%. This overrepresentation of head classes could
potentially interfere with the training of the retrieval network.
To mitigate this, we have selected a subset of the LSCIDMRv?2
dataset for our experiments. Future research will introduce
targeted algorithms, especially for those extremely scarce
multilabel situations, and will employ the complete long-tailed
dataset for validation.

VI. CONCLUSION

This article introduces SVCNet for RSIR tasks, an MVL
framework inspired by human communication mechanisms.
SVCNet represents image content and measures view—semantic
relationships, characterizing the degree of association between
views and categories for precise selective knowledge fusion.
Linking MVL with GNNs, SVCNet simulates the three stages
of human communication—understanding, communication, and
collective consensus and reflection—thereby enhancing RSIR
with flexible representation extraction. The versatility and effi-
cacy of SVCNet are demonstrated through experiments on three
multispectral remote sensing image datasets in both single-label
and multilabel scenarios. Compared to existing SOTA methods,
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SVCNet exhibits superior performance, particularly in handling

class imbalances and difficult-to-distinguish samples, highlight-

ing its broad application potential in diverse RSIR contexts.
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