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High-Resolution Detection of Periglacial Landforms
Deformation Using Radarsat-2 and GF-7 Stereo

Optical Imagery
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Xiang Zhang, and Jing Lu

Abstract—In cold mountain environments, rock glaciers and
talus represent common periglacial landforms. Accurate moni-
toring of their activity is crucial for understanding alpine kine-
matics. Presently, spaceborne SAR satellites monitor periglacial
landform deformations mainly utilizing medium-resolution data.
However, capturing surface structure deformations accurately and
comprehending the movement mechanisms remain challenging.
This study employs high-resolution GF-7 optical stereo images
and Radarsat-2 SAR data, introducing a multibaseline persistent
scatterer and distributed scatterer combined multitemporal InSAR
(MT-InSAR) method to identify rock glaciers and talus landforms,
as well as to analyze their deformations. Initially, rock glaciers and
talus are outlined using GF-7 optical images, and digital surface
models are extracted. The developed MT-InSAR method then
detects the line of sight and slope-parallel deformations of these
landforms. Radarsat-2 monitoring reveals that 47.5% of identified
rock glaciers are classified as active, while talus deformations are
less active compared to rock glaciers. By utilizing high-resolution
optical and SAR satellite data, we first documented the intricate de-
formation features within standard rock glaciers, such as the front,
lateral margins, and optionally ridge-and-furrow deformations, as
well as their interaction with the surrounding terrain topography.
This discovery offers evidence of gravity-driven forces impacting
rock glacier movement. We have also conducted a deformation
analysis of the talus, obtaining spatial deformation characteristics
of typical talus. It was observed that the deformation of the talus
is jointly influenced by the conditions of surface debris cover
and the slope of the terrain. This study highlights the value of
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high-resolution optical and SAR satellites in studying periglacial
geomorphology dynamics.

Index Terms—Deformation, multitemporal InSAR (MT-
InSAR), periglacial landforms, rock glacier, talus.

I. INTRODUCTION

ROCK glaciers are typical periglacial landforms that de-
velop widely in alpine mountain permafrost environments

[1], [2], [3]. As the periglacial landscape evolves, the ice content
beneath the debris cover gradually decreases, transitioning from
massive sediments to soil matrix ice lenses. Rock glaciers and
talus play vital roles in this continuous periglacial landform
evolution process, often forming part of the sequence ice cirque-
debris-covered rock glacier-talus [4]. Both rock glaciers and
talus exhibit common creeping and rheological properties [2],
[5]. The transportation of debris and moraine is a significant
source of landslides, posing potential threats to infrastructure
and development [6], [7]. In the context of climate change,
some periglacial environments have seen accelerated surface
movement in rock glaciers due to permafrost warming, increased
water access to deeper permafrost layers, and internal shear
zones [8]. Monitoring the temporal-spatial deformation of rock
glaciers and talus can enhance our understanding of how cli-
mate and hydrological variables may impact the evolution of
periglacial environments [9], [10], [11].

Traditional monitoring of surface deformation in periglacial
landforms primarily relies on ground-based equipment such as
GNSS, LiDAR, GPS, and ground-based interferometric syn-
thetic aperture radar [12], [13], [14]. However, in recent years,
remote sensing techniques such as aerial photogrammetry, high-
resolution optical satellite imagery, unmanned aerial vehicles,
and airborne laser scanning have gained broader usage [15],
[16], [17], [18]. Nonetheless, rock glaciers and talus are typically
found in remote, high-altitude, and challenging environments.
This makes traditional monitoring methods expensive, limited
in their coverage, and challenging to implement widely. Addi-
tionally, optical satellite data can be affected by cloud cover and
fog, limiting observational accuracy [11], [19].

The continual expansion of spaceborne synthetic aperture
radar (SAR) data and the rapid development of interferometric
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SAR (InSAR) and multitemporal InSAR (MT-InSAR) tech-
nology have enabled multiscale and continuous monitoring of
periglacial landform movements in various cryospheric environ-
ments [20], [21], [22], [23], [24], [25], [26], [27], [28]. Some
regions have successfully created inventories of rock glaciers
that include standard activity attributes, following the guidelines
established by the International Permafrost Association (IPA)
[29], [30]. This has significantly improved our comprehension
of rock glacier activity [24], [26], [28], [31], [32].

Currently, surface deformation monitoring and activity de-
tection of rock glaciers using InSAR technology mostly revolve
around short-term and medium-resolution observations, often
with data from Sentinel-1, and ALOS-1 PALSAR, among others
[24], [33]. Those data may fail to accurately capture deformation
variations in rock glacier surface structure, especially in the case
of small rock glaciers. Consequently, significant knowledge gaps
persist regarding the spatiotemporal motion mechanisms of rock
glaciers.

Presently, research on talus primarily emphasizes morpholog-
ical characteristics, sediment thickness measurement, and geo-
physical investigations, such as rock weathering [2]. However,
examining the kinematics of talus geomorphology is crucial
for enhancing our understanding of periglacial talus formation,
evolution, and the broader periglacial landscape. The movement
of talus directly reflects the geomorphic evolution and serves as
a crucial basis for preventing rockfall disasters in mountain-
ous areas. The main reasons for the movement of debris on
talus slopes include rockfalls, freeze-thaw action, water flow,
avalanches, and other factors [34], [35]. In a limited number
of studies, Imaizumi et al. [36] used InSAR technology with
three-scene PALSAR data to analyze the deformation charac-
teristics of 38 rockfall slopes in various terrains in the southern
Swiss Alps [36]. Dini et al. [37] determined the deformation
rates of certain talus formations in the northwest Himalayan
Mountains of Bhutan from 2007 to 2010 using SBAS technol-
ogy. There is a shortage of research on talus movement using
InSAR technology [38]. The potential of InSAR for invento-
rying talus landforms and contributing to geomorphological
studies in complex periglacial environments requires further
exploration.

