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ISPANet: A Pyramid Self-Attention Network for
Single-Frame High-Resolution Infrared Small Target

Detection With a Large-Scale Dataset SHR-IRST
Wenjing Wang , Chengwang Xiao , Haofeng Dou , Ruixiang Liang, Huaibin Yuan, Guanghui Zhao ,

Zhiwei Chen , and Yuhang Huang

Abstract—In recent years, the imaging resolution of infrared
detection equipment has gradually increased, and higher resolu-
tion infrared detection equipment has been used in various fields.
Compared with lower resolution infrared images, small targets
in higher resolution infrared images have larger average target
sizes and occupy more pixel points. Therefore, each pixel in the
target has less impact on the pixel-level metrics. A method with
good pixel-level metrics does not necessarily indicate a strong
target detection capability. We aim to enhance the target-level
detection performance of high-resolution infrared small target
images through the following series of initiatives. First, we con-
struct a single-frame high-resolution infrared small target dataset.
Then, we propose an infrared small target pyramid self-attention
network (ISPANet) according to the features of small targets in
high-resolution infrared images. Finally, we propose a new loss
function Focal Soft-IoU (F-SIoU). F-SIoU loss makes the network
more concerned about the hard positive examples. Comparative
experiments with state-of-the-art networks have shown that our
proposed ISPANet has much better target detection performance
in high-resolution infrared small target images. Especially in sup-
pressing false alarms of targets, it has a significant effect, with a 2%
increase in target detection probability (Pd) and a 4% increase in
target accuracy (Pa). ISPANet effectively enhances the credibility
of target detection results. At the same time, we also use the actual
acquired dataset to test the ISPANet and obtain good results. The
dataset and network will subsequently be made public on GitHub.

Index Terms—Deep learning, infrared image, self-attention,
small target detection.

I. INTRODUCTION

THE infrared imaging system has characteristics as being
unaffected by light conditions, having strong resistance to
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electromagnetic interference, adapting to various environments,
simple structure, being easy to carry, etc. It has been widely
used in military and civil fields, such as infrared search and
tracking, low and slow small aircraft detection and identification,
and autopilot and electric check. In some scenarios that need to
be prejudged, the target has a far distance and weak radiation
intensity, in addition, the environment around the target is com-
plex and has interference information. At this time, the target
appears as a small local bright block in the infrared image and
does not contain very specific shape and texture information,
which belongs to the infrared small target.

Infrared small target detection methods have been evolving
over the years [1]. In the early days, small targets in infrared
images were modeled as salient targets in the image or objects
with high local contrast [2], [3]. Subsequently, small targets were
modeled as sparse components in a low-rank background [4],
taking into account their “sparse.” The development of these a
priori model-based methods has improved the detection ability
of infrared small targets [5]. However, the local contrast and
sparsity priors of the target are actually summarized by human
experience, which means the model-driven approach does not
adapt well to more varied and complex scenes.

In recent years, with the rapid development of deep learning
(DL) and attention mechanisms in computer vision (CV) tasks,
many advanced DL models have emerged in subdivision tasks,
such as image classification [6], [7], target detection [8], seman-
tic segmentation, and image change detection [9]. The data-
driven infrared small target detection methods can be divided
into single-frame detection methods and sequence frames de-
tection methods. Single-frame detection methods typically focus
on enhancing local attention to small targets [10] and enhancing
fusion between features at different levels [11]. Sequence frames
contain temporal information, and sequence frame detection
methods typically use interframe difference [12], multistrategy
fusion [13], or optical flow estimation [14] to detect moving
targets. This article mainly studies single-frame infrared small
target detection method based on DL, these data-driven methods
have gained substantial performance improvement compared
with traditional methods, but still have problems, such as poor
adaptability, high false alarm rate, and high miss detection rate.

On the other hand, with the development of infrared detectors,
the infrared detection equipment has longer detection distance
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Fig. 1. Schematic representation of a target and its two different predictions.
Pre2 predicts more pixel points but the prediction of the target center position
is more biased. Pre1 predicts fewer pixel points but the prediction of the target
center position is more accurate.

and higher imaging resolution. This poses a new challenge to
infrared small target detection problem. Compared with low-
resolution infrared small target images, the average size of small
targets in high-resolution infrared images is larger, and the size
gap between targets is larger. The output of the infrared small
target detection network is a binary classification of each pixel in
the input image. As shown in Fig. 1, for high-resolution infrared
images, small targets occupy more pixels. A method that has
good prediction ability at the pixel level does not necessarily
mean good prediction ability at the target level.

Existing methods may encounter some problems in small
target detection of high-resolution infrared images, such as inac-
curate target prediction and localization, and severe false alarms
of targets. Based on the above problems, this article mainly
investigates how to improve the target-level prediction ability
of small target detection methods in high-resolution infrared
images. The main content of this article is as follows.

1) We construct a single-frame high resolution infrared small
target (SHR-IRST) dataset with a resolution of 1280 ×
1024, which is the largest single-frame infrared small
target dataset at present, with better diversity in small
targets and backgrounds.

2) Based on the small target data characteristics in high-
resolution infrared images, we design an infrared small
target pyramid self-attention network (ISPANet) network,
which can maintain good pixel-level metrics while obtain-
ing better target-level metrics, especially in suppressing
the target false alarm capability (improving the credibility
of target detection results).

3) We propose a new loss function, Focal Soft-IoU (F-SIoU),
which can increase the supervision of hard positive exam-
ples and improve the performance of ISPANet in infrared
small target detection.

II. RELATED WORKS

A. Attention Mechanism

In the last decade, attention mechanism has been introduced
into CV tasks and gradually plays an important role. Hu et al. [15]
argued that different channels in a feature map contain differ-
ent information and proposed squeeze-and-excitation network.
Based on this, Woo et al. [16] proposed a plug-and-play atten-
tion mechanism that combines spatial and channel dimensions.
Self-attention mechanism [17] was first proposed in 2017 and
rapidly developed in natural language processing. Wang et al.

[18] were the first to introduce self-attention mechanism into CV.
Some subsequent works on variations based on self-attention
[19], [20] focus on increasing the speed of network and reducing
the computational complexity. Huang et al. [21] proposed criss-
cross attention, which recursively considers row and column
attention to obtain global information. ViT [22] splits the image
into multiple patches, which are encoded and then used as input
to the Transformer, reducing the number of input sequences.

