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Abstract—Building change detection (BCD) aims to identify new
or disappeared buildings from bitemporal images. However, the
varied scales and appearances of buildings, along with the challenge
of pseudochange interference from complex backgrounds, make
it difficult to accurately extract complete changes. To address
these challenges in BCD, a U-shaped hybrid Siamese network
combining a convolutional neural network and a vision transformer
(CNN-ViT) with learnable mask guidance, called U-Conformer,
is designed. First a new hybrid architecture of U-Conformer is
proposed. The architecture integrates the strengths of CNNs and
ViTs to establish a robust, multiscale heterogeneous representation
that aids in detecting buildings of various sizes. Second, a learnable
mask guidance module is specifically designed for U-Conformer,
focusing the multiscale heterogeneous representation on extract-
ing relevant scale changes while progressively suppressing pseu-
dochanges. Furthermore, for the U-Conformer architecture, a
mask information joint class-balanced loss function that combines
the binary cross-entropy loss function and the dice loss function
is devised, significantly mitigating the issue of class imbalance.
Experimental results on three publicly available change detection
datasets, LEVIR-CD, WHU-CD, and GZ-CD, demonstrate that
U-Conformer surpasses previous methods, achieving F1 scores of
91.5%, 94.6%, and 86.7%, as well as IoU scores of 84.3%, 89.7%,
and 76.5% on the LEVIR-CD, WHU-CD, and GZ-CD datasets,
respectively.

Index Terms—Building change detection (BCD), learnable mask
guidance, multiscale representation, remote sensing, U-shaped
convolutional-neural-network-vision-transformer (CNN-ViT).

I. INTRODUCTION

BUILDING change detection (BCD) has to identify and
analyze building change information from complex remote

sensing scenes within a specific area over time, such as con-
struction, demolition, or renovations [1], [2]. This technology is
frequently used in urban development planning [3], [4], monitor-
ing environmental impacts [5], [6], assessing the consequences
of natural disasters [7], [8], and aiding decision making in land
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Fig. 1. Examples of the LEVIR-CD dataset. T1 represents T1-time image, T2
represents T2-time image, and Label represents the GT map.

use and policy formulation [9], [10]. BCD utilizes various data
sources, including satellite image and aerial photography. In
remote sensing images, different buildings have various scales
and appearances, resulting in notable intraclass differences, as
illustrated in Fig. 1. Remote sensing images often feature both
large-scale buildings, such as hospitals and factories, as shown
in Fig. 1(c), and small-scale structures like houses and farms, as
shown in Fig. 1(b). Consequently, we have analyzed the range of
building area changes in three datasets, as illustrated in Fig. 2(d).
We find that the scale variation of buildings in remote sensing im-
ages is drastic, demanding high capacity for multiscale percep-
tion from the networks. In addition, variations in building density
[from densely populated communities to sparsely distributed
villas, as depicted in Fig. 1(a) and (b)] compound the complexity
of the backgrounds against which building targets are positioned.
Finally, as seen in Fig. 1(b), remote sensing images also include
special buildings with unique morphological structures (e.g.,
supermarkets and churches), characterized by rich and varied
appearances. Moreover, the presence of pseudochanges induced
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Fig. 2. Ratios of changed and unchanged pixels in three BCD datasets.
(a) LEVIR-CD. (b) WHU-CD. (c) GZ-CD. (d) Statistical overview of the scale
range of changed areas in these datasets.

by factors such as variations in lighting conditions, weather
conditions (e.g., rain, snow, and so on), and imaging equipment
settings further complicates the task. Therefore, the key to
achieving high-precision BCD lies in effectively decoding all
relevant change information from bitemporal remote sensing
images to establish efficient representations of building change
targets, while simultaneously suppressing or even eliminating
interference caused by various pseudochanges. Furthermore, in
BCD tasks, there is a widespread issue of class imbalance, as
illustrated in Fig. 2(a)–(c). We have analyzed the proportion
of changed versus unchanged areas in three public datasets. It
is evident that the number of unchanged samples significantly
surpasses that of changed samples. This imbalance poses a
substantial challenge to BCD models in effectively extracting
discriminative features.

Traditional remote sensing image change detection (CD)
methods mainly include algebraic methods such as image
differencing [11] and image quantification [12], transformation-
based methods like change vector analysis [13], [14], princi-
pal component analysis [15], [16], and independent compo-
nent analysis [17], classification-based methods including post-
classification methods, and other algorithms like slow feature
analysis [18] and multivariate alteration detection [19]. These
traditional image CD methods often rely on manual feature
design, however, manually designed features lack robustness
and struggle with perceiving multiscale targets. Their inadequate
capacity to suppress pseudochanges leads to unsatisfactory de-
tection results. Therefore, the field of remote sensing image CD
has been seeking breakthroughs.

As deep learning technologies have advanced, they have
demonstrated a remarkable ability to autonomously learn and
adapt to target information in a data-driven fashion. The au-
tonomously learned features of deep learning have proven to
be significantly more robust than traditional, manually crafted
features. This realization has ignited a surge of research in CD
methods, leveraging the power of deep learning. In 2018, Daudt
et al. [20] designed three innovative fully convolutional neural

network (CNN) architectures based on the U-Net structure: FC-
EF, FC-Siam-Conc, and FC-Siam-Diff. Particularly noteworthy
are FC-Siam-Conc and FC-Siam-Diff, which used skip connec-
tions to merge early spatial details with later abstract features
in Siamese encoding–decoding architectures. These quickly
gained widespread acceptance in the BCD field due to their out-
standing effects. Following this, research efforts concentrated on
enhancing these models’ ability to perceive information across
multiple scales, aiming for superior feature representation. In
2020, Chen et al. [21] proposed the DASNet, which utilized a
dual-attention mechanism to capture long-range dependencies,
leading to more distinct feature representations. In addition,
to tackle the challenge of sample imbalance, they designed
a weighted bilateral contrast loss, fine-tuning the network to
focus on change feature pairs. Further advancements came with
STANet [22], which divided images into multiscale subregions.
It applied CD self-attention mechanisms to model the spatiotem-
poral relationships in dual-temporal images, capturing spa-
tiotemporal dependencies at varied scales for enhanced feature
representations. In 2022, Hang et al. [23] proposed a multiScale
progressive segmentation network, using three subnetworks, a
scale guidance module, and a position-sensitive module to detect
change targets at various scales. In 2023, Lv et al. [24] proposed
a land cover CD network based on hierarchical attention feature
fusion, which explores the global semantic features of interesting
targets from multiple perspectives through especially designed
multiscale convolution fusion filters, achieving detection of
multiscale targets. In the same year, Feng et al. [25] designed
DMINet to achieve high-precision detection while effectively
minimizing false alarms caused by pseudochange interference.
This was accomplished through cross-temporal joint attention
blocks. They directed the global feature distribution of each
input and encouraged information coupling between intralayer
representations. In addition, Zhou et al. [26] proposed CANet,
which includes temporal attention modules, context memory
and extraction modules, and multiscale fusion modules. These
designs allow the network to capture intraimage context more
effectively by mining interimage context information, thus im-
proving the utilization of image context. Also in 2023, Lv
et al. [27] developed E-UNet, integrating multiscale convolution
and polarized self-attention modules for multimodal remote
sensing image CD. The most recent innovation came in 2024,
with AANet, proposed by Hang et al. [28], using an ambiguity re-
finement module to assist in extracting difference features and a
weight rearrangement module to fuse features of different scales,
achieving satisfactory CD in ambiguous areas. These models
incorporate various attention mechanisms and multiscale feature
capture mechanisms, significantly expanding the receptive fields
of CNNs and enhancing their ability to assimilate and process
global information.

