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Abstract—Hypersharpening is one of the fusion-based superres-
olution approaches in remote sensing that improves the spatial and
spectral resolution of a hyperspectral image (HSI) with a low spatial
resolution. This requirement is achieved by fusing the HSI with a
panchromatic image that has high spatial resolution to generate a
newly combined variant, which has high spatial quality and high
spectral resolution. While several studies in the literature applied
neural networks for hypersharpening, there exist unsolved issues
such as how to deeply discover the spatial–spectral correlation
and inject geometric details without distortion. To address these
issues, we propose a hypersharpening technique by applying a
multicomponent-based hierarchical fusion network called (HS-
McHF), which hierarchically learns the low and high-frequency
spatial–spectral features. We then suggest an optimization model
to discover the correlation between low-resolution HSI and high-
resolution panchromatic images and solve it by stochastic gradient
descent through a neural network. Moreover, we decrease the band
overlapping in the initial HSI by combining a deconvolution model
to prevent spectral distortion and reduce the noise in the panchro-
matic geometric details injection by deploying an encoder–decoder
network. Our extensive experiments demonstrate that the HS-
McHF provides superior efficiency compared to state-of-the-art
fusion based superresolution approaches.

Index Terms—Deep-learning, hyperspectral image (HSI), image
fusion, pansharpening, superresolution.
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I. INTRODUCTION

S PECTRAL imaging refers to a set of analytical image pro-
cessing approaches that integrates spectroscopy and con-

ventional imaging data to gain spectral and spatial information
from a visual object. Hyperspectral image (HSI) is generated
by a spectral imaging approach that contain thousands of bands,
which are captured by cameras with high spectral resolution in
much narrower spectral bands (10–20 nm) [1]. Due to current
software and sensor constraints, combining spectral, spatial, and
temporal information through a single sensor is a challenging
task. HSI with a high spatial–spectral resolution is obtained
by integrating the complementary information from low spatial
resolution HSI and high spatial resolution image data. This tech-
nique is called the superresolution mechanism, which addresses
this challenging task by providing high-frequency information
from low-resolution input data through two models: single hy-
perspectral superresolution (ShSR) and fusion-based hyperspec-
tral superresolution (FhSR) with assistive information from a
panchromatic (PAN) image, RGB image, or multispectral image
(MSI). In the ShSR approaches such as [2], [3], and [4], authors
have developed several models, such as filtering models as linear
bicubic to approximate the pixels of the neighborhood, sparsity
to explore spectral redundancy and deep learning algorithms,
which solve the ShSR problem by applying convolutional neural
network (CNN).

Fusion-based mechanisms can combine the spatial imaging
data as guided images in the high-resolution with the spectral
information in the low-resolution HSI (LR-HSI) to produce a
high spatial–spectral resolution HSI. Hypersharpening as an ef-
ficient FhSR mechanism can generate output with high spatial–
spectral resolution from low spatial resolution HSI and high
spatial resolution PAN images. In the literature, researchers have
suggested several models to address FhSR, such as component
substitution (CS) [5], multiresolution analysis (MRA) [6], opti-
mization algorithms [7], and CNN [8], [9]. Over the last decade,
because of the advancements in computing systems (e.g., CPU
and GPU), neural network applications have demonstrated more
satisfactory results and better performance in several areas (e.g.,
superresolution in remote sensing). Another advantage of the
deep neural network is the ability to overcome the limitations
of traditional methods, such as CS and MRA, which require
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prior image conditions, such as low rank and sparsity. To avoid
the constraints and better explore geometric details and spectral
information, we employ the multicomponent-based hierarchi-
cal features fusion network to enhance the superresolution of
HSIs. The key point of our proposed method contains three
modules. We detect the spatial feature mapping from the HSI
with low resolution to the output with high resolution using a
gradient descent optimization approach. Neural networks typ-
ically use the concatenation of HSI and PAN as their input.
However, the HSI downsampling process leads to the loss of
a significant amount of spectral information. This results in
incomplete features that are inadequate to inject spatial–spectral
details. To address this issue, the second module extracts the
spectral features by learning the spectral response matrix to
convert the assistive image to an HSI and combine it with
the geometric feature maps. While neural-based networks have
numerous advantages, they often lack sufficient spatial details
because they cannot extract multiscale information. A solution
to this problem is multiscale modeling, which combines low
and high-resolution information to learn discriminative features.
Therefore, we provide hierarchical blocks in the third module.
These blocks generate a multiscale feature representation that
can hierarchically combine two types of shallow and deep infor-
mation. In addition, discovering the HSI channel’s relevancy can
effectively increase the model’s efficiency and achieve decisive
results, but it is ignored in many fusion-based networks in
the literature. For this purpose, we investigate the potential of
devising a spectral deconvolution (SD) method in our model
for crafting bands overlapping reduction and having HSI with
sharper spectral information.

In the following, we summarize the contributions of this study.
1) To inject the spatial information into spectral features

and learn the spatial–spectral correlation, we propose a
multicomponent-based hierarchical fusion network (HS-
McHF) for FhSR, which consists of multiscale sub-
networks to estimate the high-resolution HSI (HR-
HSI) from the low-resolution version of HSI and PAN
images.

2) To achieve the highest sharp spectral features, we address
the bands overlapping issue by solving the optimization
problem based on energy function adjustment between
LR-HSI and PAN images. Then, we fuse the spatial and
spectral features with high-pass information from the as-
sistive image to craft HR-HSI with full features.

3) To obtain the spatial, spectral, and structural features from
the observed pair, we design the loss functions, which
utilize the simultaneously preserving spatial, structural,
and spectral information to enhance the efficiency of the
HS-McHF.