The development of the attention mechanism has promoted
the development of CV, and some new solutions have emerged
for generalized vision problems, such as target detection and
semantic segmentation with good results. However, the infrared
small target detection problem has its unique characteristics, and
the above method cannot be transferred directly. It is necessary
to design a self-attention mechanism module according to its
characteristics.

B. Infrared Small Target Detection

This section introduces the related works of infrared small
target detection from four aspects: datasets, network structure,
evaluation metrics, and loss function.

1) Datasets: In recent years, some scholars have done a
lot of work in the collection and production of infrared small
target datasets, and have publicly released some datasets. Table I
gives the basic information of the currently publicly available
single-frame infrared small target datasets. From Table I, it can
be seen that the number of real single-frame infrared small target
images is small. At the same time, consider the increasing de-
mand for high-resolution infrared small target detection. There
is an urgent need to construct a large-scale and high-quality
high-resolution single-frame infrared small target dataset.

2) Network Structure: With the rapid development of DL
method in CV tasks, DL-based networks have also emerged for
infrared small target detection.

Early researchers were more inspired by other visual tasks.
Gao et al. [23] drew on the idea of image super-resolution to map
low-dimensional features to a high-dimensional space before
target detection. Zhao et al. [24] proposed TBC-Net, which
uses the results of the classification branch to guide the feature
extraction in the segmentation branching network. Then, some
researchers have conducted some research on how to enhance
feature fusion at different layers [25], [26], [27]. Dai et al. [28]
argued that small targets are easily submerged in features at high
layers of the network, so they proposed an asymmetric contex-
tual modulation (ACM) mechanism. Based on this, Dai et al.
[10] modularized the local contrast measure from the traditional
approach to the network. Li et al. [11] proposed DNANet, which
maintains the stabilization of small infrared targets in the deep
layers through repetitive interactions within the dense nested
interactive module. Zhang et al. [27] proposed AGPCNet, which
includes attention guided context block that perceive pixel corre-
lations within and between patches at specific scales. Zhang et al.
[30] proposed ISNet, which extracts low-level features in the
row and column directions and combines them with high-level
features using the two-orientation attention aggregation module.
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TABLE I
DETAILS OF THE PRESENT SINGLE-FRAME INFRARED SMALL TARGET DATASETS

Some other researchers have introduced a self-attention mecha-
nism in the network [29]. Chen et al. [31] proposed IRSTFormer,
whose overall structure inherits the encoder–decoder structure
of the classical Transformer [17]. MTU-Net [32] is a small
target method for space-based infrared ship small targets, with
a multilevel ViT CNN hybrid encoder and a U-shape decoder.
In addition to this, several other researchers have introduced
bounding box prediction methods in the network. Wang et al.
[33] proposed IAANet, a two-stage network from coarse to
fine, where the coarse stage predicts the potential target regions
through region proposition networks. Chen et al. [34] added a
target bounding box prediction header to the U-Net network
in order to enhance the performance of semantic segmentation
prediction. Dai et al. [35] proposed OSCAR to predict bounding
boxes of small targets in a cascade from coarse to fine. In
order to solve the problem of class imbalance between the
target and background, Sun et al. [36] proposed RDIAN. It uses
convolutional layers with different receptive fields to capture
target features in different local regions, enhancing the diversity
of target features. Kou et al. [37] proposed a lightweight infrared
small target segmentation network and successfully deployed it
on embedded platforms.

There are still some shortcomings in the existing methods.
ACM [28] is a simple network, and it is insufficient in the detec-
tion rate of infrared small targets. ALCNet [10], IAANet [33],
and RDIAN [36] all designed a module that focuses more on
local features of small targets, but they ignored global and deep
features. This makes their predicted target false alarms more
severe. DNANet [11], IRSTFomer [31], and MTU-Net [32]
have improved the performance of networks through multilevel
feature extraction and fusion, but there is still a problem of poor
target prediction integrity, that is, they can easily predict a target
as two or more targets.

3) Evaluation Metrics: Infrared small target detection net-
works usually use both pixel-level metrics and target-level met-
rics to comprehensively evaluate the performance of small target
detection. Pixel-level metrics include the following.

IoU represents the ratio of intersection and union between the
predicted and true results

IoU =
TP

T + P − TP
(1)

where T, P, and TP denote the true, positive, and true positive,
respectively. nIoU [10] is the numerical result normalized by the

IoU value of each target

nIoU =
1

N

N∑
i

TP [i]

T [i] + P [i]− TP [i]
(2)

where N represents the total number of targets. Precision (P) and
recall (R) refer to the proportion of correctly predicted positive
samples out of all predicted positive samples and all true positive
samples, respectively. F1-Score (F1-P) is the harmonic mean of
precision and recall

P =
TP

TP + FP
R =

TP
TP + FN

F1− P =
2P ·R
P +R

(3)

where FP and FN denote the false positive and false negative,
respectively.

The receiver operating characteristic (ROC) curve [38] shows
the performance of the model at all classification thresholds.
The precision recall (PR) [39] curve reflects the accuracy of the
classifier in predicting positive examples.

Pd (probability of detection) and Fa (false-alarm rate) [4]
are target-level metrics. Pd measures the ratio of the number
of correctly predicted targets to the number of all targets. Fa

measures the ratio of incorrectly predicted pixels to all pixels of
the image

Pd =
# num of true detections

# num of actual targets
(4)

Fa =
# num of false predicted pixels

# num of all pixels
. (5)

In fact, the existing target-level metric Fa still evaluates the
prediction ability at the pixel level, which cannot reflect the false
alarm rate of the target level.

4) Loss Function: The output of the infrared small target
detection network is the binary classification result of each pixel
of the input image. Commonly used loss functions include binary
cross-entropy (BCE) loss and Soft-IoU loss [40]. BCE loss
represents a measure of the difference between two probability
distributions for a given set of random variables or events and
is mainly used in the classification prediction task of binary
classification. It is defined as

LBCE = −(t · log p+ (1− t) · log(1− p)) (6)

where t is the true labeling value, with a labeling value of 1 for
target (positive sample) and 0 for background (negative sample).
p is the target probability predicted by the network and is defined
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Fig. 2. Gradient function curves for BCE loss and Soft-IoU loss. (a) and (b) are the gradient function curves with respect to x for t = 0 and t = 1, respectively.
(c) is a gradient function curve with respect to p for t = 1. (The value of gradient function is taken to absolute in (c) for ease of presentation).

as

p = sigmoid(x) =
1

1 + e−x
(7)

where x is the output of the network. Soft-IoU loss measures the
intersection ratio between the predicted result and true label in
a soft judgment manner, which is defined as

LSoft−IoU = 1−
∑

i,j pi,j · ti,j + λ∑
i,j pi,j + ti,j − pi,j · ti,j + λ

(8)

where i and j denote the pixel points in the image. λ is a
smooth factor. More methods choose Soft-IoU loss because of
the serious positive and negative sample imbalance in infrared
small target images. However, we found that when using Soft-
IoU loss training, the loss value did not significantly decrease
after many epochs. The network needs to go through dozens
of epochs before it begins to converge. This situation does not
occur when using BCE loss training. In order to find the reason
for the nonconvergence of Soft-IoU loss, we analyze the gradient
functions and previous epochs’ experimental results.

