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BFEA: A SAR Ship Detection Model Based on
Attention Mechanism and Multiscale Feature Fusion

Liming Zhou”, Member, IEEE, Ziye Wan

Abstract—With the advancements in deep learning and synthetic
aperture radar (SAR) technology, an increasing number of individ-
uals are utilizing deep-learning techniques to detect ships in SAR
images. However, the efficiency of SAR ship detection is affected
by complex background interference and various ship sizes. Ad-
dressing these challenges, this article proposes a balanced feature
enhanced attention model. First, we introduce a novel attention
feature fusion network (WEF-Net) tailored for SAR multiscale ship
detection. WEF-Net effectively balances the information across
different backbone layers and harmonizes semantic information
from various levels of the feature pyramid through aggregation
and averaging. Next, we embed the receiving field extension module
in WEF-Net to learn the context information and generate the
global characteristics of the receiving field balance. In addition,
it can extract features from multiple scales to enhance the de-
tection capability of the model for ships of different scales. At
the same time, acknowledging the impact of surrounding complex
background interference on the detector, we redesigned the ELAN
module by combining convolution and attention. This enhancement
enables the model to better attend to target position information
during feature fusion, suppress the surrounding complex back-
ground interference, and highlight the ship’s feature information.
Finally, owing to the prevalence of small targets in SAR images,
we employ an optimized loss function to bolster the model’s per-
formance in detecting small targets. This approach accelerates
training convergence, reduces instances of missed detection on
small targets, and enhances overall detection performance across
multiple scales. Experimental results demonstrate that our model
achieves detection accuracies of 98%, 93.1%, and 76.9% on the
SAR ship detection dataset, high-resolution SAR image dataset,
and large-scale SAR ship detection dataset, respectively, effectively
discerning ship targets amid complex backgrounds in SAR images.

Index Terms—Deep learning, feature fusion network, multiscale
ship detection, synthetic aperture radar (SAR).
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1. INTRODUCTION

YNTHETIC aperture radar (SAR) is an active microwave
S imaging radar, which can achieve all-weather, all-day ob-
servation of the ground, and can obtain high-resolution images
under harsh conditions, such as night and cloud cover. Itis widely
used in various application fields, such as target classification
[1], [2], target detection and recognition [3], [4], [5], target
segmentation [6], [7], etc. Among these applications, automatic
ship detection in SAR images plays an important role in both
military and civilian fields, such as defense and security, fishing
vessel monitoring, and maritime traffic supervision and rescue.

Due to the influence of SAR imaging characteristics, ship
targets in SAR images have very low proportion and small size.
Moreover, because of the scattering effect and the resolution
limitation of wavelength and antenna size, it is difficult to obtain
the details and boundary information of the small target, which
affects the detection accuracy. At present, the deep learning
related research work on SAR image small target detection
is less and the effect is not good. In addition, SAR images
obtained from satellites and airborne platforms generally have
lower resolution and are more susceptible to background clutter
and noise compared to optical images. This is because of the
following conditions.

1) SAR image background is complex. Due to the influence
of SAR clutter, imaging principle, structure of ground
objects, and other factors, the existing detection methods
are difficult to distinguish the target from the background.

2) The proportion of ships in SAR images, especially small
ships, varies greatly. Due to the diversity of ship scales in
SAR images, it is difficult for existing methods to extract
multiscale ship features effectively.

Therefore, how to detect multiscale ship targets in complex

background clutter is still a major challenge.

In recent years, the advent of deep learning, notably convolu-
tional neural networks (CNNs), has developed rapidly, achieving
remarkable results not only in optical remote sensing image
processing but also in SAR image processing. Unlike traditional
methods reliant on manual feature extraction, CNNs automate
this process, reducing human intervention and enabling end-to-
end processing.

Deep-learning-based object detection methods fall into two
categories: two-stage and single-stage models. While the former
generates candidate regions for subsequent classification and
localization, exemplified by faster R-CNN [8], mask R-CNN
[9], and libra R-CNN [10], the latter integrates region generation
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with target classification, albeit at the expense of computational
complexity and slower detection speeds. The single-stage al-
gorithm treats both the target type and location as regression
problems at one time, simplifying the calculation process, such
as SSD [11], YOLO [12] series, FCOS [13], RetinaNet [14],
and so on. In 2018, the YOLOV3 [15] algorithm was proposed,
which introduced the residual structure and deepen the depth
of the network, and improved the detection capability of dif-
ferent scales. Later, the slicing operation was introduced into
the YOLOVS5 [16] network model. In 2022, the YOLOvV7 [17]
algorithm was proposed, which introduced strategies such as
multibranch stacked modules, innovative transition modules,
and heavy parametric structures to further optimize the effect of
target detection. YOLOV7 surpasses the previous YOLO family,
with 120% FPS improvement over YOLOv5 and 180% FPS
improvement over YOLOX [18].

Inrecent years, with the development of CNNs, deep-learning
techniques have been applied in the field of SAR ship target
detection, and researchers have successfully utilized them to
address specific challenges. To solve the problem of large-scale
variation of ship targets in SAR images, Bai et al. [19] pro-
posed a new anchor-based SAR ship detector, which balances
semantic information at different levels of the feature pyramid
through aggregation and averaging, and learns global context
information. Zhang et al. [20] proposed a multiscale global
scattering feature association network for SAR ship target recog-
nition, which improves the detection performance of multiscale
SAR image ship detection. To solve the problem of detecting
targets with complex background interference, Yu et al. [21]
introduced a ship detector (MHASD), which integrates local
and global attention by using mixed attention residual model
(HARM), thereby enhancing ship target features at channel and
spatial levels and improving detection accuracy. Sun et al. [22]
proposed an anchor-free method for ship target detection in
high-resolution SAR images, which improves ship target loca-
tion performance in complex scenes. Sun et al. [23] proposed
a complex background SAR ship recognition method based on
two-branch transformer fusion network, and designed a two-
branch feature extraction and fusion architecture to effectively
extract local fine-grained features of ships. To solve the prob-
lem of missing small targets in SAR images, Hu and Miao
[24] proposed a new small SAR ship detection network, which
adopted a transformer-based dynamic sparse attention module
to improve the focusing and extraction of small ship features.
Kang et al. [25] proposed a deep layered network for SAR
ship detection, a multilayer fusion CNN based on context area,
which incorporates deep semantics and shallow high-resolution
features to improve detection performance for small ships.
Although the above detection methods have achieved good
results, it is still a major challenge to detect multiscale ships
in complex background clutter due to the multiscale and weak
significance of target features and the complexity of background
noise.

Therefore, in order to solve the problems of large-scale change
of ship targets, many small targets and background clutter in
SAR images. We construct a multiscale SAR ship detection
model based on attention mechanism, called balanced feature
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enhanced attention model (BFEA). Because of the special imag-
ing mechanism of SAR, it is still a big challenge to detect small
ships from SAR images. BFEA can effectively solve the problem
of missing small ships in SAR images with weak semantic and
false alarm interference. We design a novel attention feature
fusion network (WEF-Net), which can solve the problem that the
ship target is not obvious and the background clutter is strong
in SAR images. WEF-Net balances the semantic information
of different levels of features through aggregation, and imparts
an attention mechanism to suppress the interference of complex
background, focusing more on the ship target. In addition, in
order to solve the problem of the diversity of SAR ship scale
changes and the large number of small size targets, we also
embedded a multireceptive field extension module (MRFFM)
in WEF-Net to learn the context features, increase the receptive
field, and improve the acquisition ability of small targets. Then,
in order to adaptively learn the importance of feature maps of
different scales in the fusion process and improve the ability
to represent multiscale features, we use the weighted feature
fusion module (WFF) to introduce learnable weights to learn
the importance of different input features, so as to better in-
tegrate multiscale features and retain feature information with
richer context. Therefore, the model can improve the perception
ability of different scale targets. In addition, the model uses the
combination of convolution and attention to optimize the ELAN
module. After optimization, the ELAN module can better fully
integrate the feature information of different scales, enhance and
improve the fusion of multiscale feature maps with complex
background, so that the model can learn more global feature
information, so that it can detect the ship target under complex
background. Finally, for the large number of small targets in SAR
images, we apply a loss function combining the complete cross-
linked (CIoU) measurement scheme and Wasserstein distance.
This optimization method enables the detector to perform well
in capturing small ship targets, and our model achieves excellent
performance on three challenging multiscale SAR ship datasets.
The main contributions of this article are as follows.
1) This article constructs a new attention-mechanism-based
multiscale SAR ship detection model BFEA, which has
a novel WEF-Net, MRFFM, and optimized loss function.
In the complex background detection of multiscale SAR
ship detection, more excellent detection performance is
obtained.
2) Aiming at the characteristics of inconspicuous ship targets
and strong background clutter in SAR images, we propose
a WEF-Net. Itincludes two parts: balanced feature module
(BFM) and feature enhancement fusion module (FEF).
WEF-Net balances the semantic information of different
levels of features through aggregation, and has an embed-
ded attention mechanism to suppress the interference of
complex background and pay more attention to the ship
target. The WFF and the improved ELAN module are
used to better and fully integrate the feature information
of different scales, enhance and improve the fusion of
multiscale feature maps with complex backgrounds, and
learn more global feature information, so that it can detect
ship targets under complex background.
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3) To solve the problem of the diversity of SAR ship scale
variation and the large number of small-size targets, we
embedded the MRFFM in WEF-Net to learn the context
information, to build more expressive multiscale features,
and to improve the detection performance of small targets.