II. RELATED WORKS

In this section, we briefly discuss the state-of-the-art fusion-
based superresolution neural network-based models considering
their highlights and limitations. In the literature, researchers
have developed neural networks-based models to hypersharpen
satellite images [10], [11], [12] with fixed prior knowledge

(e.g., HSI and PAN) and different network designs in terms of
layers and objective function. These fusion-based models can
be divided into three categories: input-level, feature-level, and
model-based [13]. At the input level, researchers expand HSI in
the LR-HSI to a size of PAN to generate an upsampled version
of LR-HSI and enter these variables as input to the network.
For instance, Masi et al. [12] introduced a deep learning-based
pansharpening model in which a CNN with three layers was
developed to create high-resolution MSI by combining the PAN
and upsampled version of the LR-HSI. Moreover, Luo et al. [9]
have presented an approach based on CNN, which combines the
LR-HSI and PAN to develop the model input. This study applied
a CNN-based block with three layers and a multiscale block
containing several convolutional layers to extract and merge the
results of the two blocks to obtain the output. Furthermore, He
et al. [14] proposed a residual neural network, which applies
seven convolutional layers using skip connection and L1 norm in
the loss function. In this work, the authors assign the features of
low-resolution MSI as PAN to feed the inputs. Later, Zheng et al.
[15] developed a deep residual network (ResNet) that employs
a spatial and spectral attention mechanism for pansharpening
tasks. In this study, researchers extrapolated the input images by
performing the DHP algorithm and PAN, as well as applying the
multiple channel spatial attention blocks to fuse the inputs and
generate the output.

In the feature-level-based approaches, authors merge the
spectral and spatial features through the LR-HSI and PAN
for hypersharping the HR-HSI. For example, Shim et al. [16]
proposed an end-to-end deformable convolution network that
trained based on the similarity between low- and high-resolution
pixels to merge downsampled PAN information with the features
of the low-resolution image. Furthermore, Shuang et al. [17]
designed a fusion-based network considering several gradient
projection-based blocks that extract the PAN and LR-HSI fea-
tures separately. Wang et al. [18] presented a fusion model that
considers a dual-path deep residual-based neural network to
extract spectral features and a high-pass block to craft spatial
information. Uezato et al. [19] designed an unsupervised remote
sensing image fusion. In this work, the authors utilized a deep
encoder–decoder network based on a skip connection to extract
features of inputs and generate a fused output. Later, Shuang
et al. [20] proposed a sparse coding network, which divides the
features of LR-HSI into two groups (irrelevant and relevant PAN
feature maps) to produce side, unique, and correlated informa-
tion. As a result, they reconstructed the fused image according
to the merged attributes. In a recent study by Wu et al. [21],
an approach using a long short-term memories network was
proposed for pansharpening application. The researchers re-
constructed the LR-HSI by utilizing deconvolution bidirection
learning to upsample it. Moreover, they employed two separate
branches to extract both spatial and spectral features, which
were combined using elementwise addition. Furthermore, He
et al. [22] introduced a dynamic pansharpening CNN-based
approach. They generated spatially adaptive rules and spectral
predictive to produce dynamic pansharpening results and reduce
spectral distortions. Later, Fan et al. [23] presented a pansharpen-
ing network based on a transformer model with cross-attention.
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They used the multiscale embedding sequence of LR-HSI and
PAN images to reconstruct the HR-HSI.

In the third category, researchers utilize optimization al-
gorithms combining mathematical methods to solve fusion-
based superresolution problems. For example, Scarpa et al. [10]
utilized a pretrained three-layer CNN with residual learning
method, which combines the PAN, upsampled LR-HSI, and
radiometric indices extracted from LR-HSI. In this research,
the authors applied the stochastic gradient descent (SGD) al-
gorithm during the optimization phase to fine-tune the network
parameters to enhance efficiency. Another optimization-based
model has been proposed by Yin et al. [24] that trains the
kernel in the convolutional layer to exploit the input features
for reconstructing the output image. Moreover, they employed
an iterative soft thresholding activation function to find feature
maps and optimize the model parameters.

III. PROPOSED METHOD

In this section, we explain the structure of our fusion-based
superresolution model in detail. The HS-McHF consists of three
units that generate HSI with high spatial resolution. In each
unit after the image reconstruction, we use a block to enhance
the quality of the output image. At the first unit, the output is
approximated using HSI with low-resolution and guidance PAN,
and then the overlapping bands are reduced to maintain more
spectral information. In the next unit, we fuse spatial, spectral,
and high-pass features and denoise them to preserve only the
essential details. Finally, the last unit includes a multiscale
subnetwork for processing and learning the spatial and spectral
features. Each subnetwork in our model has a novel feature
extraction module in self-attention form and a deep residual
feature extraction block for generating the HR-HSI.

A. Problem Formulation

In this section, we consider the HS-McHF as the superresolu-
tion problem to generate the HSI (denoted X ∈ R

W×H×C) with
high spatial and spectral resolution from the observed low spatial
resolution HSI and high spatial resolution guided image, where
W andH are width and height, respectively, andC is the number
of spectral bands. Let us assume that Y ∈ R

w×h×C denotes the
low spatial resolution HSI and P ∈ R

W×H×1 is high spatial
resolution PAN. Herein,W > w andH > h are the spatial width
and height of the observed pairs, where a = W/w = H/h is
the upsampled factor. In this study, we assume that Y and P are
spatial and spectral downsampled versions of the target HR-HSI,
receptively, which can obtained by the following equations:

Y = BX, P = XR (1)

where B ∈ R
wh×WH is the spatial degradation matrix and R ∈

R
C×1 represents spectral degradation operator. The optimization

problem can be formulated according to (1) to reconstruct the
X̂ from the Y and P

argmin
X

f1(Y,BX) + f2(P,XR) +R(X) (2)

where f1(.) and f2(.) indicate the spectral and spatial cost func-
tion, respectively, and R(.) is a regularization term, which can
be replaced by the encoder–decoder neural network. Therefore,
the optimization formula can be defined as follows:

X̂ = argmin
X

||Y −BX||2F + ||P−XR||2F +R(X) (3)

the first part of this formula reduces the spectral difference,
and the second part injects the spatial information into the
fused image. R(X) regularizes the proposed network based on
encoder–decoder network.