Since the introduction of Transformers in 2017 [29], their
exceptional global modeling capabilities have captivated the
research community. This interest has spurred numerous studies
exploring the application of Transformer-based architectures
in computer vision, with the goal of achieving more precise
processing outcomes. In the realm of image analysis, this explo-
ration has led to the development of innovative models such as
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vision transformers (ViT) [30], segmentation transformers [31],
and SegFormer [32]. These Transformer-based networks have
notably enhanced the accuracy of CD tasks. A prominent exam-
ple from 2022 is the ChangeFormer [33], which innovatively
integrated Transformers into BCD tasks. The ChangeFormer
capitalized on the Transformer’s extensive receptive field and ad-
vanced contextual modeling capabilities, surpassing traditional
CNNs in precision. This breakthrough represents a significant
advancement in BCD, showcasing the potential of Transformer-
based models to redefine the landscape of image analysis and
CD.

However, networks that solely depend on stacked Transform-
ers are limited in their multiscale perception capabilities, often
overly focusing on global modeling and overlooking smaller
scale targets and their detailed characteristics. Extensive re-
search [34], [35] has shown that solely relying on this method
is ineffective for capturing building information across varying
scales. As a result, the integration of Transformer structures
with CNN architecture has emerged as a pivotal area of re-
search for detecting targets of different sizes in remote sensing
images. Chen et al. [36] have pioneered an innovative method
with the bitemporal image transformer (BIT), which skillfully
models spatial-temporal contexts. This method uses a semantic
tokenizer to compactly organize features extracted by a CNN
backbone into a set of tokens, which are then processed by the
Transformer encoder to establish connections within a token-
based spatiotemporal domain. These tokens, enriched with con-
text from each temporal image, are then mapped back into
pixel space to refine the initial features through the Transformer
decoder. The final step involves the prediction module deliv-
ering pixel-level outcomes by filtering the feature differences
through a basic CNN. The effectiveness of the BIT highlights
the feasibility and benefits of merging CNNs with Transformers,
proposing a viable approach for such technological unions.
However, this strategy also faces its own challenges, notably the
Transformers’ requirement for large, diverse training datasets
to prevent overfitting and guarantee generalization. Compil-
ing and annotating these vast datasets is not only laborious
but also costly, posing a substantial challenge for the applica-
tion of Transformer architectures in BCD tasks and marking
a critical area for future development in these sophisticated
systems.

Taking into account the distinct advantages and limitations of
CNNs and Transformers, this study proposes the U-Conformer
model, specifically designed for BCD using remote sensing
images. This innovative model employs a self-supervised mul-
tiscale masked autoencoder pretraining scheme (CFMAE) to
maximize the potential of unlabeled remote sensing data. The
U-Conformer architecture seamlessly combines the strengths
of CNNs and ViTs, offering a powerful solution for BCD
challenges in remote sensing scenarios. Within this framework,
CNNs excel at capturing the intricate local details of objects,
providing a detailed perspective of each element in an im-
age. In contrast, ViTs are adept at forming a comprehensive
understanding of global semantic relationships, effectively in-
tegrating these detailed insights into a unified narrative. This
hybrid architecture addresses the common problem of weak

features in traditional BCD networks, thereby facilitating a
more dependable detection mechanism. The efficiency of this
approach is reflected in significant improvements in detection
performance, achieved with considerably less computational
overhead and a streamlined model structure. The U-shaped ar-
chitecture of the U-Conformer plays a crucial role in boosting the
network’s proficiency in accurately identifying and analyzing
targets across different scales. This design promotes a deeper
comprehension of variations in building structures, regardless
of their dimensions. Moreover, the addition of the learnable
mask guidance module (LMGM) is instrumental. It sharpens
the network’s focus, steering it toward relevant changes. This
strategy is focusing on mitigating pseudochange interference, a
prevalent challenge in CD tasks. As a result, LMGM markedly
enhances the network’s ability to discern building change infor-
mation across various scales in remote sensing images. Further-
more, the mask information joint class-balanced loss function
strategically tackles the widespread issue of class imbalance in
CD datasets. This recalibration of the learning process ensures
the algorithm remains impartial, giving enough attention to the
often more critical minority class. The implementation of this
balanced approach substantially elevates the model’s precision
and reliability, making the U-Conformer an exceptionally effec-
tive tool for detecting architectural changes in remote sensing
images.

The proposed U-Conformer is comprehensively tested on
three challenging publicly available CD datasets: LEVIR-
CD [21], WHU-CD [37], and GZ-CD [38]. The impressive
experimental results demonstrate that U-Conformer achieves
optimal detection outcomes in both quantitative metrics and
visual performance, outperforming ten state-of-the-art (SOTA)
methods in terms of performance, and achieving F1 scores of
91.5%, 94.6%, and 86.7%, as well as IoU scores of 84.3%,
89.7%, and 76.5% on the LEVIR-CD, WHU-CD, and GZ-CD
datasets, respectively. Our contributions are as follows.

1) This article proposes an effective BCD algorithm that effi-
ciently integrates the strengths of CNN and ViT, achieving
high-precision performance in detecting building changes
while effectively suppressing background pseudochange
interference.

2) This article designs a U-shaped Siamese architecture. To
address the challenge of poor multiscale target perception
in network for BCD tasks, a U-shaped multiscale structure
is considered as the feature encoder–decoder method.
This approach integrates the rich detail information from
shallow layers with the abstract semantic information from
deep layers, enhancing the model’s ability to perceive
multiscale targets.

3) This article designs the LMGM. To tackle the significant
challenge of pseudochange interference and enhance the
network’s multiscale perception capabilities, the network
integrates the LMGM to guide the focus toward au-
thentic multiscale change information while suppressing
pseudochange interference. Furthermore, by employing
a class-balanced loss function, it effectively resolves the
issues caused by class imbalance, thereby significantly
improving the accuracy of target detection.
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II. RELATED WORK

A. Change Detection (CD)

As the frontier of intelligent systems [39] continues to expand,
the role of CD technology has become increasingly vital in the
arena of dynamic object tracking [40], [41], [42], [43]. This
innovative technology is indispensable for quick and accurate
decision making in the face of sudden environmental changes,
such as the unexpected appearance of obstacles, pedestrians,
or vehicles [44], [45]. Moreover, it plays a pivotal role in the
tracking of moving entities, from individuals within a crowd
to vehicles navigating busy streets [39], thereby significantly
augmenting intelligent applications in areas like surveillance,
traffic management, and public safety. The integration of sophis-
ticated artificial intelligence CD algorithms with SOTA sensor
technologies not only elevates the accuracy of these systems but
also enhances their capability to adapt to and learn from a myriad
of scenarios. In the varied application landscape of intelligent
systems, natural scene images and videos serve as the primary
data sources, offering a wealth of real-time information that is
crucial for the effective operation of these advanced systems in
dynamic and complex environments.

CD based on natural scene images is widely used in updating
3-D maps. The targets for detection are changes in navigation
landmarks in natural scenes, such as buildings, traffic signs, and
other roadside structures (fences, kiosks, etc.). This is vital for
updating and maintaining urban maps to ensure the robustness
of navigation systems. Alcantarilla et al. [46] proposed a system
for structural CD in street view videos, meeting the demands
for more frequent and efficient large-scale map updates in
autonomous vehicle navigation. Wang et al. [47] proposed a
scene CD architecture based on the Transformer to overcome
pseudochanges caused by camera movement or environmental
changes.