4) To solve the problem of missing small- and medium-sized
targets in SAR images, this article uses the advantages
of CloU and NWD loss function to optimize the loss
function as a balance between bounding box regression
accuracy and training convergence. The optimized loss
function is insensitive to the movement of small targets,
thus improving the detection accuracy of small ships.

5) To verify the performance of the proposed model, we
performed tests on three challenging real SAR datasets:
SAR ship detection dataset (SSDD), high-resolution SAR
image dataset (HRSID), and large-scale SAR ship detec-
tion dataset (LS-SSDD-v1.0). Compared with the other
object detection model, the average accuracy (mAP) of
our model on the three datasets reaches 98%, 93.1%, and
76.9%, respectively, showing excellent performance in the
task of detecting multiscale SAR ship targets in complex
background.

The rest of this article is organized as follows. Section II
reviews related methods. Section III describes the proposed
method in detail. Section IV shows experiment and results.
Finally, Section V concludes this article.

II. RELATED WORK

A. SAR Target Detection in Complex Background

In SAR images, complex background target detection is a
difficult problem because the imaging mechanisms of SAR
images and optical images are very different, it is easy to be
affected by the texture information is not significant, the edge
is difficult to detect, the coherent point noise is serious, lack of
geometric structure, and other factors.

Many scholars have studied deep-learning-based approaches
to solve these problems. Yang et al. [26] introduced the co-
ordinate attention module to extract more discerning semantic
features, facilitating precise localization and discrimination of
ship targets. Wang et al. [27] proposed an improved YOLOVS
method to address the low accuracy of multiship target detection
tasks in complex scenes, and introduced asymmetric cone non-
local block and sim attention mechanism to reduce nearshore
background interference. Chen et al. [28] proposed an anchor-
free method SAD-Det based on transformer and adaptive fea-
tures, which can detect rotating invariant ship targets with high
average accuracy in SAR images, and realize high-precision
ship detection in any direction in complex scenes. Additionally,
Huang et al. [29] devised the horizontal synchronous attention
mechanism (LSAM), which dynamically adjusts weights for
different regions to bolster information capture regarding target
entities. Through these improved methods, the performance of
SAR image complex background target detection has been fur-
ther improved, which brings new possibilities for more accurate
target detection and recognition.

11165

B. Small Target Detection

In SAR images, small target detection is a challenging prob-
lem. According to the characteristics of SAR imaging, SAR
image targets are sparse and small in size. In object detection,
there are cases of missing detection because the SAR image is
blurred or the target object itself is small in size, which leads to
the target appearing in the SAR image occupying fewer pixels.

This section delves into various fundamental network-based
optimization strategies. Hu and Miao [24] proposed an SAR
detection model based on transformer architecture to improve
the detection accuracy. Fu et al. [30] presented the feature bal-
ancing and refinement network to harmonize semantic features
across diverse levels, facilitating comprehensive information ac-
quisition for small ship detection. Additionally, Lu et al. [31] in-
troduced the information enhancement feature pyramid network
(FPN). This architecture enriches the spatial context information
flow and refines the representation of small and multiscale ships.
These network optimization methodologies hold promise for
achieving more precise small target detection, thereby enabling
real-time detection capabilities.

C. Multiscale Target Detection

Given the SAR imaging characteristics, ship targets in SAR
images exhibit multiscale attributes. The utilization of an FPN
[32] to construct multilevel features stands as a primary tech-
nique in addressing multiscale target detection challenges.
However, a noticeable semantic disparity exists among FPNs
at distinct levels, potentially diminishing the representational
capacity of multiscale features.

Therefore, researchers have proposed new solutions to the
above problems. Yang et al. [26] devised a receptive field
enhancement module, thereby enhancing ship detection per-
formance across diverse scales. Tang et al. [33] proposed an
attention mechanism for multiscale receptive fields convolution
block (AMMRF). AMMREF not only makes full use of the
location information of the feature map to accurately capture the
regions in the feature map that are useful for detection results,
but also effectively captures the relationship between the feature
map channels, so as to better learn the relationship between
the ship and the background. Tan et al. [34] proposed bidi-
rectional feature pyramid (BiFPN), augmenting horizontal skip
connections. thereby facilitating superior feature fusion. These
methodologies empower the model to glean richer contextual
information, thereby enhancing its capacity to detect multiscale
features.

III. METHODOLOGY
A. Network Structure

To solve the problem of large-scale change and background
clutter of SAR image, we propose a BFEA, as shown in Fig. 1.
First, we extract features based on the CSPDarknet53 architec-
ture. Then, we propose a new WEF-Net to balance features at
different levels, which consists of a BFM and an FEF. BFM can
balance the information of each backbone layer and generate
the global features of the sensitivity field balance, while FEF
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Fig. 1.
fusion module FEF.

can balance the semantic information of different levels of the
feature pyramid by averaging the global features. Finally, the
output from WEF-Net is sent to the header.

B. Multifield Extension Module (MRFFM)

In the proposed WEF-Net neck network, the MRFFM is
embedded to balance the features of different receptive fields
and extract more context features. First, the input feature graph
F is subjected to the expansion convolution with an expansion
rate of 2, then the CA mechanism is used to extract features to
obtain the R1 feature graph, and the channel cascade operation
is performed with the input original feature graph F. The fused
feature graph is first subjected to 1 x 1 convolution to change the
number of channels, and then the expanded convolution with an
expansion rate of 4 and the CA mechanism to extract features
to obtain the R2 feature graph. Moreover, the original feature
map and R1 feature map are continued to be superimposed, and
the fused feature map is first subjected to 1 x 1 convolution
to change the number of channels, and then into the expansion
convolution with an expansion rate of 8 and the CA mechanism
to extract features to obtain the R3 feature map. Finally, the
channels of R1, R2, R3, and the original input feature graph F'
are stacked and transformed into the feature graph P with the
same number of channels as the input feature graph by 1 x 1
convolution.

Since small targets lack semantic information, it is urgent to
extract global context information with large receiving fields
as an important compensation. Therefore, in the BFM part
of WEF-Net, we embed MRFFM into the C4 layer with the
most abundant semantic information to extract more important
feature information conducive to the detection of small ships.
In addition, we embed MRFFM into the FEF part of WEF-Net
to extract global feature information for balanced features. The
MRFFM structure is shown in Fig. 2, and its formula is shown
as follows:

Rl =CA [DConvglig(F)] ()
R2 =CA (DConVEQ?iB(Conlel [R1, FD) (2)

R3 =CA (DConvg3i3(Conv1X1 [R1, R2, F])) 3)

P = Convyy [R1, R2, R3, F] 4)

Head

Opverall structure of our proposed model BFEA. The neck network WEF-Net is divided into balanced feature module BFM and feature enhancement

HxWx
—= Concat -
+

|-

HxWxC

— F —»| Concat —» —s| Concat —

v
Convix1
DConv3x3 r=8

v
Convix1
DConv3x3 r=2 DConv3x3 r=4

[l . C
HxWx 3 4 Hxwx§

. C
3 y HxWx$

| |
cA cA cA
! ]

R1 R2 _ R3

Fig. 2. Structure of MRFFM, F represents the input original feature map,
Ri(i = 1,2, 3) represents the intermediate feature map of the expansion convo-
lution and coordination attention mechanism through different expansion rates,
and P is the output feature map. Conv 1 x 1is I x 1 standard convolution, DConv
3 x 3 r=2,4, 8 denote expansive convolutions of 3 x 3 with expansion rates of
2,4, and 8, respectively. CA represents the coordination attention mechanisms.
Concat represents channel cascade operation.

where F' denotes the input feature map, Ri(i = 1,2, 3) denotes

the intermediate variable, while DCOHV[31>]<3 denote 3 x 3 x C' x
% expansion convolution with expansion rate of 2. Similarly,
DConvEl3 and DCoansi3 denote 3 x 3 x % X % expansive
convolutions with expansion rates of 4 and 8, respectively.
Convyyq is 1 x 1 standard convolution, [-] represents the opera-
tion of channel concatenation, and P denotes the output feature
map. CA represents the coordination attention mechanism.
Compared to other popular modules based on expansive con-
volution, MRFFM has four innovative features. First, MRFFM
uses the combination of dilatation convolution and coordinated
attention mechanism with different dilatation rates to extract
global context features, enlarge receptive field, and suppress
complex background interference. Second, unlike certain mod-
ules based on dilated convolution, such as the spatial pyramid
pooling structure [35], which overlooks the meshing of dilated
convolution, thereby risking loss of local information, MRFFM
tackles this issue by overlaying and reutilizing original receptive
fields and diverse extended receptive fields to alleviate grid-
ding challenges. Third, the channel configuration in MRFFM
is meticulously devised. While numerous model architectures
based on expansive convolution overlook the primacy of the
original feature map in models with distinct receptive fields,
resulting in the loss of original features, our MRFFM mod-
ule preserves the distinct advantages of the original feature
information. Last, many other modules use only one of the
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Algorithm 1: Feature Fusion Method of MRFFM.