B. Network Architecture

To solve the superresolution fusion-based problem in (3), we
propose the deep neural network, which consists of three units:
initial estimation (IE), multicomponents fusion (MCF), and
hierarchical features aggregation (HFA) unit. Fig. 1 shows the
overall architecture of the HS-McHF model, which is described
as follows.

1) IE Unit: In the IE unit, we first estimate the high-
resolution version of Y (called Ŷ1) using P as guided image
according to first part of (2), then correct the bands overlapping
to preserve spectral features to enhance the HSI quality. To
learn the spatial feature’s mapping from Y to Ŷ1, we utilize the
estimator proposed in the band-dependent spatial-detail (BDSD)
approach [25]. For this purpose, we apply spatial degradation
B, which includes convolution layer with downsampling factor
1
a and its inverse operator BT to create BTBP (downsampled
and then upsampled version ofP). We believe that the geometric
details transformation from P to BTBP can be a factor of the
feature mapping from BTY (upsampled version of Y) to Ŷ1

Ŷ1 −BTY = W × (
P−BTBP

)
RT (4)

where Ŷ1 is the output of the BDSD block, and direct estimation
of coefficients (W ) is not possible. Hence, we utilize X as a
reference to optimize and update the W weights by BDSD with
least square [26] to inject the geometric features into Y until
convergence. The optimization model can be written for each
band k = {1, . . ., C} as follows:

W ∗
k = argmin

Wk

‖ Xk − (
BT

kYk + (Wk ×Hk)
) ‖2 (5)

where H = (P−BTBP)RT and Hk ∈ R
WH×1. W ∗

k ∈
R

WH×WH represents the optimal weights, which calculate with
differentiating the (5) with respect to the coefficients Wk and
setting the derivatives to the vector 0

HT
k

(
(Xk −BT

kYk)− (Wk ×Hk)
)
= 0. (6)

In case of least square-based BDSD, (6) can be solved by iter-
ative solution according to the closed-form with the following
formula:

Wk = [HT
kHk]

−1HT
k

(
Xk −BT

kYk

)
(7)

whereas the closed-form solution is extremely expensive to
compute, using an iterative method is more computationally
efficient than the closed-form solution for the least squares
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Fig. 1. Architecture of proposed model (HS-McHF) that contains three units: IE, MCF, and HFA units. After the image reconstruction, quality enhancement is
applied to each unit. In IE, after adjusting the optimization coefficients via the BDSD approach and unfolding it by SGD, we deconvolve each band by addressing
the bands overlapping problem. In MCF, we exploit and combine spatial, spectral, and high-pass properties to reach the HSI with full features. Then, we denoise
them by deploying the encoder–decoder network. Eventually, HFA includes multiple subnetworks to prepare multiscale feature maps from high to low levels and
then aggregate the extracted information hierarchically from low to high levels.

Fig. 2. MCF unit includes spatial feature fusion, high-pass feature fusion, and spectral feature fusion blocks, which extract spatial, high-pass, and spectral
information in parallel and combine all details simultaneously.

problem. Therefore, we simulate the CNN with SGD steps to
optimize the weights and approximate the Ŷ1.

a) Spectral Deconvolution: The signal-to-noise ratio
(SNR) is a fundamental mechanism to calculate the instrument’s
performance. To achieve the highest SNR in each band of HSI,
hyperspectral sensors are designed to have the most overlapping
and maximum energy in spectral bands. While the higher bands
overlapping can have an adverse effect on the unique spectral
signature of the HSI channels [27]. Therefore, after optimizing
the coefficients (W ) and obtaining Ŷ1, in the second part of the
IE unit, according to Schläpfer et al. [28], we apply SD method
and correct the overlapping of each band of Ŷ1 by subtracting
the weighted values of neighboring bands from the original band
as the following:

Li,dec = (Li − ρLi+1 − γLi−1) (8)

where Li,dec is deconvolved spectral band Li . Li+1 and Li−1

indicate right and left neighbors of the Li . ρ and γ are the
weights learned by convolution layers. SD methods recover
the original signal from the corrupted data and increase the
signature of the sharp spectral features [27], [28]. Based on
(8), we perform SD on each band of Ŷ1 to increase the sharp
spectral features and decrease the bandwidth of each band of
the IE unit output (called Ŷ2). Accordingly, by correcting the
individual bands overlapping the HSI, we enhance the quality of
the output image of the IE unit. This technique does not increase
the spectral content of each voxel. However, it can avoid loss of
the information of an HSI [28]. The simulation of the bands
overlapping is shown in Fig. 3.

2) MCF Unit: In the second unit, we aim to extract spatial,
spectral, and high-pass information in parallel based on f2(.)
and f3(.) in (2) and then combine them to reach the HSI with
full features. For that, we apply a series of convolutional layers
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Fig. 3. Simulation of the effectiveness of bands overlapping reduction. We
perform SD on each band of HSI to increase the sharp spectral effect and decrease
the bandwidth of each band. Dash line and normal line represent their bands of
HSI before bands deoverlapping and deconvolved spectral bands, respectively.

to explore nonlinear spatial–spectral features. After that, we
combine features to generate richer spectral–spatial information
with elementwise addition instead of nonlinear operation. This
is done to avoid increasing computational complexity. In the
spectral feature fusion block, we not only use Y to obtain
the deep spectral features, but also we convert P into a cube
with C layers to extract joint spatial–spectral information. To
achieve this requirement, we learn the spectral response matrix
R through the proposed network to convert P into HSI with
C layers to reduce spectral distortion (see Fig. 2). Then spatial
degradationB is applied toRTP to downsample it into the same
size as Y. Moreover, we apply t times 1 × 1 and 3 × 3 convolu-
tion layers on the output and add the Y in each step as a residual
manner to gain spectral features. Eventually, we use the 3 × 3
convolution layer with the Leaky-ReLU activation function to
get high performance and smooth results. This process can be
formulated as

Fc1 =
t∑

i=1

C3×3
i (C1×1

i (BRTP)) +Y

Fc = LReLU(C
3×3(Fc1B

T +RTP)) (9)

where Ci represents i th convolution layer in each iteration and
Fc is the result of the spectral feature fusion block. Similarly,
according to (9), to extract the spatial features in the spatial
feature fusion block, the BTY is converted to the PAN layer
through spectral response matrix R and then t times 1 × 1 and
3 × 3 convolution layers are applied with skip connection of the
geometric information of the P to the output of each step. After
repeating t times the process and converting the result to the
cube form by RT, the BTY is added band-by-band to inject the
low-level information as shown in Fig. 2. We also apply the 3 × 3
convolution layer with the Leaky-ReLU activation function to
gain spatial features called Ft.