The gradient function of Soft-IoU loss according to the chain
rule of the gradient is obtained as

∂LSoft−IoU

∂x
=

∂LSoft−IoU

∂p
· ∂p
∂x

=

{
λp(1−p)

(p+λ)2
, t = 0

p(p−1)
1+λ

, t = 1
(9)

∂p

∂x
=

e−x

(1 + e−x)2
= p(1− p). (10)

Since the smooth factor λ in Soft-IoU loss is an infinitesimal
number, the gradient function of Soft-IoU loss can be organized
as

∂LSoft−IoU

∂x
=

∂LSoft−IoU

∂p
· ∂p
∂x

=

{
0, t = 0

p2 − p, t = 1.
(11)

Due to the existence of smooth factor λ, the gradient value at
t = 0 is not completely equal to 0, but rather a very small value.
However, due to the small value, its contribution to the network
is limited. The gradient function of the BCE loss according to
the chain rule of the gradient is obtained as

∂LBCE

∂x
=

∂LBCE

∂p
· ∂p
∂x

=

{
p, t = 0

p− 1, t = 1.
(12)

TABLE II
EVALUATION OF PIXEL-LEVEL METRICS FOR THE FIRST THREE EPOCHS

OF THE NETWORK TRAINED WITH SOFT-IOU LOSS

The gradient function curves of BCE loss and Soft-IoU loss
about the network output x at t = 0 and t = 1 are shown in
Fig. 2(a) and (b), respectively.

Because of the weight initialization, the network output x is
close to 0 at the beginning of the training. At this stage, for a
positive sample and a negative sample, BCE loss can provide
the same gradient, but Soft-IoU loss only provides gradient for
positive sample.

Table II represents the pixel-level metrics for the first three
epochs of the network trained with Soft-IoU loss. It can be seen
that after three training epochs, the recall (R) has grown to close
to 1, but the precision (P) is close to 0. This shows that since there
are few positive examples, the network has learned almost all the
positive examples at this time. But there are still a large number
of negative examples that are misjudged as positive examples.
At this time, the gradient values provided by the network to both
positive and negative samples are close to 0. Therefore, network
exhibits gradient saturation phenomenon, and it is difficult for
the network to update parameters by gradient descent. To sum
up, Soft-IoU loss does not converge because it has the following
deficiencies: lack of supervision of negative examples that are
incorrectly predicted as positive examples.

The gradient function curves of BCE loss and Soft-IoU loss on
the predicted target probability p at t = 1 are shown in Fig. 2(c).
It can be seen that the gradient function of BCE is a one-time
function, the farther the predicted value is from the correct value,
the greater the gradient value provided. The gradient function
of Soft-IoU is a quadratic function, the gradient value is the
largest when the predicted value is 0.5, and the gradient value
provided becomes smaller as the predicted value moves away
from the correct value. This shows that Soft-IoU loss also has the
following deficiencies: the supervision of hard positive examples
is insufficient.
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Fig. 3. Problems in existing datasets and corresponding solutions.

III. SHR-IRST DATASET

DL networks belong to data-driven methods. Compared with
traditional model-driven methods, DL networks require a large
amount of diverse data to train to improve their generalization
ability. In addition, with the development of infrared detection
and imaging equipment, infrared detection equipment with high
imaging resolution is gradually applied in various fields and the
demand for high-resolution infrared small target data increases.

Based on the above reasons, we analyze, organize, and expand
the existing datasets to construct an SHR-IRST dataset with a
1280×1024 size. Section III-A introduces the problems existing
in the existing dataset and the corresponding solutions. Sec-
tion III-B describes the statistical properties of the SHR-IRST
dataset.

A. Problems and Solutions for Existing Datasets

Because the data in different datasets have different sources,
are manually labeled by different people, and have different
resolutions. Therefore, the data collation and summary work
are not simple “additions.” As shown in Fig. 3, first analyze
the problems in the existing single-frame infrared small target
dataset, and then propose corresponding solutions.

High Image Similarity: The synthetic dataset IRST640 has
high image similarity and poor data diversity. Networks trained
with IRST640 have poor generalization ability [31]. Structural
similarity (SSIM) measures the similarity between two im-
ages, and the closer the value is to 1, the more similar the
images are. So, it is used to evaluate the similarity of im-
ages in the IRST640 dataset, where images with SSIM value
above 0.9 (for simple background) or 0.85 (for complex back-
ground) are considered highly similar and removed. Among
them, simple images refer to images with only clouds and
high-voltage power lines in the background, whereas com-
plex images refer to images containing urban buildings and
trees. Finally, 358 images are remained from 1024 images.
The average SSIM of images is reduced from 0.9387 to
0.8285.

Fig. 4. Example of expanded infrared image of maritime target class.

TABLE III
COMPARISON OF NIOU AND IOU METRICS FOR CROP AND FILL

UNIFIED IMAGE SIZE METHODS

Unbalanced Target Class Distribution: The targets in infrared
small target images mainly include three categories: aerial tar-
gets, maritime targets, and land targets. Existing datasets focus
more on aerial targets. There are 997 images of aerial targets
(65.8%), 416 images of land targets (27.5%), and 102 images
of maritime targets (6.7%) in the existing real single-frame
infrared small target datasets. It can be seen that the distribution
of small target categories in the existing datasets is extremely
unbalanced, that is, the number of maritime target images is
seriously insufficient. Therefore, some maritime target images
are collected from another public dataset. A total of 204 infrared
images of ship small targets with river or ocean backgrounds
are expanded. As shown in Fig. 4, both single-ship images and
multiship images are included.