On the other hand, CD based on natural scene video is mainly
used in automated video surveillance [48]. For example, Hari-
taoglu et al. [49] developed a surveillance system that employs
CD technology to identify individuals and their carried items in
a crowd. Carnegie Mellon University [48], on the other hand,
utilized CD technology to track moving targets, such as people,
cars, and others. Robert O’Callaghan et al. [50] proposed a robust
CD algorithm that can accurately segment person changes in a
scene while ignoring the effects of lighting changes.

In natural scenes, the scale of target changes is consistent,
and the availability of information from various angles ensures
minimal intraclass differences for the same targets. This aspect
significantly enhances the performance of deep learning tech-
niques in scene CD. However, in the task of CD in remote
sensing images, the detection targets are presented only from
a bird’s-eye view, characterized by large intraclass differences,
small interclass differences, large scale variances, and complex
backgrounds. This poses challenges in the field of computer
vision. As remote sensing technology continues to advance, the
need for CD in remote sensing images has grown significantly,
rendering it an area of considerable value and interest in research.
Therefore, this article focuses on the research of CD technology
in remote sensing images, aiming to design an algorithm capable

of accurately identifying changes in building targets of various
scales and styles.

B. CNN-ViT Hybrid Structure

In the field of computer vision, CNNs, with their hierarchical
structure and capability to gradually extract local features, have
long dominated due to their ability to consider both low-level
geometric features and high-level semantic features [51], [52],
[53]. However, their inability to fully utilize global information
in images often leads to classification errors when features
are limited or ambiguous, prompting researchers to seek new
network architectures. The advent of the ViT demonstrated
that Transformers could be applied to visual tasks. Extensive
experiments have shown that ViT-based models consistently
outperform CNN-based models in object-level visual tasks such
as object detection and classification. This can be attributed to
the built-in self-attention mechanism in the ViT, which effec-
tively captures long-range data dependencies [54], [55], [56].
However, the use of the ViT demands stronger computational
capabilities and longer training cycles, contrasting sharply with
the requirements of the CNN. In addition, the breadth of training
data plays a crucial role in ViTs’ performance, with the com-
bination of large-scale training datasets and data augmentation
methods ensuring ViTs’ superiority over CNNs [57]. However,
in pixel-level visual tasks like image segmentation and CD,
CNNs still outperform ViTs due to their convolutional opera-
tions’ proficiency in extracting local features.

Therefore, leveraging the complementary strengths of both
and developing a hybrid architecture (Conformer) combining
the CNN and ViT has become a hot topic in computer vision. In
the field of scene detection, Li et al. [34] combined the CNN and
ViT as the backbone to capture both local and global features,
proposing an efficient distracted driving detection method using
driver and relevant object cues. In the realm of multimodal
fusion, Yu et al. [35] designed an unsupervised hybrid model
based on the CNN and ViT for multimodal medical image
fusion, combining the advantages of both models to capture
global contextual information, enhance learning capabilities,
and introduce CNN’s inductive bias to improve generalization
performance.

In the task of CD in remote sensing images, which requires
precise detection of small targets and edge details while also con-
sidering large-area target perception, the Conformer is particu-
larly well-suited. It leverages both the CNN’s detail capturing
and localization capabilities and the ViT’s global perception and
modeling abilities to address the challenge of detecting changes
in multiscale architectural targets in complex remote sensing
scenes.

III. METHODOLOGY

In this section, the overall architecture of the U-Conformer
is introduced, as delineated in Section II-A. This is followed
by comprehensive explanations of the U-Conformer detailed in
Section II-B, and a description of the LMGM in Section II-C.
Finally, Section II-D introduces a loss function tailored to miti-
gate the issue of sample imbalance.
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Fig. 3. Overview of the U-Conformer.

A. Overview of the U-Conformer

As shown in Fig. 3, the proposed U-Conformer network, a
Siamese network blending CNN and ViT technologies, consists
of two primary components: the U-Conformer and the LMGM.
The U-Conformer designs a novel architecture incorporating
both the Conformer structure, which merges CNN and ViT
for enhanced perception of multiscale targets, and a U-shaped
Siamese architecture, which synergizes multiscale features from
both CNN and ViT to generate robust features for target de-
tection. To improve the model’s generalization across diverse
architectural targets, the CFMAE is incorporated into the U-
Conformer network, exploiting a vast corpus of unlabeled re-
mote sensing images of buildings. This significantly bolsters the
feature capture potential of the Conformer. For a more detailed
structural explanation, refer to Section III-B. In addition, the
LMGM, employing a masked transformer, directs the model’s
focus toward foreground change information, pooling multiscale
features to achieve precise multiscale CD results. Further struc-
tural details are provided in Section III-C.

B. U-Conformer

As shown in Fig. 3, to acquire the robust multiscale features
necessary for CD, the Conformer is utilized to thoroughly
comprehend and encode semantic information at various scales
within the given bitemporal remote sensing images, T1, T2 ∈
RH×W×3, which have a spatial resolution of H ×W and a
channel number of 3. The specific details of the Conformer
are presented in Fig. 4. The system’s encoder adopts a Siamese
configuration, comprising three stages of CNN blocks followed
by a single stage of a Transformer block in each branch. These
twin branches operate in a weight-sharing mode, adeptly ex-
tracting multiscale features from the input bitemporal images,

Fig. 4. Detail of the CNN block and the ViT block in the Conformer.

corresponding to the prechange and postchange scenarios, re-
spectively.

The initial three stages of the convolutional blocks are de-
signed in alignment with the Transformer block’s design princi-
ples. Instead of employing self-attention mechanisms as found
in traditional Transformers, these stages utilize 5× 5 depthwise
convolutions. This approach is specifically chosen to effectively
learn local features from the input images. The functioning
within the convolutional block can be articulated as follows:

X̂ l = conv1×1(conv5×5(conv1×1(LN(X l−1)))) +X l−1 (1)

X l = MLP(LN(X̂ l)) + X̂ l (2)
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where X̂ l denotes the output from the convolution module in
the lth layer block, and X l signifies the output produced by the
MLP module.

Subsequently, the local features acquired by the CNN stages
are channeled into the fourth stage, which employs a Trans-
former for global semantic modeling. This Transformer stage
utilizes self-attention blocks to extract global features. The
process of computing self-attention can be described as follows:

Q = TW q,K = TW k, V = TW v (3)

Attention(Q,K, V ) = SoftMax

(
QKT

√
d

)
V (4)

where T ∈ RM2×d symbolizes the input to the self-attention
mechanism, and W q,W k, and W v ∈ Rd×d are the weights of
three distinct linear projection layers. The matrices Q,K, V ∈
RM2×d correspond to the query, key, and value components
of the attention model, respectively. Here, M2 refers to the
resolution of the matrices T,Q,K, and V , while d represents
the dimension of the individual attention head. The functioning
within the Transformer block can be delineated as follows:

X̂ l = A(LN(X l−1)) +X l−1 (5)

X l = MLP(LN(X̂ l)) + X̂ l (6)

whereA symbolizes the self-attention operation. In this formula-
tion, X̂ l denotes the output generated by the transformer module
in the lth layer block, while X l indicates the output produced
by the MLP module.

At each transition between stages, patch embedding is em-
ployed to downscale the feature map to half its prior spatial
resolution. In Stages 1, 2, and 3, the local convolution kernels are
designed with comparatively small receptive fields. Conversely,
the transformer block in Stage 4 is adept at aggregating and
fusing features from more coarsely grained representations,
thereby expanding the receptive field to encompass the entire
image. This strategic design allows for the effective extraction
and integration of both local and global information from the
paired images.