Input: z € R *H*Crefers to the input feature map
Output: y € R" *H*Crefers to the output feature map
Step: Ri(i = 1,2, 3)is the intermediate feature map.
DConvg}i?’ represents 3 x 3 x C' x < expansive
convolution with expansion rate of 2. DC’onvgﬂ3 and
DC’oani3 represents 3 x 3 x £ x < expansive
convolution with expansion rate of 4 and 8, respectively.
Convyx1 is a1l x 1 standard convolution, []
representing the concatenation operation. C' A represents
the coordination attention mechanisms.
fori=1to3do
if i = 1 then
Ri= C’A(DConvng]B(x))
if i = 2 then
Ri = CA(DConvEX]?)(Conlel [Ri —1,z]))
else
Ri =
C’A(DC’onv[gsxlg(C’onlel[Ri —1,Ri—2,z2]))
y = Convix1[Ri, Ri — 1, Ri — 2, ]
return y
end if
end for

parallel or cascading structures. In parallel structures, achiev-
ing equivalent expansion sizes necessitates higher expansion
rates, significantly reducing effective convolution parameters
compared to the recommended MRFFM. Conversely, in cascade
structures, the original feature map’s information gets diluted
as the convolution layers deepen. MRFFM amalgamates the
strengths of parallel and cascading architectures to mitigate these
challenges.

In addition, the implementation process is summarized in
Algorithm 1.

C. Efficient Layer Aggregation Module Based on Attention
Mechanism (ELAN-A)

In order to solve the problem of complex background clutter
affecting SAR image ship detection, we improve the ELAN-W
[17] fusion module by mixing convolution and attention module,
and named it ELAN-A. Global context information plays a key
role in ELAN modules. To achieve this goal, we introduce
CA [36] mechanism to help models better focus on global
information. In contrast to other prevalent attention mechanisms,
CA’s computational scale is small, endowing the network with
the capability to attend to a larger range of targets. By adding
it to ELAN-W, ELAN can learn more and better characteristic
information, suppress the surrounding complex background in-
formation, and highlight the characteristic information of ship
targets. The structure of ELAN-A is shown in Fig. 3.

D. WEF-Net

In order to solve the difficulty of detecting ship targets in
SAR images under complex background, this article designs
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Fig. 3. Structure of ELAN-A. ELAN-A can help extract effective features
that focus more on the target. CBS is composed of convolution, batch normal-
ization, and SiL.U activation function. CA represents the coordination attention
mechanisms. Concat represents channel cascade operation.

Feature Enhancement Fusion
Module(FEF)

Balanced Feature
Module(BFM)

£2

—+—» MRFFM WFF —» ELAN-A —» RepConv

>

v
c3 —+—» CA +—» WFF —» MRFFM WFF —» ELAN-A — RepConv

€2 . [ ca 4[

RepConv

>

WFF — ELAN-A —» RepConv ——»
%

Conv —» BN
RepConv% Conv —» BN } add
Fig. 4. Structure of WEF-Net. The WEF-Net is divided into balanced feature
module (BFM) and feature enhancement fusion module (FEF). BFM can balance
the information of each backbone layer and generate the global features of the
sensitivity field balance, while FEF can balance the semantic information of
different levels of the feature pyramid by averaging the global features. CA

represents the coordination attention mechanisms. WFF represents weighted
feature fusion module. RepConv represents reparameterized convolution.

a neck network WEF-Net, which balances the feature maps
of deep layer and shallow layer with different resolutions. It
includes two parts: a BFM and an FEF. BFM can balance the
information of each backbone layer and generate the global fea-
tures of the sensitivity field balance, while FEF can balance the
semantic information of different levels of the feature pyramid
by averaging the global features. Because different feature maps
have different contributions, to balance the semantic informa-
tion and resolution of different layers, WEF-Net balances the
proportion of deep and shallow position information, improves
the effectiveness of information, and reduces the redundancy of
information. The structure of WEF-Net is shown in Fig. 4.
First, in the BFM, the last three layers of feature diagrams
C2, C3 and C4 output from the backbone network are sent into
the BFM module. First, we conduct an MRFFM for C4, and
then use upsampling and downsampling, respectively, for C4 and
C2 layers to adjust the shape to the same as C3. Subsequently,
the CA mechanism is introduced to layers C2 and C3, aiding
the network in learning location information across different
layers and channels. This facilitates the generation of adaptively
balanced features and the adjustment of weights through coor-
dinated attention. It is worth noting that C4 is not followed by
a coordinated attention mechanisms, which is because the C4
layer, as the deepest layer, has the richest semantic information
and keeps its original feature information from being lost. Then,
the feature maps of C2, C3, and C4 branches are transformed into
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feature maps with the same resolution. Finally, using the idea of
weighted BiFPN, a WFF is designed to fuse the three branches’
feature graphs. WFF is not a simple cascade of channels; instead,
it sets a set of learnable parameters for each feature map at
different scales to carry out weighted cooperative operations.
This approach is able to identify the importance of different
feature maps during training, ensuring that key information
about small ship targets is retained. The fusion process of BFM
can be expressed as follows:

wy (UpSample (MRFFM (C4))) + wo (CA (C3))
[ +ws (MP (CA (C2))) 5)
w1 + we + wg + A

where w1, wy, and ws are learnable parameters, but A is de-
liberately set as a small value to prevent numerical instability.
Ci(i= 2,3,4) is the initial feature map of the corresponding
layer, CA represents the coordination attention mechanisms, MP
represents the maximum pooling operation, it can achieve the
function of downsampling, and F' is the fusion output feature
map. UpSample indicates the upsampling operation.

In the FEF, the BFM module inputs the balanced fusion
features to the multifield extension module MRFFM for context
feature extraction, and then decomposed into three feature maps
with the same resolution as the original three-layer feature map.
The feature maps output from MRFFM are upsampled and
downsampled, respectively, WFF is performed with the initial
features of C2 layer and C4 layer with the same resolution,
respectively, and then input to ELAN-A module for feature
learning, and finally transmitted to reparameterized convolu-
tional RepConv. In addition, there is a branch from the MRFFM
output directly WFF with the C3 layer initial feature map with
the same resolution, which is then transmitted to ELAN-A and
RepConv for feature extraction and reparameterized convolu-
tion. The process of FEF is shown as follows:

Pi—Rep ( . <w1 (MP(MRFEM(F))) + ws (04))> ©

wy +ws + A
B w1 (MRFFM(F)) 4 ws (C3)
P3—Rep(E< ot un LA )) (7)
Po—Rep [ £ [ (UpSample(MRFFM(F)))+wsq (C2)
e w1 + wy + A
(8)

where w; and woy are learning parameters, but A is a small
number to avoid numerical instability, C'i(i = 2,3,4) is the
initial feature map of the corresponding layer, Pi(i = 2,3,4) is
the neck output feature map of the corresponding layer C'i(i =
2,3,4), M P indicating the maximum pooling operation, it can
realize the function of downsampling. F' is the fusion feature
map, E is the ELAN-A, and Rep is the RepConv operation.

In addition, we introduce the coordinated attention mech-
anisms in BFM, the primary steps of CA entail embedding
coordinate information and generating coordinate attention, en-
abling the encoding of channel relationships. The input fea-
ture map X is first pooled globally in horizontal and vertical
directions and compressed into 1 x H x C' and W x 1 x C,
respectively. Subsequently, these two compressed feature maps
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Fig. 5. Structure of CA. BN represents the batch normalization operation. X
AvgPool and Y AvgPool represent average pooling operations in the horizontal
and vertical directions, respectively. Sigmoid represents nonlinear activation
function. Concat represents channel cascade operation.

are fused together, resulting in concatenated outputs consol-
idated to 1 x (W + H) x C/r by 1 x 1 convolution block.
The amalgamated result is then split into two different feature
maps, with their dimensions transformed into 1 x H x C and
W x 1 x C by two additional 1 x 1 convolution and sigmoid
functions, respectively, generating weighted matrices. Finally,
the input feature map X is subjected to multiplication with the
two weighting matrices. The operational procedure of the CA
module can be succinctly summarized as follows:

1
Z&(h) =57 D Xe(hi) ©)
0<i<W
1
Z&w) =4 Y Xe(jw) (10)
0<j<H
F = o(BN(Convy,1 [Zc", Zc"))) (11)
F.(i,j)=X.(i,5) xo (Conviyx (F")) x o (Convyyy (F™))
(12)

where W and H are the width and height of the input feature
map, respectively, and Z2(h) and Z%(w) represent the result
of X average pooling and Y average pooling, respectively.
F € RIx(WH+H)xC/r represents the intermediate vector, F"and
F"™ of the attention weights are obtained by the sigmoid activa-
tion function. Convy 1 represents the convolution of the kernel
size of 1x1, o represents the sigmoid activation function, BN
represents the batch normalization operation, and [-] represents
the channel cascade operation. The CA structure is shown in
Fig. 5.