Besides, to exploit more accurate boundaries and edges, we
gain the high-pass features Php by processing P as a guided
image and appending the high-pass information in cube form

into the Fc and Ft. Php is obtained by subtracting the filtered
image (by low-pass filter) from the original image. We believe
that such issues degrade the performance of the existing models
and quality of X̂. Hence, in a high-pass fusion block, we extract
the boundary information ofP and then convert it into cube form
through spectral matrix RT.

According to (9), in the same manner in spatial and spectral
fusion block, we apply t times 1 × 1 and 3 × 3 convolution
layers on RTPhp and append the injected spatial information
of P to the results in each steps. In addition, to enhance the output
HSI in high-pass feature fusion block, we execute the result via
the convolution layer with kernel size 3 × 3 and Leaky-ReLU
activation function and call it Fh as seen in Fig. 2. Finally, we
aggregate the results of three blocks as Fw = Fh + Fc + Ft

and denoise them using the encoder–decoder model. We utilize
U-net [29] as the regularization function with 1 × 1 convolution
layers in an encoder and 3 × 3 deconvolution layer in the decoder
part with Leaky-ReLU activation function to reconstruct the
output Ŷ3. In the decoder part, the encoder’s result of each
convolution is concatenated to the decoder’s deconvolution layer
as follows:⎧⎪⎪⎨

⎪⎪⎩
fe

i = LReLU(W
i
en ∗ Fw) i = 1 : k

f1d = LReLU(W
1
de ∗ f3e ) i = 1

f i = LReLU
(
W i

de ∗ Concat
(
fe

k+1−i , f i−1
d

))
i ≥ 1

(10)

Ŷ3 = LReLU(C
3×3(f i)) (11)

where Wen and Wdn indicate convolution and deconvolution
layers and k = 3 is the number of iteration in each part.

3) HFA Unit: Finally, the third unit is HFA, which mini-
mizes the (3) through the SGD algorithm to obtain multiscale
spatial–spectral feature maps hierarchically. In the literature,
some fusion methods attempted to extract the multiscale features
hierarchically. For instance, Bandara and Patel [30] utilized
a hierarchical network from low to high levels to extract the
cross-features of PAN and LR-HSI. In this study, we apply a dual
hierarchical multiscale network from low to high levels and then
from high to low levels in an HFA unit. HFA includes multiple
subnetworks to prepare up-to-down and down-to-up hierarchical
multiscale feature maps (see Fig. 4). Each subnetwork contains
three blocks: two residual feature extraction (residual block) and
one self-attention (attention block).

The attention blocks obtain feature maps hierarchically from
high to low levels of spectral voxels using a unique and standard
feature extraction module (UCFE) based on the self-attention
mechanism

hU = HU

(
Y, Ŷ3

)
(12)

where HU represents the attention block and hU denotes
the result of the each HU. In the attention block, we apply
the UCFE module in the self-attention mechanism to extract
the features of bands containing the spectral information. The
UCFE consists of a series of sparse coding-based modules to
extract standard features [31]. In the original UCFE block, the
input is subtracted from its feature response, and the original
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Fig. 4. Scheme of the HFA unit that creates multiscale feature maps from high to low levels via attention and residual blocks and then aggregates the extracted
information hierarchically from low to high levels.

Fig. 5. Attention Block (HU) of subnetworks in HFA unit.

input is added to the result. On the other hand, self-attention ex-
tracts key feature maps from significant voxels of the hyperspec-
tral bands. This mechanism [32] is one of the most influential
parts of deep learning, which learns how to get over the encoder–
decoder model’s restriction by multiplying the encoder vectors
with three matrices trained by the convolution layer. Therefore,
we combine the UCFE with a self-attention mechanism to get
standard and global spectral data of the input image (see Fig. 5).
In the first sub-network, we find the information in Y which are
not present in Ŷ3, hx = Y −BŶ3. Later on, we pass hx and
Ŷ3 through three convolution layers with different filter sizes to
compute three feature maps fα = Cα ∗ hx, fβ = Cβ ∗ hx, and
fγ = Cγ ∗BŶ3. Then, the self-attention mechanism multiplies
the fα by transposed fβ and performs the softmax operation
on the result, then the upsampled result is multiplied by fγ .
Afterward, we exploit features through the convolution filters
with the Leaky-ReLU activation function and compute hU{

xU = BTsoftmax(hx
TCαCβhx)fγ

hU = C3×3
1 (LRelu(C

3×3
0 (xU)))

(13)

Cα, Cβ , and Cγ are 1× 1, 3× 3, and 5× 5 convolution layers
to have different scale feature maps.