After obtaining multiscale feature maps from the bitemporal
images, following the concept of the U-shaped network, shallow
features are introduced into the decoder via skip connections to
enhance the localization accuracy of change information. The
decoder is composed of multiple cascaded change feature query
blocks, where each change feature query block consists of a
1× 1 convolution, a 2× upsampling operation, and a convolu-
tional block. Each convolutional block comprises two repetitions
of a 3× 3 convolutional layers, a batch normalization layer, and
a ReLU layer. Bilinear interpolation is used as the upsampling
method. Initially, the decoder compares the high-level semantic
features extracted by the Transformer layers in the two encoder
branches to decode high-level change features. These are then
fused with the upsampled and shallower bitemporal features
from the higher level CNN layers. The deep-scale change fea-
tures guide the decoding of shallow-scale change features, and
simultaneously, the shallow-scale change features optimize the
recovery of change feature details. Through a series of skip

Fig. 5. (a) LMGM process for refining multiscale features. (b) Detailed view
of the LMGM.

connections, the multiscale bitemporal features from the encoder
are repeatedly decoded and fused with the upsampled change
features. This ultimately achieves the decoding of high-precision
change features we need from the bitemporal building target
features, providing a prerequisite for subsequent change infor-
mation reconstruction.

C. Learnable Mask Guidance Module (LMGM)

The LMGM is an innovative mechanism designed to enhance
the performance of the U-Conformer architecture in detecting
building changes in remote sensing images, especially in dealing
with pseudochange interference and precisely capturing effec-
tive change areas, as shown in Fig. 3. This module effectively
directs the network’s focus to activated regions within multi-
scale change features, facilitating the refinement of prediction
outcomes and resulting in more accurate CD maps. The input to
LMGM includes multiscale change features at four different res-
olutions from the U-Conformer architecture, assisting LMGM
in finely processing change information across various scales.
In addition, the input incorporates a coarse binary change map
output by the U-Conformer architecture as mask information,
guiding the algorithm to focus on potential foreground change
targets in subsequent learning processes. This design enables
the algorithm to effectively locate change areas in early stages,
providing a solid foundation for further refinement.

The specific process by which the LMGM method guides
the U-Conformer network to focus on foreground change infor-
mation is illustrated in Fig. 5. Initially, the mask Transformer
takes a mask matrix, multiscale change features, and learnable
query features as input, as depicted in Fig. 5(b). Here, the mask
matrix is generated by masking unactivated areas in the highest
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resolution change features output by the U-Conformer. Subse-
quently, the mask Transformer processes the multiscale change
features from the lowest to the highest resolution, under the
guidance of the mask matrix, controlling the learnable query
features to focus on foreground change information within the
multiscale change features, thus achieving refined modification
of change information at each scale. Afterwards, the refined fea-
tures are further optimized through a self-attention mechanism
for global modeling. The LMGM layer consists of four mask
Transformers, with input feature resolutions of H1 = H/16,
H2 = H/8, H3 = H/4, H4 = H/2, and W1 = W/16, W2 =
W/8, W3 = W/4, W4 = W/2, where H and W are the original
image resolutions. By undergoing L cycles of iterative refine-
ment within the LMGM, the algorithm incrementally refines the
change information across different scales, ultimately achieving
high-precision CD, as shown in Fig. 5(a). Typically, the standard
cross-attention computation is as follows:

Xl = softmax(QlK
T
l )Vl +Xl−1 (7)

where l represents the index of the layer, with Xl ∈ RN×C

denotingN query features, each ofC dimensions, at the lth layer
and Ql = fQ(Xl−1) ∈ RN×C . X0 signifies the initial query
features input into the LMGM. The image features transformed
byfK(·) andfV (·) are represented asKl, Vl ∈ RHlWl×C , where
Hl and Wl denote the spatial resolution of these image features.
The functions fQ, fK , and fV are linear transformations. The
masked attention mechanism in the LMGM is adjusted as fol-
lows:

Xl = softmax(M̂l−1 +QlK
T
l )Vl +Xl−1 (8)

where the attention mask M̂l−1 at feature location (x, y) is

M̂l−1(x, y) =

{
0 if Ml−1(x, y) = 1
−∞ otherwise

(9)

where Ml−1 ∈ {0, 1}N×HlWl represents the binarized (thresh-
olded at 0.5) output of the resized mask prediction of the previous
(l − 1)th layer of the Transformer decoder, and it is resized to
match the resolution of Kl. The term M0 refers to the initial
binary mask prediction derived from X0, which is generated
before the query features are input into the LMGM.

By performing change information refinement using only one
resolution of change features at a time, the approach avoids
interference caused by differences in features at different scales.
This enables better multiscale change features fusion and facil-
itates the effective capture of information at various scales. In
addition, by utilizing only one resolution of features for refine-
ment at a time, the method obtains precise binary change maps
from bitemporal building change features without significantly
increasing the computational complexity of the model. Through
LMGM, the U-Conformer network is optimized, further enhanc-
ing the accuracy and reliability of detecting building changes in
remote sensing images.

D. Loss Function

In the task of detecting building changes in remote sensing
images, accurately locating buildings within complex change

areas and precisely capturing their change information are cru-
cial for achieving high-precision detection results. Although the
advanced U-Conformer architecture and LMGM have to some
extent improved the performance of building CD, the inaccuracy
of coarse binary change mask information remains a significant
challenge they face. This can lead to serious errors in locating
change areas, affecting the precision of identifying and locating
changed building targets, and thus, causing missed detections or
false alarms.

To address this challenge, a mask information joint class-
balanced loss function is proposed. The design of this loss
function aims to enhance the quality of the coarse binary change
mask information through supervised constraints, providing
more accurate guidance for CD algorithms. This approach not
only improves the algorithm’s accuracy in locating change areas
but also enhances its ability to recognize changed building
targets.

Specifically, the mask information joint class-balanced loss
function considers both the accuracy of mask information and
the class balance issue in CD during loss calculation. This
joint consideration enables the algorithm to focus more on
areas with high potential for change while reducing attention
to the background or unchanged areas. The loss function en-
sures the algorithm’s robustness in facing class imbalance issues
by generating better mask information, especially in scenarios
where the number of changed and unchanged samples is highly
imbalanced.

In constructing the mask information joint class-balanced loss
function, a mask information constraint is first introduced to
ensure high-quality mask information. In addition, the binary
cross-entropy (BCE) loss function and the Dice coefficient
loss function are incorporated, combining the need to address
class imbalance with the requirement to guide attention to-
wards the foreground. Ultimately, the mask information joint
class-balanced loss function combines the mask information
constraint, the BCE loss and the Dice coefficient loss, setting
appropriate weights for these loss components to further op-
timize the model’s detection performance. The expression for
the mask information joint class-balanced loss function is as
follows:

L = Lmask + λ1Lbce + λ2Ldice (10)

where Lmask represents the mask information constraint, which
entails using BCE loss on changing features before performing
feature masking operations, to ensure the accuracy of mask
information. Lbce signifies the BCE loss, while Ldice represents
the dice coefficient loss. The terms λ1 and λ2 are used to
denote the balancing weight between these three types of losses.
In addition, the mask information constraint is delineated as
follows:

Lmask = Lbce(Fmask, FGT) (11)

where Fmask and FGT represent the coarse binary change map
generated from change features before the feature masking
operation and the change ground-truth image, respectively. The
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BCE loss is computed as follows:

Lbce = −(ylog(p(x)) + (1− y)log(1− p(x))) (12)

where p(x) and y represent the predicted image and the ground-
truth image. The dice coefficient is defined as the similarity
between two contour regions, defined as

Ldice = 1− 2yiti
yi + ti

(13)

where yi denotes the predicted probability of a pixel being
classified as part of the changed category, while ti represents
the corresponding ground-truth label for that pixel.