E. Optimized Loss Function

With the application of CNNs in object detection, the con-
ventional loss function proves inadequate for assessing the
similarity between predicted and actual frames. In response,
researchers have proposed alternative loss functions, such as
Intersection over Union (IoU) loss [37], [38], [39], with CloU
loss emerging as a pioneering approach. In contrast to previous
IoU, CIoU incorporates considerations for overlap area, center
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point distance, and aspect ratio [38]. The CloU loss function can
be mathematically represented as follows:
2

Reiou = o2 + av (13)
4 w9t w)?
v = = (arctan Bt arctan h) (14)
v
= 15
T M- 1oU) o (15)
Leoy = 1 —IoU + Rerou (16)

where D is the Euclidean distance between the center point of
the prediction box and the real box. C' is the diagonal length
of the smallest surrounding box covering the two boxes, « is
the weight factor, and v is used to measure the similarity of
the aspect ratio between the real box and the predicted box. In
addition, w9t is the width of the ground reality box, h9¢ is the
height of the ground reality box, w is the width of the prediction
box, and A is the height of the prediction box.

The sensitivity of CIoU losses to different scale targets varies
greatly, and for tiny objects with 6 x 6 pixels, small positional
deviations can lead to significant IoU drops. For normal objects
with 36 x 36 pixels, the IoU changes less, which will lead to
defects in label allocation. So CIoU is not a good metric for
small objects.

Henceforth, the article employs the NWD loss function [40], a
novel metric leveraging Wasserstein distance to quantify the sim-
ilarity between bounding boxes, as opposed to the conventional
IoU metric. Notably, NWD demonstrates insensitivity to object
displacement across varying scales, rendering it particularly
adept at assessing similarity among minute objects. Moreover,
the NWD loss function integrates a sample weight mechanism,
enabling the model to prioritize the detection performance of
small targets. However, the applicability of the NWD loss func-
tion is primarily confined to scenarios involving small targets,
given its inherent scale sensitivity. While it effectively mitigates
missed detections for small targets, it may inadvertently induce
false detections and impede convergence rates for medium and
large targets. The formula for the NWD loss function is delin-
eated as follows:

w, h T
WQQ(Na7Nb) = [Cxa 7cya77a77a 5
272
h T 2
[cxb,cyb,“;’,ﬂ ) o
(_\/wg(NtmNb))
NWD(N,, N,) = e ‘ (18)

where N, = (cq, cya 52, h7“) denotes boundary box A, N, =

(czp, cyp, 2, ) denotes boundary box B, || - ||, denotes 2-
norm, and c is a constant factor.

To solve this problem, we combine CloU and NWD loss func-
tions to leverage their respective strengths and optimize the loss
function [41], [42], where, r, as a tradeoff factor, can effectively
balance the NWD index and CIloU method by adjusting its value.
When r is large, the NWD loss does not have much effect,
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making the boundary box loss similar to CloU. Conversely,
with a smaller r, the boundary box is conceptualized as a
Gaussian distribution. Consequently, the refined boundary box
loss demonstrates robust performance in detecting small-scale
SAR ship targets. The calculation formula can be articulated as
follows:

Lciou—Nwp = (1 — 7’) * (1 — NWD) + 7 * Lcioy. (19)

In addition, for confidence loss Lgp; and classification loss
L5, we use binary cross-entropy loss (BCEWithLogitsLoss) to
calculate [43], the formula is delineated as follows:

N
Luce = — Y yilog(o(y)) + (1 - 5) log(o(1 —y))  (20)

n=1

where yAiand y are prediction vectors and real vectors, respec-
tively. o is the sigmoid function.

To sum up, we propose that the loss function of the model
is divided into three parts: Lyox, Lobj, and L, respectively,
measure the loss of the detector on boundary box regression,
object confidence, and classification, Pyox and P’pox, respec-
tively, represent the prediction box and ground reality box.
Pypj and P obj represent forecast confidence and ground reality
confidence, respectively. In addition, Py, and P’ represent
forecast probability and ground reality probability, respectively.
Hyperparametersii, Ao, and A3 default to 0.05, 0.7, and 0.3 as
follows:

Loss = A1 Lpox + Ao Lobj + A3 Leis
= A1 Lciou-Nwb (Pooxs Ploox) + A2 Lece (Pobj, Plovi)
+ )\-3LBCE(PCIS7 P/CIS)' (21)

F. Model Flowchart

Fig. 6 depicts the overall detection flow of the BFEA, which
is divided into three stages: dataset preparation, training, and
inference. First, we collect SAR images from a dataset and
annotate the images, then use data enhancement to get a more
robust dataset for training and validation. We then optimize
and train the BFEA model on the developed dataset until the
loss converges. In the inference stage, we use the nonmaximum
suppression method to filter the redundant bounding boxes to
improve the positioning accuracy and detection effect. Finally,
the optimal model of SAR image target detection is obtained.

IV. EXPERIMENTS

In this section, we begin by providing a succinct overview
of the datasets and experimental setup employed in this arti-
cle. Subsequently, we compare the detection outcomes of our
model against those of several other object detection models,
showcasing the merits of our proposed approach. Finally, we
conduct a series of ablation experiments and optimized loss
function tradeoff factor control experiments. These experiments
are designed to substantiate the capability of our proposed BFEA
detection model in effectively detecting multiscale ship targets
amid complex backgrounds.
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Fig. 6. Our model flowchart. It includes three stages: dataset preparation stage, training stage, and inference stage.
TABLE I C. Evaluation Index
STATISTICS OF THE THREE DATASETS
In object detection tasks, in order to calculate mAP, we first
Details SSbb HRSID LS-SSDD-v1.0 need to determine the precision and recall ratio. Accuracy (P)
Satellite RadarSat- Sentinel- Sentinel-1
2. TerraSAR.X, 1B TerraSAR- and recall () are defined as follows:
Sentinel-1 X,TanDEM
Polarization HH, HV, VWV, VH HH, HV, VW VV, VH p— TP 22)
Resolution (m) 1-15 051,3 5 x 20 "~ TP+ FP
Image number 1160 5604 9000
Train/test ratio 928/232 3643/1961 6000/3000 TP
Ship number 2456 16,951 6015 R = ﬁ (23)
Image 217x214-526x646| 800800 800x800 +
size(pixel2) .. .
Average image 481x331 800x 800 300x800 In the formula, true positive (TP) represents the instances
size (pixel2) where the model correctly predicts a positive label that aligns

A. Experimental Setup and Hyperparameters

In the experiment, the experimental environment was con-
figured with an NVIDIA GeForce RTX 3070 graphics card
(8 GB), an Intel Core i7-10700K CPU, and an Ubuntu
20.04.4LTS operating system.

In our experiment, we compare the detection performance
of our detector with other target detectors. During the training
phase, we employed the SGD optimizer. For SSDD, we exam-
ined the SAR image size in this dataset and the average SAR
image size on SSDD was 481 x 331. Therefore, we set the input
size to 512 x 512, which does not result in a large loss of image
information. HRSID and LS-SSDD-v1.0 use a standard image
resolution of 800 x 800.

B. Dataset

This article evaluates the effectiveness of our proposed
method using three publicly available SAR datasets: the SSDD
[44], the HRSID [45], and the LS-SSDD-v1.0 [46]. Details of
these datasets are summarized in Table I.

with the ground truth. False positives (FP) denote instances
where the model incorrectly predicts a positive label for a nega-
tive ground truth. False negatives (FN) indicate instances where
the model incorrectly predicts a negative label for a positive
ground truth. A test result is deemed TP only if its true IoU
exceeds the specified IoU threshold (typically 0.5).

By varying the IoU thresholds, we can construct a precision—
recall (PR) curve. The area under the PR curve, denoted as mAP,
is calculated to quantify the model’s performance. The mAP
calculation formula is shown as follows:

1
mAP = / P(R)dR. 24)
0

The F'1 score is a metric by which the performance of the

model is analyzed, and is defined as follows:

2x PxR
Fl=—uw—— 25
P+ R (25)

D. Results of SSDD

As shown in Table II, we compared BFEA with some popular
and universal detectors in the SSDD dataset, and our F1, mAP,
recall rate, and accuracy rate all achieved the best results. They
were 95.1%, 98.0%, 95.2%, and 95.1%, respectively.
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TABLE II
COMPARISON RESULTS WITH OTHER OBJECT DETECTION MODELS ON SSDD

Method mAP P R F1
Faster R-CNN[8] 913 87.3 89.2 88.3
Libra R-CNN[10] 93.9 86.1 94.6 90.1

YOLOv4[47] 92.1 92.8 84.3 88.3
YOLOV5-I[16] 92.1 93.6 89.1 91.2
YOLOV7[17] 94.6 91.0 90.3 90.6
SAR-ShipNet[48] 89.1 95.1 76.3 84.6
GFB-Net[49] 93.0 85.6 94.0 89.6
CR2A-Net[50] 89.8 94.0 87.8 90.7
PPA-Net[51] 95.2 95.2 91.2 93.1
YOLO-FA[52] 96.8 95.2 95.0 95.0
BiFF-FESA[53] 97.8 96.1 94.0 95.0
BFEA(ours) 98.0 95.2 95.1 95.1

The best results are in bold.