Real Single-Frame Image Less: There is currently limited data
on real single-frame infrared small targets, whereas images from
real multiframe dataset can be used to expand single-frame data.
To ensure data diversity, every 50 images in IRDST are extracted,
and SSIM is used to retain only less similar images (SSIM values
less than 0.85). Finally, 806 images were selected from IRDST,
accounting for 0.56% of IRDST.

Image Sizes Inconsistent: In general, DL networks have fixed
data sizes for input and output. In [4], the size of the infrared
small target images is unified through direct resizing. As shown
in Fig. 5(b) and (c), direct resizing will deform and distort the
targets in the image, and the labels are no longer binarized. Using
the SIRST dataset as a benchmark, we compare two undistorted
resizing methods crop and fill. Crop: according to the specified
aspect ratio to maximize crop image, and ensure that small
targets remain intact [see Fig. 5(d)]. Fill: fill with 0 at the bottom
or right-hand side of the image to the specified aspect ratio, then
use bilinear to resize image to the specified size [see Fig. 5(e)].
As given in Table III, the fill method obtains better IoU and
nIoU metrics. Therefore, fill is used to unify the images sizes in
SHR-IRST.

Labeling Errors: The small target in the infrared image is
weak and blurry, without clear edges. There is a deviation in the
edge definition of infrared small targets during human manual
annotation, which leads to label errors. Here, a semiautomatic
labeling method is proposed: using the Canny edge detection
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Fig. 5. Example of uniform image size method: (a) original image, (b) resized image, (c) resized label, (d) cropped image, and (e) filled image.

Fig. 6. Comparison of part of the relabeled images. From left to right, the
real image, the original label, and the relabel. (a) Point target: Mislabeling due
to poorly defined boundary. (b) Boat target: Mislabeling of the boat as a target
along with the boat’s reflection on the water. (c) Car target: In nonclear weather,
the car’s source of heat radiation is the engine and chassis. The object semantics
corresponding to the target is ignored when labeling, and it is mislabeled as two
independent small targets.

algorithm to determine the edge information of small targets, and
manually assisting in confirming the label of small targets. This
method reduces human participation in defining small target
edges. However, real objects will be fully labeled in infrared
images, such as drones, planes, cars, missiles, and ships, see
Fig. 6. Small targets in infrared images have high local contrast
[1]. Based on this, we propose an indicator to evaluate the
accuracy of infrared small target labels: local pixel difference
(LPD). As shown below:

LPD = μt − μb (13)

where μt and μb represent the mean value of grayscale in the
target area and background area around the target, respectively.
As shown in Fig. 7, the area around the target is defined as the
smallest rectangle that can wrap both labels. LPD measures the
numerical representation of the difference in grayscale between
a small target and its surrounding background. The larger the
LPD, the more accurate the label. This is because a more accurate
label should reflect the grayscale difference between the target
and the surrounding background to the greatest extent possible.
It is important to note that LPD is an unnormalized value, so
comparisons should be made by target. Due to the difference in
local contrast between different targets, if theμt andμb values of

Fig. 7. Small target and its surrounding area background division method.

TABLE IV
COMPARISON OF LPD METRIC FOR SIRST AND SIRST-RE

all targets are added together, the contribution of high-contrast
targets to the result will be amplified.

We relabeled the SIRST dataset using the method combined
with the Canny function to obtain relabeled SIRST (SIRST-RE)
dataset. The label accuracy of SIRST and SIRST-RE are evalu-
ated using LPD (see Table IV). There are 79 targets that decrease
in LPD values because some small targets are labeled according
to the target’s semantics, rather than just labeling local bright
blocks (see Fig. 6). The comparison results show that more labels
in SIRST-RE have higher LPD. This indicates that the proposed
labeling method has higher labeling accuracy.

B. Statistical Properties of SHR-IRST Dataset

Table V presents the basic information of SHR-IRST and
other mainstream single-frame infrared small target datasets.
Fig. 8 shows the statistical analysis of the above datasets in terms
of target signal-to-clutter ratio (SCR), target category, and target
size. From Table V and Fig. 8, it can be seen that the SHR-IRST
dataset has the following characteristics.

Larger Target Size: As can be seen from Table V, the average
pixel number of the targets in SHR-IRST is 209.47, indicating
that the targets in high-resolution images are usually larger and
occupy more pixels. For larger targets, the pixel-level metrics
results do not reflect the method’s target prediction capability
well.

More Difficult to Detect: The SCR [4] is the normalized value
of the difference between the grayscale of the target and the
surrounding background area, which can be used to describe the
difficulty of detecting small targets. A higher SCR means that the
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TABLE V
DETAIL OF THE SHR-IRST DATASET AND OTHER MAINSTREAM DATASETS

Fig. 8. Statistical properties of SHR-IRST and other mainstream datasets. (a) Statistical properties of target SCR value distribution. (b) Statistical properties of
target class distribution. (c) Statistical properties of target size distribution.

target is easier to detect, and a lower SCR means that it is harder
to detect. As can be seen from Table V and Fig. 8(a), the average
SCR of SHR-IRST is smaller than that of other real single-frame
datasets, indicating that target detection in SHR-IRST is more
difficult and challenging.

More Balanced Category Distribution: Fig. 8(b) shows the
statistical diagram of real objects category corresponding to
targets in images. Data categories in SHR-IRST are more evenly
distributed. We expanded images of maritime targets from 87
(8.7%) in IRSTD-1k to 304 (10.7%) in SHR-IRST by nearly
three times. This greatly alleviates the problem of sample
scarcity in the maritime targets category.

Smaller Target Percentage: Fig. 8(c) shows that more targets
in SHR-IRST account for less than 0.005% of the entire image. It
indicates that targets in the SHR-IRST dataset are more likely to
be submerged in high-level features and have greater detection
difficulty.

Larger target size gap: From Table V, it can be seen that
the targets in SHR-IRST (1784) have a larger size gap than
other datasets (50, 326, and 1064). This means that small target
detection in high-resolution infrared images is more challenging
than that in low-resolution images.

The IoU metric result of state-of-the-art (SOTA) methods
(DNANet and ALCNet) on SHR-IRST is compared with SIRST.
As given in Table VI, both DNANet and ALCNet showed a large
degree of performance degradation on SHR-IRST. This shows
that SHR-IRST presents a new challenge to existing methods. It
is necessary to design network according to the characteristics
of high-resolution infrared small target images to improve the
detection ability of the network.