Ultimately, by constructing and utilizing the mask informa-
tion joint class-balanced loss function, the BCD network demon-
strates a more powerful capability in capturing change informa-
tion, showcasing exceptional detection performance for building
change targets across various scales. This approach combines
mask information guidance with class-balancing methods, meet-
ing the needs of both U-Conformer and LMGM, and represents a
significant technical advancement in the field of BCD in remote
sensing images.

IV. EXPERIMENTS AND ANALYSIS

To investigate the effectiveness of the proposed U-Conformer,
three publicly available and challenging BCD datasets, namely
LEVIR-CD, WHU-CD, and GZ-CD, were utilized in the exper-
iments. In this section, the following aspects will be presented.
First, a detailed description of these datasets will be provided.
Second, the evaluation metrics used and several SOTA CD meth-
ods will be showcased. Third, implementation details of these
methods will be provided. Subsequently, a series of ablation
studies will be deployed and discussed. Finally, a comparison
and analysis of experimental results based on the three BCD
datasets will be presented.

A. Dataset Descriptions

In the experiments, three BCD datasets were used to evaluate
the performance of the proposed U-Conformer. The detailed
information about these datasets is as follows.

1) LEVIR-CD Dataset (Google Earth Image) [21]: The
LEVIR-CD dataset is a publicly available dataset specif-
ically designed for BCD. It includes a variety of building
types such as villas, high-rise apartments, small garages,
and large warehouses. Thus, the diverse forms and ar-
rangements of buildings in LEVIR-CD images pose sig-
nificant challenges for BCD algorithms in accurately rec-
ognizing different types of structures.

2) WHU-CD Dataset (Aerial Image) [37]: The WHU-CD
dataset is another publicly available dataset specifically
tailored for BCD. It captures various building changes,
including demolished and reconstructed buildings, as well
as diverse ground objects such as grass, trees, roads,
bridges, vehicles, and parking lots. The buildings exhibit
significant differences in scale, shape, and color, and can

easily be confused with other ground objects, which de-
mands that BCD algorithms have strong capabilities to
distinguish varying building targets.

3) GZ-CD Dataset (Google Earth Image) [38]: The GZ-CD
dataset is a publicly available BCD dataset created by Peng
et al.[38]. It consists of 19 pairs of seasonal change images
covering the suburban area of Guangzhou, China, from
2006 to 2019. The buildings exhibit significant shape and
size variations, ranging from large industrial and residen-
tial buildings to small mobile residences. In addition, the
GZ-CD dataset contains a large number of pseudochange
interferences caused by lighting and weather conditions,
with particularly large displacements caused by the per-
spective projection of high-rise buildings. Finally, the
clarity of the GZ-CD dataset is lower compared to the
first two datasets, making it exceptionally challenging.

B. Evaluation Metrics and Comparative Methods

1) Evaluation Metrics: This article employs six widely rec-
ognized evaluation metrics to quantitatively assess the
U-Conformer model’s performance from various angles.
These metrics include overall accuracy (OA, %), inter-
section over union (IoU, %), precision (PRE, %), recall
(REC, %), F1-Score (F1, %), and algorithm execution time
(Time, seconds/pair). They provide a multidimensional
view of the model’s effectiveness, where the algorithm
execution time represents the time required to predict
a pair of remote sensing images. True positive (TP) in
this study is defined as the number of pixels accurately
identified as buildings that have undergone changes. true
negative (TN) refers to the pixels correctly classified as
either unchanged buildings or nonbuilding entities. False
positive (FP) is the count of pixels mistakenly identified as
changed buildings, and false negative (FN) is the number
of pixels that were not detected as changed buildings but
should have been. Utilizing these definitions, the afore-
mentioned metrics are calculated as follows, providing a
comprehensive evaluation of the U-Conformer model:

OA =
TP + TN

TP + TN + FP + FN
(14)

IoU =
TP

TP + FP + FN
(15)

PRE =
TP

TP + FP
(16)

REC =
TP

TP + FN
(17)

F1 =
2× PRE × REC

PRE + REC
. (18)

2) Comparative Methods: To validate the effectiveness of
the proposed U-Conformer method, a comprehensive and
thorough comparison was conducted in the experiments
with ten related and SOTA methods. These methods are
categorized into three groups based on their underlying
technology: CNN-based algorithms, Transformer-based
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algorithms, and those that integrate both CNN and Trans-
former architectures.
a) CNN-based algorithms: These included FC-Siam-

Conc [20], FC-Siam-Diff [20], DASNet [21],
STANet [22], BSFNet [58], SNUNet [59], and
DMINet [25]. For these algorithms, except for FC-
Siam-Conc and FC-Siam-Diff, we consistently em-
ployed ResNet50 as the encoder, incorporating offi-
cially released pretrained parameters to maximize their
performance. This strategy ensures a robust and equi-
table comparison with our U-Conformer approach.

b) Transformer-based algorithm: We included Change-
Former [33] in our evaluation and utilized the pre-
trained parameters supplied by its original developers
to maintain consistency in performance evaluation.

c) CNN-Transformer fusion algorithms: This category
comprised BITNet [36] and MSCANet [60]. We also
leveraged the pretrained parameters as provided by the
original authors, ensuring that these models perform at
their best for a fair comparison with our U-Conformer.

This diverse selection of algorithms provides a compre-
hensive benchmark, allowing us to thoroughly evaluate the
U-Conformer’s performance against a spectrum of SOTA ap-
proaches in the field.

C. Implementation Details

In our experimental setup, the model was developed us-
ing PyTorch and trained on a Tesla V100 PCIe 32-GB GPU.
The training data involved segmenting the images into smaller
patches, each measuring 224 × 224 pixels. For the LEVIR-CD
dataset, this approach yielded 11 125 training pairs, 1 600 pairs
for validation, and 3 200 pairs for testing. In the case of the
WHU-CD dataset, we excluded images lacking change targets,
resulting in 1 582 training pairs, 226 for validation, and 452 for
testing. A similar criterion was applied to the GZ-CD dataset,
leading to 1 203 training pairs, 144 validation pairs, and 144
test pairs. To prevent overfitting, random data augmentation
techniques were applied, including vertical and horizontal flips,
along with random rotations. The model was trained using the
AdamW optimizer, set with a weight decay of 0.0001. The initial
learning rate was 0.0001, which was linearly reduced to zero over
150 training epochs for LEVIR-CD and WHU-CD datasets, and
over 80 epochs for the GZ-CD dataset. A batch size of 12 was
employed throughout the training process.

D. Experimental Comparison and Analysis

To evaluate the superiority of the proposed U-Conformer,
we compared it with ten classic or SOTA methods, includ-
ing FC-Siam-Diff, FC-Siam-Conc, DASNet, STANet, BITNet,
BSFNet, SNUNet, ChangeFormer, MSCANet, and DMINet, on
the LEVIR-CD, WHU-CD, and GZ-CD datasets. These methods
encompass various fusion techniques, such as feature difference
and feature concatenation, commonly used in CD networks.
In addition, they extensively explore the feasibility of utilizing
attention modules and contrastive learning to assist in feature
learning. The comparative methods also include pure CNN and

pure Transformer networks to investigate the advantages and
limitations of each. Moreover, hybrid networks that combine
both CNN and Transformer architectures are also included in
the comparison to investigate their potential. In this section,
we conducted comprehensive experimental comparisons and
analyses of these methods.