1.0
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mAPO0.5

0.4

0.2
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007 4 BFEA(ours)

0 50 100 150 200 250 300
epoch

Fig. 7. Average accuracy curve of baseline and our proposed BFEA on the
SSDD dataset.

In comparison to other SAR ship detectors, our model exhibits
superior detection performance. While BiFF-FESA achieves a
commendable precision rate of 96.1%, our model outperforms
in F1 score and mAP. Notably, exceed the BiFF-FESA in the
table for the best result. The experimental findings unequivocally
demonstrate the superior detection capabilities of our model
compared to other target detectors.

In Fig. 7, the average accuracy curve of our model and the
baseline on the SSDD dataset are drawn to directly compare
the learning ability and detection effect of the model. At the
beginning, the average accuracy curves of the two models in-
crease sharply, but the oscillation was obvious. After training
with about 150 epochs, the mean accuracy curve of the baseline
begins to level off. That is to say, these modules fully learn the
characteristics of SAR ships through training. The baseline curve
is significantly lower than the BFEA curve. In other words, our
model learned better than the baseline.

In addition, the visualization of the BFEA versus the baseline
is shown in Fig. 8. It can be seen from Fig. 8(a) and (b) that
a misdetection occurred at the baseline, misdetecting the ship’s
tail waves and buildings as ships. Fig. 8(c) and (d) show simul-
taneous missed and false detection of the baseline, mistaken
detection of shore structures as ships, and missed detection
of overlapping ships. It shows that the BFEA can correctly
identify ship information in complex scenes with surrounding
background interference. And it has a good extraction effect
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(al) (a2) (a3)

Fig. 8.  Visualization result of our designed BFEA on SSDD. The first column
is the original SAR image and green box is ground truth box, the second column
is the corresponding baseline test results, and the third column is the test results
of our model. The yellow box indicates false detection, and the blue box indicates
missed detection. (a) Sparse offshore scenes. (b) Near shore scenes with complex
background interference. (c) and (d) Dense nearshore scenes.

(b2)

(b3)

Fig.9. Thermal map results of baseline and our proposed BFEA on the SSDD
dataset. The first column is the original SAR image and green box is ground
truth box, the second column is the corresponding baseline heat map results,
and the third column is the heatmap results of our model.

on different scale ship features. Our proposed model can detect
multiple small ships offshore and large ships near shore.

To further validate the efficiency of feature extraction on the
SSDD dataset by our proposed method, we conducted a Grad-
CAM visual test. This visual test involved comparing the results
between the baseline and our proposed method, as illustrated in
Fig. 9. Regions highlighted in red suggest heightened attention
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TABLE III
COMPARISON RESULTS WITH OTHER OBJECT DETECTION MODELS ON HRSID

Method mAP P R F1
Faster R-CNN(8] 79.4 80.2 82.1 81.1
Cascade R-CNNJ[54] 874 89.0 85.7 87.3
YOLOV4[47] 81.7 85.9 76.3 80.8
YOLOvV5[16] 85.9 85.6 85.5 85.5
YOLOV7[17] 90.0 91.9 80.1 85.5
DetNet[55] 83.2 843 80.6 824
PPA-Net[51] 89.2 90.3 88.2 89.2
ATSDI[56] 88.1 90.2 86.5 88.3

DRPSM[57] 86.5 - 90.1 -
SIFNet[58] 79.7 79.9 82.7 81.2

RFD[59] 924 - 843 .
BFEA(ours) 93.1 93.6 859 89.5

The best results are in bold.

by the network, whereas regions in blue indicate lower attention
by the network.

Fig. 9 depicts the thermal map visualization results of our
proposed model on the SSDD dataset. To provide a clearer illus-
tration of the detection performance, we selected two near-shore
SAR images with intricate backgrounds for comparison in our
experiment. As evident from the figure, YOLOV7 struggles to
accurately detect ships in the near-shore scene, resulting in both
missed and false detections. This deficiency can be attributed
to the complexity of the near-shore background and the conse-
quent interference, which adversely affects the performance of
YOLOV7. In contrast, our proposed BFEA exhibits a superior
capability in capturing ships amid complex background interfer-
ence near the shore. This is mainly due to the ELAN-A module
and WEF-Net, which can suppress background interference
while highlighting the ship’s main features.

E. Results of Large-Scale Datasets

In the model verification phase, we applied the model to
two large-scale SAR ship detection platforms HRSID and LS-
SSDD-v1.0 for multiscale ship detection.

As shown in Table III, we compared the BFEA model to other
target detectors in the HRSID dataset, and our model achieved
an mAP of 93.1%, obtaining better mAP and F'1 than other SAR
ship detectors. On the HRSID dataset, its mAP is 0.7% higher
than the best detector RFD in the table, and although DRPSM
gets a higher indicator in recall, our model gets the best results
on mAP, accuracy, and F1, with a 6.6% improvement in mAP.
Our model achieves a great advantage on this dataset.

We also compared our model to other target detectors in the
LS-SSDD-v1.0 dataset, and the results are shown in Table IV.
The experimental results show that BFEA achieves 76.9% mAP
on the LS-SSDD-v1.0 dataset and has better mAP and F1 than
other target detectors in large-scale SAR image detection tasks.
In LS-SSDD-v1.0, we achieved the best F'1 by improving mAP
by 0.7% compared to the best detector, LRTransDet. These re-
sults prove that our model performs well on large-scale datasets
with a large number of small ships.

To comprehensively assess the efficacy of our methods, we
conducted comparative evaluations with other detectors on the
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TABLE IV
COMPARISON RESULTS WITH OTHER OBJECT DETECTION MODELS ON
LS-SSDD-v1.0
Method mAP P R F1
Faster R-CNN[8] 57.7 58.0 61.6 59.7
Cascade R-CNN[54] 59.0 54.1 66.2 59.5
YOLOV5[16] 733 84.0 63.6 723
YOLOvV7[17] 71.6 86.1 63.3 72.9
YOLOvV8-s[60] 744 824 67.0 73.9
Sll-Net[61] 76.1 68.2 79.3 733
MHASD[21] 75.5 834 67.9 74.8
LRTransDet[41] 76.2 82.6 68.2 74.7
BFEA(ours) 76.9 83.5 68.8 75.4
The best results are in bold.
TABLE V
COMPARISON RESULTS WITH OTHER OBJECT DETECTION MODELS ON HRSID
DATASET
Method AP, AP AP AP, AP,
FCOSI[13] 87.0 65.9 60.7 63.4 25.2
RetinaNet[14] 80.1 59.4 54.6 60.0 22.1
Mask R-CNNI9] 81.1 67.7 59.9 63.7 13.9
YOLO-SD[62] 83.7 67.6 62.3 519 1.3
LPEDet[63] 89.7 71.8 65.8 634 242
FEPS-Net[64] 90.7 743 66.8 65.2 31.6
SDNet[65] 90.6 751 66.1 721 56.9
ESD-Net[66] 91.0 77.7 67.6 65.6 40.8
NAS-YOLOX[67] 91.1 71.9 65.2 68.6 341
SFPN[68] 91.2 773 69.0 69.6 29.7
BFEA 93.1 77.9 574 80.0 64.2
The best results are in bold.
TABLE VI
COMPARISON RESULTS WITH OTHER OBJECT DETECTION MODELS ON
LS-SSDD-v1.0
Method AP, AP, AP AP, AP,
Faster R-CNN[8] 66.6 10.8 24.6 374 —
Libra faster R-CNN[10] 65.9 10.0 24.0 385 —
RetinaNet[14] 60.7 7.2 20.2 36.7 —
YOLO-SD[62] 72.0 12.2 27.1 399 —
ATSS[69] 66.5 8.9 233 35.2 —
LssDet[70] 74.3 94 25.8 36.9 —
BFEA 76.9 15.0 28.7 42.3 —

The best results are in bold.

HRSID and LS-SSDD-v1.0 datasets, employing a range of
evaluation metrics including AP5q, AP75, APg, APy, andAPy,.
These metrics adhere to the standardized definitions outlined
in the COCO dataset. Specifically, AP35, denotes performance
at IoU = 0.5, while AP75 offers a more rigorous evaluation
reflecting positional accuracy at loU = 0.75. Additionally, APg,
APy, and AP, metrics gauge our model’s ability in detecting
objects across various scales, with AP scores computed for small
(area < 322pixels), medium (322 < area < 642 pixels), and large
(area > 642 pixels) targets, as per the defined area occupancy
thresholds. In our analysis, AP5( serves as the primary perfor-
mance indicator, with other metrics serving as supplementary
references. Detailed results are tabulated in Tables V and VI for
comprehensive evaluation.