On the other hand, in residual blocks, we extract the spatial
and spectral features of Fc and Ft hierarchically based on the

Fig. 6. Residual feature extraction block (HR) of subnetworks in HFA unit.

residual mechanism in HFA unit

ht = HR(Ft)

hc = HR(Fc) (14)

where HR indicates residual block, hc is the output when HR

has Fc input and ht represents the residual output when Ft is
the input of residual block. To preserve more spatial–spectral
information in a fused image, we apply a residual extraction
block. We pass the Ft and Fc to the two residual blocks on the
upper subnetwork separately to take advantage of the spatial
features of Ft and spectral information of Fc. The residual
block includes multiple parts of convolution layers with the
Leaky-ReLU as an activation function in the residual form
to solve the fusion problem (see Fig. 6). ResNet accelerates
learning with high performance in deep neural networks without
eliminating gradient and degradation of accuracy [33]. In the
residual block, we apply the skip connection to generate a
residual stage and connect the input to the output. Also, each
part of the residual block contains four convolution layers with
a Leaky-ReLU activation function and a dropout layer, which
can be depicted in Fig. 6⎧⎪⎪⎨

⎪⎪⎩
ER = C3×3

1 (LReLU(C
3×3
0 (Ft or Fc)))

BR = C3×3
1 (LReLU(C

3×3
0 (Dout(ER))))

ht or hc =
∑t

i=1 BRi +BRi

(15)

where BR denotes the output of one part of the residual block,
which is repeated t times. As mentioned, the HFA unit has two
residual blocks, which in the first block, BR0

is Ft and for
second residual block, we set BR0

= Fc. Essentially, we apply
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Fig. 7. Visualization of the hierarchical feature maps from low to high levels
by the HFA unit during the training phase. (a) hl. (b) hl+1. (c) hl+n.

the dropout function Dout through the residual phase between
two convolutional blocks to enhance the robustness of the HS-
McHF. We consider the probability r of the selected nodes to be
ignored r = 0.2, and the rest of the nodes are preserved in our
model by assuming (1− r) = 0.8.

After computing the outputs of attention and residual
blocks in the first stage, we transfer the downsampled outputs
(Bhc

n,BhU
n, andBht

n) to the next subnetwork. This pro-
cess is iterated until the outputs are the same size as Y. Then,
in the final subnetwork, we gather all features from the three
blocks (hc,hU, and ht) and call it hl. After that, we provide
BThl and append it to the summation of previous subnetwork
outputs. This procedure is repeated from down to large scale at
each level until the HSI result is the same size as P and obtain
hl+n {

hl = hc + hU + ht

hl+n = hn
c + hn

U + hn
t+ ↑ hl+n−1.

(16)

Therefore,hl is a feature-maps extracted from the nth scale of the
last level, and hl+n denotes the features at the first subnetworks.
Fig. 7 demonstrates hl, hl+1, and hl+n−1 output images that
were generated from the Pavia-Center dataset by capturing them
at the same training iteration.

Finally, we obtain X̂ by collecting the extracted features from
hl+n through the two convolution layers and BTY

X̂ = C3×3
1 (LRelu(C

3×3
0 (hl+n))) +BTY (17)

where LRelu represents Leaky-ReLU activation function.

C. Loss Function

The motivation of HS-McHF is to minimize the loss function
by reducing the difference between ground truth and the hy-
persharpened image. Since the HSI has geometric and spectral
information, we employ the specific loss function in the designed
network to obtain the spatial, spectral, and structural features
from input images. The mean squared error (MSE) calculates
the spatial difference as

MSE(X, X̂) = ||X− fΘ(Y,P)||2F . (18)

As the similarity increases, the MSE reduces and has lower val-
ues. Because we intend to minimize the loss function, the MSE
measure is used to calculate the spatial dissimilarity between
the output of the network and the desired image. Note that the
MSE computes only a spatial constraint between two images.

To improve the performance of the loss function, we append
the structural criteria to our loss function. Structural similarity
index measure (SSIM) is an efficient measure to calculate the
resemblance rate between two images by processing significant
data if there exists identical spatial information through the HSI.
Here, SSIM can be defined and simplified as follows [34], [35]:

SSIM(X, X̂) =

C∑
i=1

4μi
XμfΘ(Y,P)iσXifΘ(Y,P)i(

μ2
i + μ2

fΘ(Y,P)i

)(
σi
X

2 + σi
fΘ(Y,P)

2
)

(19)
where μX and μfΘ(Y,P) represent the mean and σX and
σfΘ(Y,P) indicate the variance between X and fΘ(Y,P), re-
spectively. σXfΘ(Y,P) is covariance of X and fΘ(Y,P). To
enhance the performance, we suppose the spectral index is a
third-party equation used to append the loss formula. Thus, in
addition to spatial and structural constraints, the loss function in-
cludes a spectral constraint. The spectral angle mapper (SAM) is
a criterion for comparing two HSIs [36], which can be expressed
as

SAM(X, X̂) = cos−1
C∑

i=1

< Xi .fΘ(Y,P)i >

||Xi ||2 ||fΘ(Y,P)i ||2 (20)

where < . > denotes the inner product. If (20) is equal to “0,”
the best spectral quality can be achieved.

In our proposed network, the loss function can be denoted as
l(Θ) between fΘ(Y,P) and X

l(Θ)

=
1

N

N∑
i=1

MSE(Xi , fΘ(Y
i ,Pi))× SAM(Xi , fΘ(Y

i ,Pi))

SSIM(Xi , fΘ(Yi ,Pi))

(21)

where N represents the number of images in training data and
Θ denotes the parameters of the HS-McHF. Since the primary
purpose behind the application of l(Θ) (21) is to preserve the
spatial, spectral, and structural features, we propose lspectral(Θ)
and apply interpolation function B to fΘ(Y,P) to minimize
the spectral error between Y and downsampled output of the
network. For analyzing the geometric similarity, the spectral
response matrix R is trained through the proposed network to
convert the X̂ to the PAN layer to generate the PAN version of
the output and compare the spatial differences through the lspatial.
Finally, the loss function lfinal(Θ) can be computed as the sum
of three proposed losses, which is defined as follows:

lfinal(Θ) = l(Θ) + lspectral(Θ) + lspatial(Θ). (22)

IV. EXPERIMENTAL ANALYSIS

In this section, we evaluate the HS-McHF by performing it
on three well-known hyperspectral datasets, such as the Chiku-
sei [37], Salient [38], and Pavia-Center [39]. Then, we compare
experimental results with six existing pansharpening models.
To verify the proposed model, we implemented it on a computer
based on Windows 10 with Intel(R) CPU E5-2620, NVIDIA
Quadro 2000 GPU, and 32 GB RAM. Then, we train the HS-
McHF using the Pytorch framework in Python 3.7 via SGD
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TABLE I
DETAILED INFORMATION OF THE PAVIA-CENTER, CHIKUSEI, AND SALIENT DATASETS

Fig. 8. First row: RGB images from the Pavia-Center dataset at bands 24, 44,
and 60. Second row: RGB images from the Chikusei dataset at bands 30, 60,
and 80. Third row: RGB images from the Salient dataset at bands 14, 40, and
60.

optimizer with a learning rate of 0.001. The training phase with
validation is performed, and the PSNR function in 700 epochs
is shown in Fig. 12. Table I explains the details of datasets in
our experiments.