1) Results on the LEVIR-CD Dataset: In the LEVIR-CD
dataset, the presence of numerous buildings with unique forms
necessitates high capabilities for detail description. As a result,
networks like FC-Siam-Conc and DMINet, which use con-
volutional architectures, achieve better prediction results than
ChangeFormer, a Transformer-based network, due to the con-
volutional architecture’s stronger local feature capturing ability.
However, due to the limited receptive field of convolutions,
CNNs are less effective at utilizing contextual information.
This limitation results in poorer performance in discriminat-
ing changed building targets compared to our proposed U-
Conformer, leading to more false alarms and missed detec-
tions. A numerical comparison of the different methodologies
is detailed in Table I. Comparing the quantitative results with
different methods, the proposed U-Conformer achieves the high-
est accuracy in terms of OA, IoU, and F1 (99.1%, 84.3%,
and 91.5%). Significant improvements are observed over other
methods. For instance, compared to DASNet, which had the
poorest performance, U-Conformer shows improvements of ap-
proximately 0.8%, 11.6%, and 7.3% in the three comprehensive
evaluation metrics (OA, IoU, and F1), respectively. Compared
to DMINet, which had the best performance, improvements of
0.1%, 2.2%, and 1.3% are achieved in OA, IoU, and F1, respec-
tively. In terms of algorithm execution time, methods employ-
ing multilayer Transformer structures (such as ChangeFormer
and U-Conformer) tend to require more time. However, our
approach, by integrating with CNNs, achieves faster operational
efficiency and higher detection accuracy compared to networks
with purely Transformer architectures.

In addition to quantitative metrics, visual results also substan-
tiate the advantages of our method. The building change maps
(BCMs) obtained through various methods on the LEVIR-CD
dataset are shown in Fig. 6, depicting representative examples.
By observing the examples, it is evident that the proposed U-
Conformer provides clearer BCMs for buildings with different
shapes and scales. For example, in the last group of scenes, where
there are numerous small building targets closely arranged, U-
Conformer can accurately detect almost all targets and precisely
delineate building edges. In contrast, other methods miss two or
more building targets, with failing to accurately outline building
edges, resulting in numerous false alarms. In addition, in the first,
third, and fifth groups of scenes featuring large or irregularly
changing buildings, only our proposed U-Conformer achieves
relatively precise BCMs. In contrast, convolutional networks
such as DASNet and STANet suffer from severe false alarms and
missed detections, almost failing to accurately locate and rec-
ognize changing building targets. Meanwhile, Transformer net-
works like ChangeFormer exhibit significant missed detections
in the center of the building, presenting pixel voids and failing to
fully describe the changing architectural area details. Finally, hy-
brid architecture networks such as BITNet and MSCANet, due
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TABLE I
QUANTITATIVE COMPARISON RESULTS (IN%) OF VARIOUS METHODS APPLIED ON THE LEVIR-CD DATASET

Fig. 6. Representative examples of visualization results of various methods on the LEVIR-CD dataset. (a) T1-time image. (b) T2-time image. (c) GT map.
(d) FC-Siam-Dif. (e) FC-Siam-Conc. (f) DASNet. (g) STANet. (h) BITNet. (i) BSFNet. (j) SNUNet. (k) ChangeFormer. (l) MSCANet. (m) DMINet. (n) Proposed
U-Conformer. (Notations: green, red, white, and black denote missed detection pixels, false detection pixels, correct detection changed pixels, and correct detection
unchanged pixels, respectively.)

to their insufficient handling of convolutional local features and
ViT global features, result in suboptimal detection outcomes.
Notably, for the small target in the lower left corner of scene
five, only our proposed U-Conformer successfully detects it,
whereas all other methods fail. In the dense target predictions
of the second and fourth group of scenes, U-Conformer remains
stable and accurate in detecting all targets and describes more
precise target boundaries compared to other methods. Overall,
our proposed U-Conformer achieves the best performance on
the LEVIR-CD dataset.

2) Results on the WHU-CD Dataset: In the WHU-CD
dataset, the presence of numerous nonbuilding objects resem-
bling buildings significantly interferes with the network’s ability

to recognize building targets. An effective BCD network requires
an enhanced capability to extract building features. Traditional
convolutional networks such as FC-Siam-Diff, FC-Siam-Conc,
and DASNet have been unsatisfactory in feature extraction,
significantly underperforming compared to Transformer net-
works like ChangeFormer. However, convolutional networks
can achieve substantial improvements, and even surpass Trans-
former network performance, by incorporating appropriate at-
tention mechanisms, as seen with networks like BSFNet. There-
fore, when the U-Conformer appropriately merges convolutional
and Transformer structures, it naturally achieves the best re-
sults. A numerical comparison of the different methodologies
is detailed in Table II. Comparing the quantitative results with
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TABLE II
QUANTITATIVE COMPARISON RESULTS (IN%) OF VARIOUS METHODS APPLIED ON THE WHU-CD DATASET

Fig. 7. Representative examples of visualization results of various methods on the WHU-CD dataset. (a) T1-time image. (b) T2-time image. (c) GT map.
(d) FC-Siam-Diff. (e) FC-Siam-Conc. (f) DASNet. (g) STANet. (h) BITNet. (i) BSFNet. (j) SNUNet. (k) ChangeFormer. (l) MSCANet. (m)DMINet. (n) Proposed
U-Conformer. (Notations: green, red, white, and black denote missed detection pixels, false detection pixels, correct detection changed pixels, and correct detection
unchanged pixels, respectively.)

different methods, the proposed U-Conformer achieves the high-
est accuracy in terms of OA, IoU, and F1 (97.9%, 89.7%, and
94.6%). Significant improvements are observed over other meth-
ods. For instance, compared to DASNet, which had the poorest
performance, U-Conformer shows improvements of approxi-
mately 16.1%, 41.2%, and 29.2% in the three comprehensive
evaluation metrics (OA, IoU, and F1), respectively. Compared
to BSFNet, which had the best performance, improvements
of 2.1%, 8.4%, and 4.9% are achieved in OA, IoU, and F1,
respectively. When processing relatively simple remote sensing
images, the U-Conformer significantly reduces execution time,
even outperforming complex pure CNNs (such as SNUNet) in
terms of speed.

In addition to quantitative metrics, visual results also substan-
tiate the advantages of our method. BCMs obtained through var-
ious methods on the WHU-CD dataset are shown in Fig. 7, dis-
playing representative examples. Despite the relatively smaller
sample size compared to the LEVIR-CD dataset, the proposed
U-Conformer still provides BCMs with significantly higher ac-
curacy than other methods. U-Conformer demonstrates superior
identification results for various building targets, regardless of
large-scale factories or small-scale farmhouses, urban garden
villas, or industrial cement floor buildings. For example, in the
first four scenes of Fig. 7, U-Conformer accurately identifies
targets with different shapes and scales, providing precise de-
scriptions of building edges. Meanwhile, other methods produce
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TABLE III
QUANTITATIVE COMPARISON RESULTS (IN%) OF VARIOUS METHODS APPLIED ON THE GZ-CD DATASET

varying degrees of false alarms and missing detections, espe-
cially for complex scenes with building targets, resulting in a
large number of errors. In the prediction for the farmhouses in
scene five, our U-Conformer accurately detects the targets and
precisely describes the building boundaries, showcasing good
performance in small target detection. Among other methods,
only CNNs like BSFNet and SFNet, which introduced appro-
priate attention mechanisms, and hybrid architecture networks
like BITNet and MSCANet, detected the house in scene five,
but none were able to fully delineate its boundaries. In scene
six, where changed building targets appear on newly laid cement
floors, significant interference occurs, leading to extensive false
alarms in other methods. However, our U-Conformer accurately
detects the building targets without producing false alarms,
demonstrating its more effective discriminative ability for build-
ing targets. Overall, our proposed U-Conformer achieves the
best performance on the WHU-CD dataset.