We compared the proposed BFEA with 15 other target de-
tectors in the HRSID and LS-SSDD-v1.0 datasets. As shown in
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Fig. 10.  Average accuracy curve of baseline and our proposed BFEA on the
HRSID dataset.

the table, BFEA performs AP5q, AP75, APy, and APy, on the
HRSID dataset achieves the best results (93.1%, 77.9%, 80.0%,
and 64.2%, respectively). Although our model is lower than
other models in small size ship detection, our model is 1.9%,
0.6%, 10.4%, and 34.5% higher than the best model SFPN in the
table on AP5g, AP75, APy, andAPy, respectively. In addition,
the results of BFEA on the LS-SSDD-v1.0 dataset were superior
to those of other methods (76.9%, 15.0%, 28.7%, and 42.3%,
respectively). This may be because WEF-Net can balance differ-
ent levels of semantic information. Meanwhile, ELAN-A further
improves the detector’s performance by suppressing background
interference and highlighting ship targets.

Fig. 10 illustrates the average accuracy curves of both our
model and the baseline on the HRSID dataset, providing a direct
comparison of their learning capabilities and detection efficacy.
Initially, during the early stages of training, both models exhib-
ited sharp increases in detection performance, albeit with no-
ticeable oscillations. However, after approximately 100 epochs,
the mean accuracy curves of both the baseline and our proposed
method began to stabilize. Last, with the curve of our proposed
BFEA model notably surpassing that of the baseline. This obser-
vation suggests that our model demonstrates superior learning
performance on the HRSID dataset compared to the baseline.

In addition, the visualization results of BFEA and baseline
on the HRSID dataset are shown in Fig. 11. In Fig. 11(a),
it can be seen that YOLOvV7 misdetected the sea clutter and
shore as ships. In Fig. 11(b), YOLOvV7 missed detection. In
Fig. 11(c) and (d), YOLOvV7 has both missed and false detec-
tions, but our model can correctly detect all ships. Compared
with SSDD, there are more complex scenes and small targets in
HRSID nearshore SAR images, but the BFEA proposed in this
article can correctly identify these small ships even in complex
scenes with surrounding background interference.

Fig. 12 depicts the average accuracy curve comparing our
model with the baseline on the LS-SSDD-v1.0 dataset, facili-
tating a direct assessment of their learning capacity and detec-
tion efficacy. During the initial stages of training, both models
exhibited sharp increases in detection performance, although
notable fluctuations were observed, particularly in the baseline
model. Following approximately 150 epochs of training, the
mean accuracy curves of both the baseline and our proposed
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Fig. 11.  Visualization of our designed BFEA on HRSID. The first column is
the original SAR image and green box is ground truth box, the second column is
the corresponding baseline test results, and the third column is the test results of
our model. The yellow box indicates false detection, and the blue box indicates
missed detection. (a) Sparse offshore scenes. (b) Near shore scenes with complex
background interference. (c) (d) Dense nearshore scenes.

method began to stabilize. Last, with the curve of our proposed
BFEA model markedly outperforming that of the baseline. This
indicates that our model achieves superior learning outcomes on
the LS-SSDD-v1.0 dataset compared to the baseline.

In addition, the visualization results of BFEA and base-
line on the LS-SSDD-v1.0 dataset are shown in Fig. 13. In
Fig. 13(a), (b), (c), and (d), the baseline was missed, and our
model correctly detected the missed vessel.

F. Ablation Experiment

To verify the role of each BFEA module in the SAR ship
target detection, the ablation experiments were carried out on the
SSDD dataset. The experimental results are shown in Table VII.

Upon scrutinizing the findings presented in Table VII, our
experimental results align closely with the underlying theoret-
ical principles. Within the WEF-Net architecture, the MRFFM
module ensures a balanced receptive field, thereby capturing
essential global context information and compensating for the
limited semantic features inherent to SAR ships. As indicated
in the first row of the table, the baseline achieved only 94.5%
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TABLE VII
ABLATION EXPERIMENTS ON SSDD DATASETS
Baseline WEF-Net NWD Loss ELAN-A P R F1 mAP;, mAP,, o,
v 89.0 90.0 90.0 94.5 63.9
v v 94.7 89.0 91.7 96.1 66.0
v 95.9 91.2 934 96.0 65.9
v 94.9 91.8 93.3 96.2 66.1
v v 93.1 94.5 94.0 97.0 69.3
v v 95.2 95.1 95.1 98.0 69.3
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Fig. 12.  Average accuracy curve of baseline and our proposed BFEA on the
LS-SSDD-v1.0 dataset.

mAP5g, 89.0% accuracy, and 90.0% recall. After the introduc-
tion of WEF-Net, mAPs5 increased to 96.1%, recall rate and
accuracy increased by 1.0% and 5.7%, respectively. Considering
the prevalence of small targets in SAR images, we employ an
optimized loss function tailored for small target detection. This
loss function adeptly balances CIoU and NWD losses without
imposing additional computational burden. By leveraging the
optimized loss function, we preserve the antifalse detection
capability inherent to CloU while enhancing the model’s ability
to mitigate false detections of small targets through NWD loss
integration. Our optimized loss function improved accuracy by
6.9%, recall by 1.2%, and F'1 scores by 3.4% compared to the
baseline model. The effectiveness of the optimized loss function
is proven. In addition, the collaboration between WEF-Net and
the optimized loss function resulted in a 2.5% improvement
in mAP5q (from 94.5% to 97.0%) and mAP5q_g5 increased
by 5.4% (from 63.9% to 69.3%). The role of the ELAN-A
module is to highlight the information of the ship’s target and
suppress clutter in complex scenes. Based on experimental data,
mAP5q improved by 1.7% over baseline after the introduction
of ELAN-A, and in synergy with WEF-Net and the optimized
loss function, accuracy and recall improved by 6.2% and 5.1%
over the baseline model, mAPj5( improved to 98.0%.

G. Optimized Loss Function Tradeoff Factor
Control Experiment

To further investigate the effectiveness of our optimized loss
function, we conducted control experiments on the HRSID
dataset based on different r values of BFEA. Due to the large

Fig. 13.
first column is the original SAR image and green box is ground truth box, the
second column is the corresponding baseline test results, and the third column
is the test results of our model. The yellow box indicates false detection, and
the blue box indicates missed detection. (a) Sparse offshore scenes. (b) Near
shore scenes with complex background interference. (c) Nearshore scenery in a
narrow river. (d) Dense nearshore scene.

Visualization result of our designed BFEA on LS-SSDD-v1.0. The

proportion of small targets in the SAR image dataset, we should
reduce this value, that is, increase the NWD loss measure.
Therefore, we define the r value as a threshold value between
0.1 and 0.5, and adjust the r value to find the optimal setting
result. The experimental results are shown in Table VIII.

The analysis of the data provided in Table VIII reveals a
trend: the recall rate tends to be higher when the value of r
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TABLE VIII
RESULTS OF EACH INDEX OF DIFFERENT TRADEOFF FACTORS R

r P R F1 APy, AP, APy AP, AP,
0.1 929 | 86.1 | 89.0 | 92.1 744 | 542 78.3 66.3
0.2 925 | 873 | 90.0 | 935 76.0 | 56.1 79.3 62.6
0.3 936 | 859 | 90.0 | 93.1 779 | 574 | 80.0 64.2
0.5 933 | 849 | 89.0 | 9238 776 | 56.5 79.9 64.2

is small. At this point, NWD losses dominate the loss func-
tion, aligning with our hypothesis that NWD contributes to
reducing false negatives in the detection of small ship targets.
Conversely, as the value of rincreases, CloU loss dominates, and
the accuracy P is improved. Finally, after considering multiple
indicators, we choose the tradeoff factor r = 0.3 that achieves
the optimal result in APg, APy, and F'1 scores as the result
of loss calculation. The tradeoff factor control experiments
indicating that our optimized loss function performs excep-
tionally well in detecting small-scale SAR ship targets. This
balance is reflected in the respective measures P and R, with
the F1 score serving as a comprehensive metric to evaluate
the efficacy of the improved loss function. Notably, the data
presented in Table VIII clearly demonstrate that F'1 scores
exhibit superior performance when the tradeoff factor r is set
to 0.3.

V. CONCLUSION

This article presents a BFEA model for detecting SAR multi-
scale ships in complex environments. An WEF-Net is designed
to aggregate and balance semantic information from different
levels of features. A MRFFM is embedded in the network to
learn the context information, generate the global characteristics
of the receptive field balance, and enhance the detection per-
formance of the model against ships of different scales. Then,
we redesigned the ELAN module by combining convolution
and attention, so that it can suppress the surrounding complex
background interference while highlighting the ship’s features.
Finally, for small ship detection, we combine NWD measure-
ment with CloU measurement to optimize the loss function,
which ensures strong small ship detection performance. The
experimental results on SSDD, HRSID, and LS-SSDD-v1.0
show that our detector has better performance than other target
detection models. Through a series of ablation experiments and
tradeoff factor control experiments, we showcase our proposed
feature fusion network WEF-Net, ELAN-A module, and opti-
mized loss function can enhancing the network’s performance
in the detection task.

Although our model shows excellent detection performance
on three challenging SAR datasets. However, the experimental
results show that our model performs better on the detection
of medium- and large-scale ship targets in SAR images, and
there is still some room for improvement in the detection of
small-scale ship targets. Therefore, in the future article, we will
further design a loss function that is more suitable for SAR image
small target detection, optimize its module structure, solve its
limitations on small target detection, and further improve the
performance of multiscale ship detection model.