TABLE VI
COMPARISON OF IOU METRIC FOR SIRSTH AND SHR-IRST

DATASETS BY SOTA METHODS

IV. METHODOLOGY

This section provides a detailed introduction to the specific
structure of the proposed small target detection network IS-
PANet for high-resolution infrared images and a loss function
F-SIoU loss that makes the network focus more on hard positive
examples.

A. ISPANet

Our proposed ISPANet consists of four modules (see Fig. 9):
a local feature extraction (LFE) module, a multiscale receptive
field self-attention (MFSA) module, a multilevel feature fusion
(MFF) module, and a full conv head with bias (FCB Head).

Input a high-resolution (1280 × 1024) infrared image. First,
the input image undergoes multilayer convolution operations in
the LFE module to obtain feature maps with different downsam-
pling multiples. Second, in the MFSA module, further feature
extraction is carried out in larger receptive fields at different
scales. With the help of the self-attention mechanism, networks
can explore the connections between features at farther dis-
tances. Then, local and global feature maps, and shallow and
deep feature maps are gradually upsampled and fused in the MFF
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Fig. 9. Overall architecture of our ISPANet.

Fig. 10. Detailed network structure of ISPANet.

module. Finally, in the FCB Head, the number of channels in
the fused feature map is gradually reduced to obtain a prediction
map. The prediction map of the network has a step size of 4
relative to the input image. Use bilinear functions to interpolate
the predicted map, and then perform threshold (0.5) judgment
to obtain the prediction results for binary classification of each
pixel in the input image. The following content introduces the
specific structure of each module in the network.

1) LFE Module: The LFE) module consists of multiple con-
volutional layers and its structure is shown in Fig. 10. In the
LFE module, feature extraction is carried out on the input image
through a bottom–up approach to obtain feature maps (C2,
C3, C4, and C5) of different scales. The step size between
adjacent scale feature maps is 2. Then, the channel numbers
of feature maps (C2, C3, C4, and C5) are unified to c (c =
64) through a 1 × 1 convolution layer, and the feature maps
D2, D3, D4, and D5 are obtained. The input image has a high
resolution, taking into account the network computing cost and
the characteristics of small targets, the LFE module conducts a
total of five downsamplings. The step size of the deepest feature
map relative to the input image is 32.

2) MFSA Module: Unlike the local receptive field of convo-
lution, the self-attention mechanism has a global receptive field
and can better capture the internal correlations between features
[17]. However, the computational complexity of the standard
self-attention mechanism is proportional to the square of the
number of input feature sequences [22]. Despite multiple times
downsampling, the feature maps of high-resolution images still
contain a large number of features, which will bring significant
computational overhead when using the standard self-attention
mechanism. Based on the characteristics of small targets in

high-resolution infrared images, we design an MFSA module. In
order to reduce the computational overhead in the self-attention
mechanism, there are two specific network architecture designs
in MFSA module. One is multiscale receptive field patch par-
titioning, and the other is feature scaling in spatial dimensions.
Here is a specific introduction.

Small targets in infrared images have locality and sparsity,
which means that features that are far from the target have less
correlation with the target and are redundant features. Based on
this, a multiscale receptive field patch partitioning structure is
proposed in MFSA. According to the downsampling multiple of
feature map Di (i = 2, 3, 4, 5), different partition quantities are
designed to make the subfeature map Dij have different receptive
fields. Specifically, the number j of subfeature maps divided by
feature map Di is shown below:

j = (6− i)2(i = 2, 3, 4, 5). (14)

For the deepest feature map D5, which contains more se-
mantic information, the internal correlation between semantic
features is calculated in the global receptive field. From D4

to D2, the downsampling factor decreases, the detailed and
texture information in the features increases, and the correlation
between long-distance features and targets weakens. Therefore,
the number of subfeature maps divided increases, and the re-
ceptive field of each subfeature map decreases, allowing for a
more focused exploration of the relationship between the target
and surrounding features. Calculating self-attention between
features at different scales of receptive fields enables better
integration of the characteristics of feature maps at different
scales with self-attention mechanisms, and is also more in line
with the target characteristics of infrared small target images.
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Fig. 11. Structure of MFSA module.

It is worth noting that before the self-attention calculation
process, all subfeature maps (from Di1 to Dij) will be concate-
nated together in a new dimension. For Dij ∈ Rh×w×c, obtain
D′

i ∈ Rj×h×w×c through concat operation. This means that
during the self-attention calculation process, subfeature maps
Dij divided by Di share parameters with each other.

MFSA has added spatial scaling operations on the basis of the
standard multihead self-attention mechanism (see Fig. 11). The
process of self-attention calculation is as follows:

Attention(QKV ) = softmax

(
QKT

√
dk

)
V (15)

where QKV is obtained through three sets of linear mappings
of input feature sequences. However, through spatial scaling
operations, the length of the input feature sequence can be scaled
to 1/s2 (s is the scaling factor). After spatial scaling, K and V
are generated by two sets of linear projections of the scaled
feature sequence, while Q is generated by linear projection of
the nonscaled feature sequence, as shown below:

Q = Linear(D′
i)

K = Linear(Convs×s(D
′
i)) i = 2, 3, 4, 5

V = Linear(Convs×s(D
′
i)) (16)

where Convs × s represents a convolution with kernel size s and
step size s. After passing through the MFSA module, obtain the
feature maps T2, T3, T4, and T5.

3) MFF Module: In order to better utilize the detailed infor-
mation in the shallow features and the semantic information in
the deep features, an MFF module is designed in the last part
of the ISPANet, whose structure is shown in Fig. 10. The MFF
module includes local and global feature fusion and the fusion
between different scale features.