3) Results on the GZ-CD Dataset: In the GZ-CD dataset, due
to changes in imaging angles and seasonal lighting, there are
numerous instances of pseudochange interference. Pure convo-
lutional or pure Transformer networks such as FC-Siam-Diff,
DASNet, STANet, and ChangeFormer, due to their lack of
local-global information integration capabilities, underperform
compared to BITNet, which simply fuses shallow convolutional
layers with ViT structures. MSCANet, which better combines
convolutional and ViT structures, achieves excellent results,
demonstrating the powerful local-global representational capa-
bilities of hybrid structures in handling pseudochange interfer-
ence with strong robustness. At the same time, networks with
better attention mechanisms, such as SNUNet and BSFNet,
also gain some capacity to integrate local-global information,
thus effectively resisting pseudochange interference and achiev-
ing satisfactory prediction results. Our proposed U-Conformer,
however, continues to excel with its powerful capability to merge
local and global information, resulting in the best performance.
A numerical comparison of the different methodologies is de-
tailed in Table III. Compared to different methods, the proposed
U-Conformer achieves the highest accuracy in terms of OA, IoU,
and F1 (93.7%, 76.5%, and 86.7%), showcasing significant im-
provements. For example, compared to STANet, which had the
poorest performance, U-Conformer shows improvements of ap-
proximately 7.3%, 29.2%, and 22.4% in the three comprehensive

evaluation metrics (OA, IoU, and F1), respectively. Compared
to MSCANet, which had the best performance, improvements
of 1.4%, 3.7%, and 2.5% are achieved in OA, IoU, and F1,
respectively. When handling simple remote sensing images, the
U-Conformer still operates with less execution time compared
to complex pure CNNs (such as DASNet and SNUNet) and pure
Transformer networks (like ChangeFormer).

In addition to quantitative metrics, visual results also sub-
stantiate the advantages of our method. BCMs obtained through
various methods on the GZ-CD dataset are illustrated with
representative examples in Fig. 8. Despite the significantly
smaller sample size compared to the other two datasets and the
challenges posed by the 19 groups of remote sensing images
captured under different conditions, our proposed U-Conformer
still excels in completing the detection task. In various scenes,
compared to other methods, U-Conformer exhibits lower rates
of false alarms and missing detections, resulting in better recog-
nition results for various complex building targets. For instance,
in scene one, other methods suffer from a significant number
of false alarms and missed detections, particularly in detecting
the elongated building in the upper left corner, with no method
accurately describing it. In contrast, our U-Conformer effec-
tively detects four targets of varying scales in scene one. In
scenes two, three, and four, due to spatial displacement caused
by the remote sensing imaging angle and the 3-D shape of
buildings, as well as severe shadow interference from lighting,
other methods all exhibit numerous false alarms and missed
detections. Specifically, in scene three, only STANet, BSFNet,
and our U-Conformer successfully avoid false alarms caused by
displacement interference due to the different imaging angles of
the building in the upper left corner. However, the substantial
missed detections by STANet and the poorer building boundary
description by BSFNet prove the superior detection performance
of our U-Conformer. In scene five, U-Conformer surpasses other
methods with lower rates of false alarms and missed detections
for three building targets. In scene six, compared to other meth-
ods, U-Conformer significantly reduces false alarms, showcas-
ing its outstanding performance in complex scenarios. Overall,
our proposed U-Conformer achieves the best performance on
the GZ-CD dataset.

In summary, compared to the selected ten methods, our pro-
posed U-Conformer achieved superior results on the LEVIR-CD
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Fig. 8. Representative examples of visualization results of various methods on the GZ-CD dataset. (a) T1-time image. (b) T2-time image. (c) GT map.
(d) FC-Siam-Diff. (e) FC-Siam-Conc. (f) DASNet. (g) STANet. (h) BITNet. (i) BSFNet. (j) SNUNet. (k) ChangeFormer. (l) MSCANet. (m)DMINet. (n) Proposed
U-Conformer. (Notations: green, red, white, and black denote missed detection pixels, false detection pixels, correct detection changed pixels, and correct detection
unchanged pixels, respectively.)

dataset, WHU-CD dataset, and GZ-CD dataset. Based on the
experimental results, the following conclusions can be drawn.

1) U-Conformer has been extensively validated to exhibit
robust discriminative capabilities for detecting building
targets of various scales and shapes, yielding more accu-
rate details of building objects. The Conformer, along with
the LMGM, effectively fuse long-range semantic infor-
mation with local details, resulting in precise modeling of
buildings with diverse scales and shapes. This integration
enables the network to capture both global context and
fine-grained features, contributing to its exceptional per-
formance in BCD tasks. U-Conformer has demonstrated
superior performance over other methods through exten-
sive and thorough experimentation, illustrating its excep-
tional capability in managing complex and demanding
scenarios with notable precision and effectiveness.

2) U-Conformer exhibits exceptional resilience against false
alarms and omissions, surpassing the performance of other
methods significantly. Its robustness is particularly evi-
dent in its ability to handle diverse environmental fac-
tors, including lighting variations, seasonal changes, and
complex scenarios that might induce pseudochanges. The
LMGM effectively focuses the network’s attention on
foreground objects at different scales, continually learning
to discern various scales of building targets. As a result,
U-Conformer’s resistance to different types of interfer-
ence is greatly enhanced, enabling it to accurately detect
real building changes amidst challenging and dynamic
conditions.

3) U-Conformer continues to excel on both the GZ-CD and
WHU-CD datasets, even with limited sample sizes. It ef-
fectively identifies and accurately describes various build-
ing targets, showcasing its proficiency in few-shot learning
tasks and reinforcing its generalization capability. The
CFMAE proves to be highly advantageous as it utilizes a
substantial number of unlabeled remote sensing images for
feature learning. This approach significantly contributes to
the network’s enhanced generalization performance when
compared to other pretraining methods.

Overall, the results indicate that U-Conformer is a powerful
and robust method for BCD, surpassing existing SOTA ap-
proaches across various datasets.

E. Ablation Study on WHU-CD Dataset

To effectively tackle the challenges in BCD tasks, we have
designed corresponding modules targeting different difficulties.
First, to address the scale and shape variations of building targets,
we devised the U-Conformer to capture more robust change
features, especially for large buildings and dense small clusters
of buildings. In addition, to handle the significant intraclass
differences of buildings and the interference from complex en-
vironments, we designed the LMGM to suppress pseudochange
interference and focus the model on foreground targets. Fur-
thermore, we proposed the CFMAE to enhance the model’s
generalization, enabling it to adapt to various target scenarios. In
order to validate the effectiveness of the main network backbone
and components, we conducted three ablation studies on the
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TABLE IV
QUANTITATIVE EVALUATION ACCURACY (IN%) FOR ABLATION STUDY OF EACH SUBMODULE ON THE WHU-CD DATASET

WHU-CD dataset, as described below. In addition, this section
utilized four comprehensive metrics (OA, IoU, F1, and Time) to
quantitatively evaluate the results of the ablation experiments.