[1]

[2

—

3

=

[4]

[5

[ty

[6

=

[7]

[8]

[9]
[10]

(1]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

11175

REFERENCES

F. Sharifzadeh, G. Akbarizadeh, and Y. Seifi Kavian, “Ship classification
in SAR images using a new hybrid CNN-MLP classifier,” J. Indian Soc.
Remote Sens., vol. 47, pp. 551-562, 2019.

N. Davari, G. Akbarizadeh, and E. Mashhour, “Corona detection and
power equipment classification based on GoogleNet-AlexNet: An accurate
and intelligent defect detection model based on deep learning for power
distribution lines,” IEEE Trans. Power Del., vol. 37, no. 4, pp. 2766-2774,
Aug. 2022.

F. Samadi, G. Akbarizadeh, and H. Kaabi, “Change detection in SAR
images using deep belief network: A new training approach based on
morphological images,” IET Image Process., vol. 13, pp. 2255-2264,
2019.

N. Aghaei, G. Akbarizadeh, and A. Kosarian, “Osdes_Net: Oil spill
detection based on efficient_shuffle network using synthetic aperture radar
imagery,” Geocarto Int., vol. 37, no. 26, pp. 13539-13560, 2022.

N. Aghaei, G. Akbarizadeh, and A. Kosarian, “GreyWolfLSM: An accu-
rate oil spill detection method based on level set method from synthetic
aperture radar imagery,” Eur. J. Remote Sens., vol. 55, no. 1, pp. 181-198,
2022.

Z. Tirandaz, G. Akbarizadeh, and H. Kaabi, “PolSAR image segmenta-
tion based on feature extraction and data compression using weighted
neighborhood filter bank and hidden Markov random field-expectation
maximization,” Measurement, vol. 153, 2020, Art. no. 107432.

F. M. Ghara, S. B. Shokouhi, and G. Akbarizadeh, “A new technique for
segmentation of the oil spills from synthetic-aperture radar images using
convolutional neural network,” IEEE J. Sel. Topics Appl. Earth Observ.
Remote Sens., vol. 15, pp. 8834-8844, Oct. 2022.

S.Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-time
object detection with region proposal networks,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 6, pp. 1137-1149, Jun. 2017.

K. He, G. Gkioxari, P. Dollar, and R. Girshick, “Mask R-CNN,” I[EEE
Trans. Pattern Anal. Mach. Intell., vol. 42, no. 2, pp. 386-397, Feb. 2020.
J. Pang, K. Chen, J. Shi, H. Feng, W. Ouyang, and D. Lin, “Libra R-CNN:
Towards balanced learning for object detection,” in Proc. IEEE/CVF Conf.
Comput. Vis. Pattern Recognit., 2019, pp. 821-830.

W. Liu et al., “SSD: Single shot multibox detector,” in Proc. Eur. Conf.
Comput. Vis., 2016, pp. 21-37.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., 2016, pp. 779-788.

Z. Tian, C. Shen, H. Chen, and T. He, “FCOS: Fully convolutional one-
stage object detection,” in Proc. IEEE/CVF Int. Conf. Comput. Vis., 2019,
pp- 9626-9635.

T. Y. Lin, P. Goyal, R. Girshick, K. He, and P. Dollar, “Focal loss for
dense object detection,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp- 2999-3007.

Z. Hong et al., “Multi-scale ship detection from SAR and optical imagery
via A more accurate YOLOV3,” IEEE J. Sel. Top. Appl. Earth Obs. Remote
Sens., vol. 14, pp. 6083-6101, 2021.

G. Jocher, “YOLOVS5,” 2020. [Online]. Available: https://github.com/
ultralytics/yolov5

C. Y. Wang, A. Bochkovskiy, and H. Y. M. Liao, “YOLOV7: Trainable
bag-of-freebies sets new state-of-the-art for real-time object detectors,”
in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., Jun. 2023,
pp. 7464-7475.

Z. Ge, S. Liu, F. Wang, Z. Li, and J. Sun, “YOLOX: Exceeding YOLO
series in 2021,” 2021, arXiv:2107.08430.

L. Bai, C. Yao, Z. Ye, D. Xue, X. Lin, and M. Hui, “A novel anchor-free
detector using global context-guide feature balance pyramid and united
attention for SAR ship detection,” IEEE Geosci. Remote Sens. Lett.,vol. 20,
Mar. 2023, Art. no. 4003005.

X. Zhang, S. Feng, C. Zhao, Z. Sun, S. Zhang, and K. Ji, “MGSFA-Net:
Multiscale global scattering feature association network for SAR ship
target recognition,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 17, pp. 4611-4625, Jan. 2024.

N. Yu, H. Ren, T. Deng, and X. Fan, “A lightweight radar ship detection
framework with hybrid attentions,” Remote Sens., vol. 15, no. 11, 2023,
Art. no. 2743.

Z. Sun et al., “An anchor-free detection method for ship targets in high-
resolution SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 14, pp. 7799-7816, Jul. 2021.

Z. Sun, X. Leng, X. Zhang, B. Xiong, K. Ji, and G. Kuang, “Ship
recognition for complex SAR images via dual-branch transformer fu-
sion network,” IEEE Geosci. Remote Sens. Lett., vol. 21, May 2024,
Art. no. 4009905.


https://github.com/ultralytics/yolov5
https://github.com/ultralytics/yolov5

11176

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

B. Hu and H. Miao, “An improved deep neural network for small-ship
detectionin SAR imagery.,” IEEE J. Sel. Topics Appl. Earth Observ. Remote
Sens., vol. 17, pp. 2596-2609, May 2024.

M. Kang, K. Ji, X. Leng, and Z. Lin, “Contextual region-based convo-
lutional neural network with multilayer fusion for SAR ship detection,”
Remote Sens., vol. 9, no. 8, 2017, Art. no. 860.

X. Yang, X. Zhang, N. Wang, and X. Gao, “A robust one-stage detec-
tor for multiscale ship detection with complex background in massive
SAR images,” IEEE Trans. Geosci. Remote Sens., vol. 60, Nov. 2021,
Art. no. 5217712.

Z.Wang, G. Hou, Z. Xin, G. Liao, P. Huang, and Y. Tai, “Detection of SAR
image multiscale ship targets in complex inshore scenes based on improved
YOLOVS,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 17,
pp. 5804-5823, Feb. 2024.

B. Chen, C. Yu, S. Zhao, and H. Song, “An anchor-free method based on
transformers and adaptive features for arbitrarily oriented ship detection
in SAR images,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.,
vol. 17, pp. 2012-2028, Oct. 2023.

M. Huang, T. Liu, and Y. Chen, “CViTF-Net: A convolutional and visual
transformer fusion network for small ship target detection in synthetic
aperture radar images,” Remote Sens., vol. 15, no. 18, 2023, Art. no. 4373.
J. Fu, X. Sun, Z. Wang, and K. Fu, “An anchor-free method based on feature
balancing and refinement network for multiscale ship detection in SAR
images,” IEEE Trans. Geosci. Remote Sens., vol. 59,n0.2, pp. 1331-1344,
Feb. 2021.

Z. Lu et al., “A new deep neural network based on SwinT-FRM-ShipNet
for SAR ship detection in complex near-shore and offshore environments,”
Remote Sens., vol. 15, no. 24, 2023, Art. no. 5780.

T.-Y. Lin, P. Dolldr, R. Girshick, K. He, B. Hariharan, and S. Belongie,
“Feature pyramid networks for object detection,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 936-944.

H. Tang et al., “A lightweight SAR image ship detection method based on
improved convolution and YOLOV7,” Remote Sens., vol. 16, no. 3, 2024,
Art. no. 486.

M. Tan, R. Pang, and Q. V. Le, “Efficientdet: Scalable and efficient object
detection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 10778-10787.

K. He et al., “Spatial pyramid pooling in deep convolutional networks for
visual recognition,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 37,no. 9,
pp. 1904-1916, 2015.

Q. Hou, D. Zhou, and J. Feng, “Coordinate attention for efficient mobile
network design,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2021, pp. 13708-13717.

Z. Gevorgyan, “SloU loss: More powerful learning for bounding box
regression,” 2022, arXiv:2205.12740.

Z.Zheng et al., “Distance-IoU loss: Faster and better learning for bounding
box regression,” in Proc. AAAI Conf. Artif. Intell., Feb. 2020, vol. 34,
pp- 12993-13000.

Y. F. Zhang, W. Ren, Z. Zhang, Z. Jia, L. Wang, and T. Tan, “Focal and
efficient IOU loss for accurate bounding box regression,” Neurocomputing,
vol. 506, pp. 146-157, 2022.

J. Wang, C. Xu, W. Yang, and L. Yu, “A normalized Gaussian Wasserstein
distance for tiny object detection,” 2021, arXiv:2110.13389.

K. Feng, L. Lun, X. Wang, and X. Cui, “LRTransDet: A real-time SAR
ship-detection network with lightweight ViT and multi-scale feature fu-
sion,” Remote Sens., vol. 15, no. 22, 2023, Art. no. 5309.