A. Datasets Definition

In this section, we conduct extensive experiments with the
HS-McHF on three publicly available hyperspectral datasets:
Chikusei,1 Salient,2 and Pavia-Center3 remote sensing datasets.
As listed in Table I, the Salient dataset includes 60 photos from
HS with a spatial size of 768 × 1024, each with 81 spectral
channels in the visible spectrum 380 nm×720 nm. We utilize the
first 40 pictures for training HS-McHF and the last 20 images for
validating and testing. We suppose the validation set is a separate
part from the training images and apply this procedure to vali-
date the HS-McHF and prevent the overfitting problem during
the training. The test set is also different from both the training
and validation set. Pavia-Center is a 1096 × 1096 pixels HSI
with 102 spectral bands achieved over Pavia, Northern Italy. The
spatial resolution is 1.3 m, and the spectral range is between
430 and 860 nm. The HSI is cropped without overlapping
into 40 patches to train the network with 25 images and test

1[Online]. Available: https://www.sal.t.u-tokyo.ac.jp/hyperdata.
2[Online]. Available: https://github.com/gistairc/HS-SOD.
3[Online]. Available: https://www.ehu.eus/ccwintco.

the model with 15 HSIs. For convenience, we excluded chan-
nels with low SNR and focused on 80 frequency bands. The
Chikusei is the airborne hyperspectral dataset acquired from
Headwall imaging sensor over agricultural and urban areas
in Chikusei, Japan, that contains HS images with a spatial
size of 2517 × 2335 and 128 spectral bands in the range of
363–1018 nm. The HSI is cropped without overlapping into
40 patches 128 × 128 to train and validate the network with
ten images and ten images to test the McHF-H. We omitted
channels that had a low SNR and concentrated on analyzing
80 frequency bands. We simulate the training data according to
Wald protocol. For three datasets, to simplify this process, we
assume the spatial size of the PAN and the target image for the
three datasets of 128 × 128. Then, we exploit a scaling factor
of four to create the LR-HSI version with the size of 32 × 32
by the downsampling operator. Fig. 8 depicts the details of
the RGB images in the Pavia-Center, Chikusei, and the Salient
datasets.

B. Performance Evaluation

In this section, we evaluate the efficiency of HS-McHF, con-
sidering the spatial, structural, and spectral metrics. To analyze
spatial equality, we apply five spatial metrics, such as MSE
ERGAS, PSNR, and UQI, which are common in the literature.
Moreover, we utilize the SAM to evaluate the performance of
the proposed model and other state-of-the-art approaches in
terms of spectral fidelity. In addition, we consider the SSIM
as a structural and spatial quality measurement. Besides, we
calculate the MSE rate to measure the features of ground-truth
and fused images using (18), in which the best value of MSE
is close to 0. Next, erreur relative globale adimensionnelle de
synthese (ERGAS) [40] denotes the overall quality of the fused
image [41], i.e., the optimal value for ERGSA is 0

ERGAS(F,G) =
100

d2

√
1

C

∑C

i=1

MSE(Fi ,Gi)

μi
F

(23)

where F and G represent hypersharpened and grand truth
images, respectively, and d is the spatial ratio between the
PAN and the HSI. In addition, the peak signal-to-noise ratio
(PSNR) defines the spatial symmetry between the fused and
target pictures. The higher the value of PSNR implies a more
significant similarity rate

PSNR(F,G) =
1

C

C∑
i=1

20 log10
MAXi

F

MSE(Fi ,Gi)
(24)

where MAXF is the maximum value in F in the ith band of F.
Also, the universal quality image (UQI) index [42] computes
the transformation rate of features from the hypersharpened

https://www.sal.t.u-tokyo.ac.jp/hyperdata
https://github.com/gistairc/HS-SOD
https://www.ehu.eus/ccwintco
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Fig. 9. Qualitative results on 50th band on Pavia-Center dataset. First and third rows: two reconstructed images with two comparison areas were upscaled in four
times for clarity. Second and fourth rows: corresponding error. (a) PGCU. (b) DRPNN. (c) GDD. (d) Gppnn. (e) HyperPNN. (f) DHP-DARN. (g) HS-McHF.

image to the source picture for all spectral bands, i.e., when UQI
approaches 1, the network output is equivalent to the desired
picture

UQI(F,G) =
1

C

C∑
i=1

4σFiGiFiGi

(σ2
Fi + σ2

Gi )(Fi2 +Gi2)
(25)

where σ represents the standard deviation function. For spectral
comparison, we utilize the SAM as defined in (20), which
computes the spectral fidelity between the output of our model
and target picture (e.g., the best value of SAM is 0). Eventually,
we obtain the SSIM by employing (19) to measure the structural
symmetry between the reconstructed image and ground-truth.

C. Comparison With State-of-The-Art Models

We investigate the performance of the HS-McHF by compar-
ing with six state-of-the-art fusion-based models: DRPNN4 [43],
GDD5 [19], Gppnn6 [44], DHP-DARN7 [15], HyperPNN8 [14],

4[Online]. Available: https://github.com/matciotola.
5[Online]. Available: https://github.com/tuezato/guided-deep-decoder.
6[Online]. Available: https://github.com/shuangxu96.
7[Online]. Available: https://github.com/yxzheng24.
8[Online]. Available: https://github.com/wgcban/DIP-HyperKite/tree/main.

and PGCU9 [45]. We have chosen these six models because
they deployed deep learning for hypersharpening applications.
We conduct a comparative analysis considering the average of
obtained results from the test images by experimenting with
them on the Chikusei dataset (see Table III), Salient database
(see Table IV) and Pavia-Center dataset (see Table II). For a fair
comparison, we retrain all methods on our dataset and perform
the three phases of training, validating, and testing similarly for
each network.