1) Ablation Study for Each Submodule: To investigate the
impact of each submodule, the proposed U-Conformer archi-
tecture is decomposed into four submodules: the Conformer,
the U-Conformer, the LMGM without Lmask, the LMGM with
Lmask, and the CFMAE. The Conformer indicates that only
the Convolution-Transformer Siamese network is used as the
building feature extractor, instead of the proposed Convolution-
Transformer U-Net. In this ablation study, each submodule is
gradually combined, and a comparison is performed for the BCD
task. As shown in Table IV, the results for different combinations
of submodules are evaluated on the WHU-CD dataset. When
the U-shaped architecture are designed into the Conformer for
BCD, improvements are observed in OA, IoU, and F1 by 0.7%,
3.4%, and 2.1%, respectively. Subsequently, the effectiveness
of the mask information constraint is validated. After proposing
the LMGM with loss, the model shows improvements of 1.2%,
4.7%, and 2.8% in terms of OA, IoU, and F1, respectively,
compared to U-Conformer alone. Meanwhile, we compared
the scenario of the LMGM without Loss, where in this case,
the model experiences a decrease in IoU and F1 relative to
U-Conformer alone, highlighting the instability of the guidance
effect. This indicates that ensuring the effectiveness and high
quality of mask information is essential to fully unleash the
potential of LMGM. Moreover, using the CFMAE to acceler-
ate network convergence and improve network generalization
achieves further enhancements in OA, IoU, and F1 by 0.6%,
2.7%, and 1.5%, respectively. In terms of algorithm execution
time, the stacking of various modules has hardly imposed any
burden on the algorithm, with no significant change in execution
time (note: The reduction in execution time from M1 to M2 is pri-
marily due to the removal of numerous convolution operations in
the M1 decoder). Finally, combining all submodules into the pro-
posed U-Conformer achieves the best accuracy on the WHU-CD
dataset (97.9%, 89.7%, and 94.6%). These quantitative results
indicate that the combination of the U-shaped architecture, the
LMGM complete with Lmask, and the CFMAE can effectively
improve the model’s performance. The visual results of each
submodule in this ablation study also provide representative
examples that align with the quantitative findings, as shown
in Fig. 9. Notably, scenario 3 illustrates how incorrect mask
information can lead to the loss of targets, which matches our
experimental quantitative outcomes. Moreover, the LMGM’s
effect in suppressing pseudochanges is significant, greatly
reducing the false positive and missrates in prediction outcomes.

Fig. 9. Representative examples of visualization results for each submodule
on the WHU-CD dataset. (a) T1-time image. (b) T2-time image. (c) GT map.
(d) Conformer. (e) U-Conformer. (f) U-Conformer + LMGM without Lmask.
(g) U-Conformer + LMGM withLmask. (h) U-Conformer + LMGM withLmask +
CFMAE. (Notations: green, red, white, and black denote missed detection pixels,
false detection pixels, correct detection changed pixels, and correct detection
unchanged pixels, respectively.)

In addition, the other submodules all contribute substantial gains
to the model’s predictions.

2) Ablation Study for Mask Matrix Generation in the LMGM:
To investigate the influence of various scale change features in
U-Conformer on the accuracy of the mask information matrix,
we conducted four experiments, namely: using only the first-
layer CNN features, using a fusion of first-layer and second-layer
CNN features, using fusion of all CNN layers’ features, and
using fusion of all CNN+Transformer layers’ features. In this
ablation study, features at different resolutions were progres-
sively integrated, and comparisons were made for the BCD task.
The results of this ablation study are obtained on the WHU-CD
dataset, and the quantitative evaluation for the entire dataset
is shown in Table V. The fusion method of using fusion of
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TABLE V
QUANTITATIVE EVALUATION ACCURACY (IN%) FOR ABLATION STUDY OF MASK MATRIX GENERATION STRATEGIES ON THE WHU-CD DATASET

Fig. 10. Quantitative evaluation accuracy (IN% and second/pair) for ablation
study of LMGM mask Transformer layer count on the WHU-CD dataset.

all CNN+Transformer layers’ features achieves more accurate
BCD results.

3) Ablation Study for the Iteration Count of the LMGM: The
LMGM learns the target change situation at the current scale by
processing the input change features of different scales together
with the mask information, and it generates new, optimized
change features. These features are then used to update the mask
information. After continuous optimization with change features
of different scales, the accuracy of the mask information for
different scales of change improves progressively. Therefore, in
addition to the accuracy of the mask information in the LMGM
being related to the number of iterations of the LMGM, the
quality of the change features also improves as multiscale op-
timization progresses. To investigate the impact of the iteration
count of the LMGM on the detection outcomes for BCD, we
configured varying iteration counts and multiscale feature input
layers for the LMGM, tailored to the building scale scenarios
in the dataset. This approach was employed to identify the most
suitable configuration results. The results of this ablation study
are obtained on the WHU-CD dataset, and the quantitative eval-
uation for the entire dataset is shown in Fig. 10. As the number
of iterations increases, the execution time of the algorithm also
gradually increases. However, it has been observed that the
algorithm achieved its optimal detection results after conducting
ten LMGM iterations. This not only indicates that high-precision
BCD can be achieved by repetitively leveraging change features
of various scales for change information reconstruction, but it
also demonstrates that excessively stacking Transformer layers
does not always lead to improvements in the algorithm. Consid-
ering that prolonged and repeated updates of mask information
can lead to overfitting, it is essential to select configuration
conditions that are most suitable for the current task.

In conclusion, the ablation studies have explored the impact
of different components and configurations in U-Conformer on
BCD performance. The results confirm the effectiveness of the
U-conformer, LMGM with Lmask, CFMAE, and ten iterations
of the LMGM in achieving accurate BCD results on the BCD
dataset.

V. CONCLUSION

This article designs the U-Conformer, a cutting-edge archi-
tectural design tailored specifically for BCD. U-Conformer is
founded on an encoder–decoder structure, utilizing the Con-
former to extract architectural features. These features are sub-
sequently processed for change information extraction through
the application of the U-shaped architecture and the LMGM.
The U-shaped architecture leverages the Transformer’s deep
features to guide CNN shallow features in obtaining change-
related features. Simultaneously, CNN features are employed
to complement fine-grained details. This synthesis effectively
transforms multiscale architectural features into accurate change
features. On the other hand, the LMGM iteratively refines and
reconstructs multiscale change features, ultimately producing
high-quality change maps. Furthermore, the incorporation of the
CFMAE significantly expedites network convergence, enhances
generalization capabilities, and unlocks the full potential of the
Transformer structure. The proposed U-Conformer is exten-
sively evaluated on challenging datasets: LEVIR-CD (Google
Earth), WHU-CD (Aerial), and GZ-CD (Google Earth), each
presenting unique difficulties. A series of ablation experiments
further corroborate the effectiveness of U-Conformer. Finally,
comprehensive comparisons with ten other SOTA methods af-
firm that U-Conformer outperforms its counterparts, delivering
superior performance.

In our future research, we will focus on the following three
aspects.

1) We will further expand the strategy of combining ViTs
and CNNs to integrate local and global information more
effectively.

2) We will continue to enlarge the dataset for unsupervised
pretraining to match the capabilities of a more powerful
backbone network.

3) We intend to explore the development of a unified model
that extends our approach to all CD tasks.
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