In the MFF module, the local and global features generated
in the first two modules are first fused by element-by-element
summation, and the feature maps generated after fusion are
called Ri

Ri = Di⊕ T i(i = 2, 3, 4, 5) (17)

where � represents adding elements by elements. Then, through
the approach from deep layer to shallow layer, the deep features
with less detailed information but rich semantic information are
upsampled first. Starting from the deepest feature map R5, the
spatial resolution of the feature map R5 is increased by two

times by deconvolution operation without changing the number
of channels. It is fused with the shallow feature map R4, which
has the same space size, by adding element by element. A 3 ×
3 convolution is added to the fused features to generate the final
fused feature map P4. The 3 × 3 convolution layer can reduce
the aliasing effect of the upsampling operation [42]. The process
of generating fused feature map Pi is shown as:

Pi =

{
Conv3×3(δ(B(Up2(Ri+1)⊕Ri))) i = 2, 3, 4

Conv3×3(δ(B(Conv3×3(Ri)))) i = 5
(18)

where B denotes BN regularization, δ denotes ReLU, and Up2
denotes twofold upsampling. For the fused feature map Pi, the
number of channels is reduced to c/2 by a 3 × 3 convolution.
Then, the feature map Si is obtained by upsampling the feature
map to a step size of 4 relative to the input image after a layer
of deconvolution. All feature maps Si are added and fused to
obtain F

F = (Conv3×3(P 2))⊕ (Up2(Conv3×3(P 3)))

⊕ (Up4(Conv3×3(P 4)))⊕ (Up8(Conv3×3(P 5)))
(19)

where Up4 denotes fourfold upsampling and Up8 denotes eight-
fold upsampling.

4) Full Conv Head With Bias: The prediction head of the
network is an FCB Head, which includes three layers of con-
volution, gradually reducing the number of channels in the
feature map F to 1 to obtain the prediction map. Then, bilinear
interpolation is used to sample the predicted map to the input
image size

Xpre = Bilinear(w1(Dropout(δ(B(

Conv3×3(δ(B(Conv3×3(F )))))))) + b) (20)

where Dropout means a Dropout layer is added after the first two
Conv3×3 layers (dropout rate is 0.1). w1 represents a convolution
kernel of size 1, and b represents the initialization bias of the
last convolutional layer of the network

b = − log

(
1− π

π

)
(21)

where π= 0.01. Because the FCB head has an initialization bias
b, the output predictions of the network during initial training
period are around π. At this point, the output predictions of
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Fig. 12. Gradient function curves of F-SIoU loss in different settings. (The value of gradient function is taken to absolute in (a) and (b) for ease of presentation).

the background area (negative samples) are close to the true
value 0, and the network only needs to focus on mining positive
samples (target area). This can accelerate the convergence of
losses during network training.

B. F-SIoU Loss

The problem with slow convergence of soft loss is that it
provides gradient values close to 0 for negative examples and
too small for hard positive examples (analyzed in Section II-B).
The addition of bias b in the FCB head solves the problem of
insufficient supervision of negative examples. In this section,
F-SIoU loss is proposed, which can make the network pay more
attention to hard positive examples

LF−SIoU = α(LSoft−IoU)
γ (22)

where α is the adjustment factor for the peak of the gradient
function, and γ is the adjustment factor for the preference of
difficult sample. Solving the gradient function for the F-SIoU
loss by the chain rule for gradients leads to

∂LF−SIoU

∂x
=

∂LF−SIoU

∂p
· ∂p
∂x

=

{
0, t = 0

−α · γp(1− p)γ , t = 1.
(23)

Fig. 12(a) shows the gradient function curve of the F-SIoU
loss with respect to the predicted probability p shown for dif-
ferent values of γ when α = 1. Fig. 12(b) shows the gradient
function curve of the F-SIoU loss with respect to the predicted
probability p shown for different values of α when γ = 2.

As can be seen from Fig. 12(a), hard positive examples will
obtain larger gradient values when γ >1. With the increase of
γ value, the weight difference between easy and hard positive
examples in the loss expands further. From Fig. 12(b), it can
be seen that the value of the gradient function also increases
proportionally when α >1, which makes the hard positive case
contribute more to the loss and accelerates the convergence of
network. At the same time, when the prediction probability p is

close to 0, the F-SIoU loss can provide a larger gradient value
and alleviate the gradient saturation phenomenon.

V. EXPERIMENTS

This section introduces experimental details and result anal-
ysis. Specifically speaking, Section V-A details the specific im-
plementation of experiments. Section V-B presents the proposed
new target-level evaluation metrics. Section V-C compares the
quantitative and visual results of ISPANet with those of SOTA
methods. Section V-D compares the experimental results on
actual data of different methods. Section V-E compares the im-
pact of different parameter settings for F-SIoU loss on network
training results. Section V-F outlines the ablation experiments.

A. Implementation Details

During network training, adaptive gradient [43] method is
used as optimizer, and Xavier method [44] is used to initialize
weights and biases of network. Learning rate decay is performed
using both warm-up [45] and cosine annealing [46] strategies.
The total number of train iterations of ISPANet is 200 epochs,
and warm-up is performed within the first five epochs. The initial
and minimum learning rate is set as 0.01 and 1e-5, respectively.
All networks are implemented in PyTorch [47]. The CPU of the
computer that is used for training and testing is AMD Ryzen9
5950X 16-Core Processor 3.40 GHz, and the GPU is Nvidia RTX
3090. Unless otherwise noted, all the experiments are trained and
tested on the SHR-IRST dataset, and the number of images in
the training, validation, and testing sets is 1706, 569, and 568,
respectively. The ratio of the three divisions is about 6:2:2.

The following data augmentation strategies are implemented
during network training: random scaling. The scaled aspect ratio
ranges from 0.58 to 1.85. The scaled length of the long side
ranges from 0.5 to 2 times the original length. After random
scaling, image is arbitrarily cropped to 1280 × 1024. In addition
to this, the data are also enhanced by random horizontal flipping
and random superimposed Gaussian noise strategies.
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TABLE VII
COMPARISON OF PIXEL-LEVEL AND TARGET-LEVEL METRICS FOR ISPANET AND SOTA METHODS ON THE SHR-IRST DATASET (VALUES ARE EXPRESSED AS

PERCENTAGES)

TABLE VIII
COMPARISON OF PIXEL-LEVEL AND TARGET-LEVEL METRICS FOR ISPANET AND SOTA METHODS ON THE SIRST DATASET

(VALUES ARE EXPRESSED AS PERCENTAGES)

B. Target-Level Evaluation Metrics

Infrared small target detection networks [11] typically use
both pixel-level and target-level metrics to comprehensively
evaluate the target detection performance.