D. Comparative Analysis

In this section, we verify the efficiency of the HS-McHF by
comparing our results with six state-of-the-art FhSR models.
As depicted in Tables II–IV, the HS-McHF provides superior
performance compared to the other evaluated methods in most
areas. Table II states that HS-McHF can preserve spatial, spec-
tral, and structural information with a specific loss function
after performing it on the Pavia-Center dataset. The reason for
the satisfactory performance of our model is that we applied
a dual deep optimization network with approximate feature
maps transformation between the LR-HSI and PAN with a skip

9[Online] Available: https://github.com/Zeyu-Zhu/PGCU.

https://github.com/matciotola
https://github.com/tuezato/guided-deep-decoder
https://github.com/shuangxu96
https://github.com/yxzheng24
https://github.com/wgcban/DIP-HyperKite/tree/main
https://github.com/Zeyu-Zhu/PGCU
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Fig. 10. Qualitative results on 24th band on Salient dataset. First and third rows: two reconstructed images with two comparison areas were upscaled four times
for clarity. Second and fourth rows: corresponding error. (a) PGCU. (b) DRPNN. (c) GDD. (d) Gppnn. (e) HyperPNN. (f) DHP-DARN. (g) HS-McHF.

TABLE II
AVERAGE QUANTITATIVE RESULTS OF THE PROPOSED METHOD AGAINST FUSION METHODS ON THE PAVIA-CENTER DATASET

TABLE III
AVERAGE QUANTITATIVE RESULTS OF THE PROPOSED METHOD AGAINST FUSION METHODS ON THE CHIKUSEI DATASET
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Fig. 11. Qualitative results on Chikusei dataset. First and third rows: two reconstructed images with two comparison areas were upscaled four times for clarity.
Second and fourth rows: corresponding error. (a) PGCU. (b) DRPNN. (c) GDD. (d) Gppnn. (e) HyperPNN. (f) DHP-DARN. (g) HS-McHF.

TABLE IV
AVERAGE QUANTITATIVE RESULTS OF THE PROPOSED METHOD AGAINST FUSION METHODS ON THE SALIENT DATASET

connection that can overcome the vanishing gradient. Our model
can achieve superior spatial performance in MSE, ERGAS and
PSNR because of using the MCF unit to combine the high-pass
information with the spatial–spectral features, and have less shift
and details change because of applying a denoising module
after combining features. The best value in SAM and SSIM
indicators in the Pavia-Center dataset means less distance and
spectral distortion between fused and target images in our model.
Moreover, the new loss function of the HS-McHF could benefit
from the geometric and spectral aspects simultaneously. Due to
reducing the bands overlapping, the proposed HS-McHF has less

spectral distortion among compression models and can avoid
losing the information of a reconstructed HSI. Furthermore, due
to extracting the feature maps via the self-attention mechanism,
the quality of reconstructed images considerably improved.
Eventually, combining the loss function and neural networks
through our model offers a deeper learning process; hence, it
affords efficient performance, particularly in terms of SSIM,
PANR, and SAM indexes on the Pavia-Center database.

In our experiment on the Chikusei dataset, we evaluated
the performance of our proposed method on remote sensed
HSIs, which include both agricultural and urban areas. Table III
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TABLE V
NUMBER OF NETWORK PARAMETERS IN SALIENT AND PAVIA-CENTTER DATASETS

TABLE VI
RUNNING TIME (IN SECONDS) OF A TRAINING EPOCH AND TEST PHASE IN NETWORKS

TABLE VII
AVERAGE QUANTITATIVE RESULTS OF THE PROPOSED METHOD ON THE PAVIA-CENTER DATASET

Fig. 12. Average PSNR after 700 epochs in the training and validation phase
of the proposed method for (a) Salient dataset and (b) Pavia-Center dataset.

displays the average quantitative results of our HS-McHF on
the test images compared to all other methods. It is evident that
our HSRnet outperforms the other compared methods on most
metrics. To analyze the efficiency of the HS-McHF on another
dataset, we performed our model and the selected approaches
on the Salient dataset (see Table IV). Our experimental results
showed that the HS-McHF gives superior results considering
all the evaluation metrics. As depicted in Tables VI and V, the
training process of our network with the Salient HSI containing
a high number of spectral layers increased the time complex-
ity. Although our model has a deep network, it can eliminate
overfitting by regularizing data in the training phase and using a
dropout layer in the residual part. Network lightning is the reason
for reduction the number of network parameters and improving
the robustness and efficiency of the HS-McHF network. Fig. 12
shows PSNR values of the proposed model after 700 epochs

Fig. 13. Spectral signature of the specific pixel for the output image of the
proposed and comparative methods compared with the target image in Salient
and Pavia-Center datasets. (a) Salient dataset. (b) Pavia-Center dataset.

on Salient, and Pavia-Center datasets. HyperPNN, because of
the light network, is less involved in overfitting, and it can
obtain better results on the Salient and Pavia-Center than other
compared models.

After performing the HS-McHF, Figs. 9–11 illustrate the
experimental results, including two examples of hypersharpened
images from each dataset separately versus six other compared
approaches (see the first and third rows). The second and fourth
rows show the absolute difference between the ground-truth
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Fig. 14. Average SSIM curve of all bands for the comparative meth-
ods compared with proposed method for Salient, and Pavia-Center datasets.
(a) Salient dataset. (b) Pavia-Center dataset.

Fig. 15. Average PSNR curve for the fused HSI of all bands in Salient and
Pavia-Center datasets. (a) Salient dataset. (b) Pavia-Center dataset.

and the reconstructed images. The output of our model on the
Salient datasets is slightly brighter than the ground-truth, but the
edges and boundaries are much closer to the desired image. The
HS-McHF also achieves minimal absolute differences, which
indicates less structural and spectral distortion. On the other
hand, the output image of the Gppnn network is sharper than the
ground-truth; hence, the high-pass features, such as edges, seem
unnatural, especially on the Salient dataset.