Z. Xu et al., “DSF-Net: A dual feature shuffle guided multi-field fusion
network for SAR small ship target detection,” Remote Sens., vol. 15,no. 18,
2023, Art. no. 4546.

Z. Sun et al., “BiFA-YOLO: A novel YOLO-based method for arbitrary-
oriented ship detection in high-resolution SAR images,” Remote Sens.,
vol. 13,2021, Art. no. 4209.

J. Li, C. Qu, and J. Shao, “Ship detection in SAR images based on an
improved faster R-CNN,” in Proc. SAR Big Data, 2017, pp. 1-6.

S. Wei, X. Zeng, Q. Qu, M. Wang, H. Su, and J. Shi, “HRSID: A
high-resolution SAR images dataset for ship detection and instance seg-
mentation,” IEEE Access, vol. 8, pp. 120234-120254, 2020.

T. Zhang et al., “LS-SSDD-v1.0: A deep learning dataset dedicated to
small ship detection from large-scale Sentinel-1 SAR images,” Remote
Sens., vol. 12, 2020, Art. no. 2997.

A. Bochkovskiy, C. Y. Wang, and H. Y. M. Liao, “YOLOv4: Optimal
speed and accuracy of object detection,” 2020, arXiv:2004.10934.

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

[70]

Y. Deng, D. Guan, Y. Chen, W. Yuan, J. Ji, and M. Wei, “SAR-shipnet:
SAR-ship detection neural network via bidirectional coordinate attention
and multi-resolution feature fusion,” in Proc. IEEE Int. Conf. Acoust.,
Speech Signal Process., 2022, pp. 3973-3977.

C. Yao et al., “GFB-Net: A global context-guided feature balance network
for arbitrary-oriented SAR ship detection,” in Proc. 7th Int. Conf. Image,
Vis. Comput., 2022, pp. 166-171.

Y. Yu, X. Yang, J. Li, and X. Gao, “A cascade rotated anchor-aided detector
for ship detection in remote sensing Images,” IEEE Trans. Geosci. Remote
Sens., vol. 60, Dec. 2020, Art. no. 5600514.

G. Tang et al., “PPA-Net: Pyramid pooling attention network for multi-
scale ship detection in SAR images,” Remote Sens., vol. 15, no. 11, 2023,
Art. no. 2855.

L.Zhang, Y. Li, W. Zhao, X. Wang, G. Li, and Y. He, “Frequency-adaptive
learning for SAR ship detection in clutter scenes,” IEEE Trans. Geosci.
Remote Sens., vol. 61, Feb. 2023, Art. no. 5215514.

Y. Zhou, H. Liu, F. Ma, Z. Pan, and F. Zhang, “A sidelobe-aware small
ship detection network for synthetic aperture radar imagery,” IEEE Trans.
Geosci. Remote Sens., vol. 61, Apr. 2023, Art. no. 5205516.

Z. Cai and N. Vasconcelos, “Cascade R-CNN: Delving into high quality
object detection,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 6154-6162.

Z.Li, C.Peng, G. Yu, X. Zhang, Y. Deng, and J. Sun, “Detnet: A backbone
network for object detection,” 2018, arXiv:1804.06215.

C. Yao, P. Xie, L. Zhang, and Y. Fang, “ATSD: Anchor-free two-stage ship
detection based on feature enhancement in SAR images,” Remote Sens.,
vol. 14, 2022, Art. no. 6058.

T. Yue, Y. Zhang, J. Wang, Y. Xu, P. Liu, and C. Yu, “A precise oriented
ship detector in SAR images based on dynamic rotated positive sample
mining,” [EEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 10022-10035, Oct. 2023.

H. Wang, S. Liu, Y. Lv, and S. Li, “Scattering information fusion network
for oriented ship detection in SAR images,” IEEE Geosci. Remote Sens.
Lett., vol. 20, Oct. 2023, Art. no. 4013105.

K. Yangetal., “RFD: Detecting SAR coastal ship targets based on reducing
feature decay,” in Proc. 4th Int. Conf. Big Data, Artif. Intell. Internet Things
Eng., 2023, pp. 421-431.

G. Jocher, “YOLOV8,”2023. Accessed: Feb. 14,2023. [Online]. Available:
https://github.com/ultralytics/ultralytics

N. Su, J. He, Y. Yan, C. Zhao, and X. Xing, “SlI-net: Spatial information
integration network for small target detection in SAR images,” Remote
Sens., vol. 14, 2022, Art. no. 442.

S. Wang et al., “YOLO-SD: Small ship detection in SAR images by multi-
scale convolution and feature transformer module,” Remote Sens., vol. 14,
no. 20, 2022, Art. no. 5268.

Y. Feng et al.,, “A lightweight position-enhanced anchor-free algo-
rithm for SAR ship detection,” Remote Sens., vol. 14, no. 8, 2022,
Art. no. 1908.

L. Bai, C. Yao, Z. Ye, D. Xue, X. Lin, and M. Hui, “Feature enhance-
ment pyramid and shallow feature reconstruction network for SAR ship
detection,” IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens., vol. 16,
pp. 1042-1056, Jan. 2023.

D. Quan et al., “Self-distillation feature learning network for optical and
SAR image registration,” [EEE Trans. Geosci. Remote Sens., vol. 60,
May 2022, Art. no. 4706718.

S.Jeong, Y. Kim, S. Kim, and K. Sohn, “Enriching SAR ship detection via
multistage domain alignment,” IEEE Geosci. Remote Sens. Lett., vol. 19,
Oct. 2022, Art. no. 4018905.

H. Wang, D. Han, Z. Wu, J. Wang, Y. Fan, and Y. Zhou, “NAS-YOLOX:
Ship detection based on improved YOLOX for SAR imagery,” in Proc.
IEEE 10th Int. Conf. Cyber Secur. Cloud Comput. /IEEE 9th Int. Conf.
Edge Comput. Scalable Cloud, 2023, pp. 126-131.

Y. Tang, S. Wang, J. Wei, Y. Zhao, and J. Lin, “Salient feature pyramid
network for ship detection in SAR images,” IEEE Sensors J., vol. 24, no. 3,
pp- 3036-3045, Feb. 2024.

S.Zhang, C. Chi, Y. Yao, Z. Lei, and S. Z. Li, “Bridging the gap between
anchor-based and anchor-free detection via adaptive training sample se-
lection,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit., 2020,
pp. 9759-9768.

G. Yan, Z. Chen, Y. Wang, Y. Cai, and S. Shuai, “LssDet: A lightweight
deep learning detector for SAR ship detection in high-resolution SAR
images,” Remote Sens., vol. 14, no. 20, 2022, Art. no. 5148.


https://github.com/ultralytics/ultralytics

Liming Zhou (Member, IEEE) received the Ph.D.
degree in computer science and technology from
the State Key Laboratory of Network and Switch-
ing Technology, Beijing University of Posts and
Telecommunications, Beijing, China, in 2015.

He has been an Associate Professor with the School
of Computer and Information Engineering, Henan
University, since 2015. His research interests include
deep learning, artificial intelligence, and information
security.

Ziye Wan received the bachelor’s degree in software
engineering from the Nanyang Institute of Technol-
ogy, Henan, China, in 2022. She is currently working
toward the master’s degree in computer technology
with the School of Computer and Information Engi-
neering, Henan University, Kaifeng, China.

Her research interests include computer vision and
SAR image processing, especially target detection
and recognition in SAR images.

Shuai Zhao received the B.E. degree in computer
science and technology from the Henan University of
Technology, Kaifeng, China, in 2021. He is currently
working toward the M.S. degree in computer technol-
ogy with the Key Laboratory of Big Data Analysis and
Processing, Henan University, Kaifeng.

His research interests include deep learning, UAV
object detection, and remote sensing.

ZHOU et al.: SAR SHIP DETECTION MODEL BASED ON ATTENTION MECHANISM AND MULTISCALE FEATURE FUSION 11177

Hongyu Han received the PhD. degree in computer
science and technology from Harbin Engineering
University, Harbin, China, in 2020.

He has been a Lecturer with the School of Com-
puter and Information Engineering, Henan Univer-
sity, Kaifeng, China, since 2020. His research inter-
ests include sentiment analysis and deep learning.

Yang Liu (Member, IEEE) received the B.S. degree in
industrial analysis and electronic measurement from
the Changchun University of Science and Technol-
ogy, Changchun, China, in 1996, and the M.S. de-

3 gree in applied mathematics and the Ph.D. degree in
remote sensing information science and technology
from the Henan University, Kaifeng, China, in 2009
and 2016, respectively.

He is currently a Professor and a Ph.D. supervisor
with the College of Computer Science and Informa-
tion Engineering, Henan University, Kaifeng, China.

He is the Director of Principle Investigator of Brain-Inspired Intelligence Science
and Technology Innovative Team. His research interests include science theory
and technology of brain and mind-inspired computing, and complex system
engineering and application of spatiotemporal Big Data system.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 900
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.00111
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 1200
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.00083
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.00063
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