Previously, the false-alarm rate (Fa) of the target-level metrics
[see (5)] represented the ratio of the wrongly predicted pixels to
all pixels of the image, and did not really measure the false-alarm
situation of the network from the target level. Therefore, we
redefine the Fa as

Fa =
# num of false detections

# num of predicted targets
. (24)

In addition, we also define the Md (miss detection rate), the
Pa (probability of accuracy), and the F1-T (F1 score) of the
target-level evaluation metrics

Md =
# num of not detections

# num of actual targets
(25)

Pa =
# num of true detections

# num of predicted targets
(26)

F1− T =
2Pd · Pa

Pd + Pa
(27)

where Pd represents the probability of detection [see (4)]. When
the center of the predicted target is within d pixels of the center
of the real target, the target is considered to be correctly detected.
The threshold d is set to 2 in this article. The F1-T takes
both recall and accuracy into account to measure target-level
prediction. A method is considered good when high values are
obtained on Pd (↑), Pa (↑), and F1-T (↑), and low values are
obtained on Md (↓), and Fa (↓).

The pixel-level metrics we used include: IoU (↑), nIoU (↑),
R (↑), P (↑), F1-P (↑), ROC, and PR curve. They have been
explained in detail in Section II-B.

C. Comparison With SOTA

In this section, we compare the infrared small target detec-
tion performance of our proposed ISPANet and SOTA meth-
ods (ACM [28], ALCNet [10], DNANet [11], AGPCNet [27],
RDIAN [36], and MTU-Net [32]) on the SHR-IRST dataset
(see Table VII) and a mainstream SIRST dataset [10] (see
Table VIII).

As can be seen from Table VII, ISPANet achieves the best
results on almost all metrics. Compared with the suboptimal
method MTU-Net, ISPANet improves by approximately 3% on
all metrics. Comparing the results of Tables VII and VIII, all
methods achieve better pixel-level metrics and poorer target-
level metrics on the SIRST dataset. This indicates that for in-
frared small target detection problems, good pixel-level metrics
cannot accurately reflect the target detection ability of a method.
It also indicates that although a more complex and larger dataset
presents new challenges for fine segmentation tasks, it can enable
the model to better understand the semantics of infrared small
targets. Target-level metrics are also an evaluation of whether the
model accurately understands the semantic concepts of infrared
small targets.

Fig. 13(a) and (b) shows the variation curves of target-level
metrics Pd and Pa for all methods under different threshold
d (d represents the pixel distance between GT’s center and
predicted target’s center). When d ≥ 1.5, ISPANet has always
had a significant advantage in Pd metric. When d ≤ 4, ISPANet
has always had an advantage in Pa metric. Compared with



WANG et al.: ISPANET: A PYRAMID SELF-ATTENTION NETWORK FOR SHR-IRST DETECTION WITH A LARGE-SCALE DATASET SHR-IRST 11157

Fig. 13. Target-level Pd and Pa metrics curves for different threshold d and PR, ROC curve. (a) Pd curve. (b) Pa curve. (c) PR curve. (d) ROC curve.

Fig. 14. Visualization of test images for SHR-IRST dataset. The green, red, and yellow round boxes represent correctly detected target, missed target, and false
alarm target, respectively. Local zoomed-in views of the corresponding regions of the real small targets are shown in box in the upper left and right corners of the
images. (a) Input. (b) GT. (c) ALCNet. (d) DNANet. (e) RDAIN. (f) MTU-Net. (g) ISPANet.

suboptimal networks, the Pd and Pa metrics of ISPANet decay
less with decreasing threshold d. This indicates that ISPANet
has strong robustness in improving target detection recall and
suppressing false alarms. Fig. 13(c) and (d) shows the PR and
ROC curves for all methods. The PR curve of ISPANet is closer
to the upper right-hand side corner, while its ROC curve is closer
to the upper left-hand side corner, which indicates that ISPANet
has superior performance.

Several images are randomly selected from the test dataset,
and the visual prediction results of different methods are shown
in Fig. 14. From Fig. 14, it can be seen that when there are sea
surface ripples and urban building interference (Fig. 14, lines 1,
2, and 4), other methods have weak antiinterference ability, and

false alarms occur. When the target being tested is a weak small
target in a complex cloud background (Fig. 14, line 3), some
methods may miss detection. When the grayscale distribution
of the small target to be tested is uneven (Fig. 14, line 5), some
methods predict it as two small targets.

Table VII also gives the image processing speed [frames per
second (fps)], computational complexity [flops(G)], and model
parameter count [params(M)] of different methods. Although
ISPANet’s model processing speed is not the fastest, it has
achieved significant improvement in network performance.

From Table VII, it can also be seen that ALCNet and RDIAN
achieve pixel-level metrics that are close to those of other
methods, but when evaluating their target-level metrics, it is
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TABLE IX
COMPARISON OF PIXEL-LEVEL AND TARGET-LEVEL METRICS FOR ISPANET AND SOTA METHODS IN THE SHAC-IRST DATASET (VALUES ARE

EXPRESSED AS PERCENTAGES)

Fig. 15. Equipment used in real image acquisition. (a) Thermal imaging
camera. (b) UAV.

found that they exhibited severe target false alarms. This indi-
cates that a pixel-level perspective alone cannot fully reflect the
detection performance of a method for infrared small targets,
and it is necessary to comprehensively consider its pixel-level
and target-level predictive performance.

D. Actual Data Experiment

This section compares the detection performance of different
methods on infrared small targets in the single-frame high-
resolution actual collected infrared small target dataset (SHAC-
IRST). The images in SHAC-IRST are actually collected by
us, and they are from different sources than the images in
the SHR-IRST dataset. The correlation between the images in
the two datasets is relatively low, which can further evaluate the
generalization ability of different methods.

The equipment used for collection includes an infrared de-
tector, InfiRay Arrow Cruiser PH35+ [see Fig. 15(a)], which is
an uncooled vanadium oxide detector with a resolution of 640
× 352, and a DJI Mini3 Pro [see Fig. 15(b)] UAV as target.
In addition, the targets in the collected images also include
birds and rowing. The collection environment includes various
scenes from the campus of the Huazhong University of Science
and Technology and Ma’anshan Forest Park. The collection
angle includes looking up and horizontal observation, and the
background of the image includes buildings, trees, clouds, and
lakes. The actual collected images are magnified to 1280 ×
704 using interpolation functions. There are a total of 80 actual
collected images, including 40 infrared images with targets and
40 infrared images without targets. The no-target image contains
interference similar to the imaging characteristics of infrared
small targets, which are used to test the ability of different
methods to suppress target false alarms. The experimental results
are given in Table IX. It can be seen that ISPANet has achieved
significant advantages in almost all indicators on test images

TABLE X
COMPARISON OF PIXEL-LEVEL METRICS FOR ISPANET TRAINED WITH

DIFFERENT SETTINGS OF F-SIOU LOSS (VALUES ARE

EXPRESSED AS PERCENTAGES)

with targets. ISPANet also demonstrated good suppression of
false alarms on test images without targets. Fig. 16 shows
visual predicted images of some test images. It can be seen
from this that ISPANet tends to predict the target as a com-
plete individual. Other methods tend to obtain more accurate
pixel prediction results, which makes them more likely to pre-
dict a target as multiple small targets, leading to serious false
alarms.