Moreover, to analyze the spectral efficiency of the proposed
method, the spectral signature of the fused HSI of the HS-McHF
model compared with other methods is computed and shown
in Fig. 13. We compare the spectral value of a pixel of all
channels in the target and fused HSI in Salient, and Pavia-Center
datasets. Our proposed model has the most similar conduct
with the target HSI, which means less spectral distortion and

better fusion performance. To further compare the spectral dis-
tortion and spatial preservation of the HS-McHF versus other
fusion methods, we present the average PSNR and SSIM score
in Figs. 15 and 14. The highest results of the PSNR and SSIM
in most bands of the reconstructed HSI demonstrate the min-
imum shift and less spectral distortion between the fused and
desired image of the proposed method.

As listed in Tables VI and V, we have evaluated the complexity
of our model considering the number of neural network parame-
ters and running time, respectively, i.e., the time required for an
epoch of training duration and testing phase. Moreover, it can
be seen from Table VI that our model requires more training and
testing time because we applied deeper networks and additional
convolutional layers, which leads to high performance and better
results. Although the proposed model utilizes extra layers, it
needs fewer parameters. This is because we employ the dropout
technique to remove redundant nodes from the deep residual
block. Hence, the HS-McHF is not as computationally complex
as the Gppnn, GDD, and DHP-DARN.

V. DISCUSSION

In order to prove the effectiveness of our proposed method,
we conducted a number of experiments. These experiments were
designed to validate our approach and ensure that it meets the
standards of quality.

A. Analysis of the Efficiency of Three Units IE, MCF, and HFA

To assess the effectiveness of our model, we evaluated it
with and without each of the three units on the Pavia-Center
and Salient dataset. The outcomes are shown in Table VII,
and they indicate that all three units, IE, MCF, and HFA,
work together in a complementary manner. MCF and HFA
outperform IE in all metrics, and in terms of UQI, MSE, and
PSNR, we observed that unit HFA performs better than MCF.
However, HS-McHF can achieve an improvement when all
three components are present. As mentioned in Section III-B3,
we demonstrate the three steps in the HFA unit by visualiz-
ing hl, hl+1, and hl+n−1. Fig. 7 shows that the final fusion
result (hl+n−1) contains fewer artifacts and more structural
information.

B. Analysis of Proposed Loss Function Effect

As mentioned, we suggested a new loss function in our model
by combining the MSE, SSIM, and SAM criteria to obtain
spatial, spectral, and structural information simultaneously from
the fused image. However, the state-of-the-art models exploited
the MSE as a performance evaluation metric while comparing
the fused output and desired image [43], [46], [47], [48], [49].
Therefore, to demonstrate the effectiveness of our loss function,
we implemented the HS-McHF using the MSE criteria, and the
experimental results are shown in Table VIII. The results indicate
that HS-McHF with the new loss function is more efficient and
has an acceptable rate for most criteria. Hence, it can be remarked
that the suggested loss function can impact the HS-McHF to
preserve the geometric information and spectral features.
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Fig. 16. Illustration of RGB results of our model compared to other networks considering three bands 5, 15, and 25 on the Washington DC mall dataset. The (a),
(b), and (c) images demonstrate the reconstructed images, which contain pairwise comparison areas where up-scaled four times, and the (d), (e), and (f) images
are corresponding errors. (a) DRPNN. (b) DHP-DARN. (c) Gppnn. (d) HyperPNN. (e) PGCU. (f) HS-McHF.

TABLE VIII
PERFORMANCE OF THE SUGGESTED LOSS FUNCTION VERSUS THE MSE CRITERIA USAGE IN PAVIA-CENTER AND SALIENT IN HS-MCHF

TABLE IX
AVERAGE QUANTITATIVE RESULTS OF THE PROPOSED METHOD AGAINST FUSION METHODS ON REAL DATASET DC MALL

C. Analysis of the Applicability of the Proposed Method on
Real Data

We use the DC-mall10 dataset to evaluate the efficiency of the
proposed FhSR on real data. The HSI was provided over the
Washington DC mall area on August 23, 1995, which contains a
spatial size of 307 × 1280 and 191 spectral bands in the range of

10[Online]. Available: https://engineering.purdue.edu.

400 nm× 2500 nm. the HSI is cropped without overlapping into
20 patches 128 × 128 to train and validate the network with 15
images and five images to test the HS-McHF. We considered the
128 × 128 HSIs as a reference image and created the LR-HSI
version with the size of 32 × 32 by the downsampling operator
with a factor of four. We select the first 40 bands for HSI and one
at 10 for an assistive image. Fig. 16 shows the RGB images of
the real dataset and the hypersharped results with corresponding
errors for the HS-McHF and other fusion methods. It can be

https://engineering.purdue.edu
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seen the reconstructed HSI of our network is much closer to
the desired image. In addition, we conducted experiments on
the DC-mall dataset and analyzed the performance of HS-McHF
versus the state-of-the-art models considering the standard eval-
uation metrics. As listed in the Table IX, our HS-McHF approach
outperforms the evaluated methods.

VI. CONCLUSION

This article proposed a novel FhSR model called HS-McHF
with three units and quality enhancement blocks, which uti-
lizes spatial–spectral fusion design and deep multilayer features
aggregation network for fusing LR-HSI and PAN images to
produce an HR-HSI. In this study, to gain feature maps and
deep details of significant voxels of all channels, we use a
self-attention module in a new design with the high-pass ge-
ometric injection to combine spectral and spatial information.
Instead of the traditional loss function, we combine spectral,
spatial, and structural criteria to preserve geometric details and
spectral information. Then, we compared the HS-McHF with
the state-of-the-art methods. Our experimental results on three
well-known hyperspectral datasets confirmed that HS-McHF
offers superior efficiency considering the standard evaluation
metrics.
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