E. Loss Function Experiment

In this section, the effects of different parameter (α and γ)
settings for F-SIoU loss on network prediction performance are
compared through experiments.

ISPANet is trained using F-SIoU loss with different settings,
and Table X gives these pixel-level metric results. When α =
1 and γ = 1, it represents the Soft-IoU loss. It can be seen
that as γ increases, the R (Recall) gradually increases (i.e., more
positive examples are predicted), indicating that the γ parameter
in F-SIoU is effective in increasing the network’s attention to
hard positive examples. When α increases, the recall rate of
the network for positive examples is further improved, which
is consistent with the expected effect when the α parameter is
designed. However, it can also be seen in the Table X that for
the same γ value, when a larger α is set, the P (Precision) of
the network decreases. Therefore, a suitable setting of α and γ
parameters is important. In ISPANet, α = 2 and γ = 2.

F. Ablation Study

In this section, the rationality and effectiveness of the net-
work structure of ISPANet are verified through detailed ablation
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Fig. 16. Visualization of test images for the SHAC-IRST dataset. The top three lines are images with targets and the bottom two are images without targets.
The green, red, and yellow round boxes represent correctly detected target, missed target, and false alarm target, respectively. Local zoomed-in views of the
corresponding regions of the real small targets are shown in red box in the lower left corner of the images. (a) Input. (b) GT. (c) ALCNet. (d) DNANet. (e) RDAIN
(f) MTU-Net. (g) ISPANet.

TABLE XI
NETWORK SETTINGS FOR ABLATION EXPERIMENT

experiments (see Table XI). The network without MFSA mod-
ule is named A. A is a fully convolutional network that only
includes LFE module, MFF module, and FCB Head. Based
on A, two networks using self-attention mechanisms for dif-
ferent objects are compared. Among them, the network that
calculates self-attention for different layers of feature maps
after feature extraction is named B (i.e., self-attention first and
then feature fusion). In B, the order of four modules is LFE,
MFSA, MFF, and FCB Head. B is the proposed ISPANet. The
network that calculates self-attention based on the feature maps
after upsampling and fusion is named C (i.e., feature fusion
followed by self-attention). In C, the order of four modules is
LFE, MFF, MFSA, and FCB Head. Based on A, the impact of
initialization bias b set for the last layer of network in FCB Head
on the network performance is compared. The network without
bias b is named D. In addition, the impact of the number of

feature channels c on the performance of A and B networks is
also compared through experiments (c is the unified number
of feature channels for different scale feature maps in the LFE
module). The experimental results are given in Table XII.

From Table XII, it can be seen that as the number of channels c
decreases, the network performance decreases. The decrease in
target-level metrics (about 1%) is smaller than that in pixel-level
metrics (about 3%). It shows that fewer feature channels are
sufficient to provide accurate semantic information. As the
number of channels increases, the network’s ability to learn
detailed information, such as shapes and contours, enhances.
The impact of c on nIoU is greater than that on IoU. It shows
that when the feature channels are few, the network’s prediction
ability for smaller targets deteriorates. Because nIoU balances
the contributions of different sizes of targets, but larger targets
contribute more to IoU than smaller ones. The impact of c on P
is greater than that on R, indicating that as the feature channel is
fewer, the network’s learning ability for hard negative examples
is worse.

Compare the experimental results of B, C, and A. Compared
with A, the metrics of B and C have both improved, while B
has more improvement. This indicates that the self-attention
mechanism is beneficial for network. Calculating self-attention
for downsampling feature maps first, followed by upsampling
and feature fusion, can maximize the effectiveness of the self-
attention mechanism.
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TABLE XII
COMPARISON OF PIXEL-LEVEL AND TARGET-LEVEL METRICS FOR DIFFERENT VARIANTS OF ISPANET (VALUES ARE EXPRESSED AS PERCENTAGES)

Compare the experimental results of D and B. Compared with
B, the metrics of D have decreased, with the largest decrease in
Pa being about 3%. After adding bias b, the learning task of the
network is equivalent to finding targets from background, the
number of hard negative examples is reduced, and the network
only needs to focus on mining positive examples. This improves
the predictive ability of the network.

VI. CONCLUSION

This article analyzes the problems in the existing single-frame
infrared small target dataset and proposes corresponding solu-
tions. On this basis, we construct a high-resolution SHR-IRST
dataset and demonstrate its superiority (with more balanced data
distribution and greater detection difficulty) through statistical
analysis. Due to the poor detection performance of existing
methods on the SHR-IRST dataset, we propose a new network
ISPANet based on the characteristics of high-resolution infrared
small targets. We propose an F-SIoU loss to solve the problems
of slow convergence and insufficient attention to hard positive
examples in Soft-IoU loss.

We train and test different methods on SHR-IRST dataset.
Compared with SOTA methods, ISPANet achieves optimal re-
sults on almost all metrics. In terms of target-level metrics, IS-
PANet achieves a balanced performance improvement, which is
about 3% higher than suboptimal methods. This result indicates
that ISPANet has good target recall and false alarm suppression
capabilities, which effectively improves the credibility of the
network’s target detection results.

At the same time, we also use the actual acquired dataset
(SHAC-IRST) to test different methods. Compared with SOTA
methods, ISPANet improves pixel-level metrics by about 1%.
There is a significant performance improvement in target-level
metrics, especially a 10% increase in target-level accuracy (Pa).

Considering the differences in collection equipment and tar-
gets between the two different datasets, SHAC-IRST (including
actual acquired data) and SHR-IRST (including actual acquired
data and simulation data), it indicates that ISPANet has good
generalization ability and can achieve good target detection
results for different datasets.

ISPANet has achieved significant improvements in the tar-
get detection performance of infrared small targets, but when
applied to small target detection in large-size infrared images,

a target detection method is expected to have faster image
processing speed. Therefore, in future research, efforts will be
made to build a lightweight and efficient neural network that
improves image processing speed while maintaining good small
object detection performance.
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