On the other hand, the use of MT-InSAR for estimating defor-
mations in periglacial landforms is also affected by factors such
as tropospheric atmospheric delay, arising from the significant
variations in relief elevation in periglacial environments, phase
unwrapping errors due to complex terrain, and interferomet-
ric decorrelation caused by snowmelt [28], [32], [38], [39].
Further research is needed to explore the application of the
MT-InSAR method with high-resolution SAR data to periglacial
landforms.

In this article, we present a multibaseline PS-DS combined
MT-InSAR network designed to obtain comprehensive and de-
tailed deformation measurements of periglacial landforms in the
Eastern Himalayas, with a focus on rock glaciers and talus, using
high-resolution Radarsat-2 and GF-7 optical stereo images. To
illustrate the advantages of our high-resolution deformation
monitoring, we compare the results with those obtained from

Radarsat-2 and Sentinel-1 data. We classify the activity of rock
glaciers and talus in Southeast the Himalayas and analyze the
spatial characteristics of surface deformation in typical active
rock glaciers and talus.

II. STUDY AREA AND DATASET

A. Study Area

The study area, located near Gangkhar Puensum in the south-
east Himalayas, is characterized by extreme environmental and
climatic conditions, intricate terrain, and a substantial altitude
variation of over 6000 m (Fig. 1). Rock glaciers and talus are
prevalent throughout this region [Fig. 1(e)]. Utilizing high-
resolution optical remote sensing images from GF-7 with a
1-m resolution [Fig. 1(d)], which combines panchromatic and
multispectral data, we have successfully identified rock glaciers
and talus [Fig. 1(e)].

B. GF-7 Data

GF-7 is China’s inaugural civil optical stereo mapping satel-
lite, boasting a submeter resolution, and it was launched in
November 2019. It can efficiently capture front-view and rear-
view panchromatic stereoscopic images using a dual-line-array
camera, as well as multispectral images with a laser altimeter
system, offering resolutions of 0.8 m, 0.65 m, and 2.6 m, respec-
tively. In our research, we procured five scenes of GF-7 stereo
and multispectral optical images that had minimal cloud cover.
Additionally, laser altimetry data were obtained to generate
high-resolution digital surface models (DSMs) [Fig. 1(b) and
(c)] and delineate the outlines of rock glaciers and talus in our
study area [Fig. 1(d) and (e)]. The GF-7 data can be accessed
via the Natural Resources Satellite Remote Sensing Cloud
Service Platform (http://sasclouds.com/english/home) and were
acquired from the Land Satellite Remote Sensing Application
Center (LASAC). Specific details regarding these GF-7 stereo
images can be found in Table I.

C. SAR Data

We gathered a total of 10 scenes of C-band Radarsat-2 ul-
trafine mode single-look complex (SLC) images, covering the
period from July 2021 to March 2022, with a revisit frequency
of 24 days. Each image was obtained in VV polarization and
a descending orbit. The SLC pixel spacing measured 1.33 m
in the range direction and 2.01 m in the azimuth direction.
Furthermore, we collected a total of 20 descending Sentinel-1A
scenes in Interferometric Wide (IW) mode data (Orbit: Path
150 Frame 500) during the same time range, with the same
polarization and orbit direction as the Radarsat-2 images. The
Sentinel-1A data were downloaded from the Alaska Satellite
Foundation Vertex website (https://vertex.daac.asf.alaska.edu/).

D. Auxiliary Data

We utilized a 12.5-m resolution upsampled digital elevation
model (DEM) adopted in the ALOS PALSAR radiometrically

http://sasclouds.com/english/home
https://vertex.daac.asf.alaska.edu/
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Fig. 1. (a) Study area location. (b) Topography obtained from GF-7 stereo images and coverage of the Radarsat-2 SAR data. (c) Close-up view of the topography
in a region with typical rock glaciers. (d) General view of GF-7 optical images. (e) Distribution of rock glaciers and talus in the study area.

TABLE I
INFORMATION ON THE GF-7 AND RADARSAT-2 IMAGES

terrain corrected (RTC), which was generated from a variety of
DEM datasets, including the Shuttle Radar Topography Mission
(SRTM) and NED. This DEM was employed to assess the accu-
racy of the DSM derived from GF-7 panchromatic stereoscopic
images. The data were obtained from the Alaska Satellite Facil-
ity (ASF) Distributed Active Archive Center (DAAC) and can be
found at https://asf.alaska.edu/data-sets/derived-data-sets/alos-
palsar-rtc/alos-palsar-radiometric-terrain-correction/.

III. METHODS

This article presents a multibaseline PS and DS network-
based MT-InSAR method for detecting rock glaciers and
periglacial talus using multitemporal Radarsat-2 and Sentinel-
1A SAR images. We conducted a detailed analysis of the activity
characteristics of rock glaciers and periglacial talus at a fine
scale. The overall processing chain is illustrated in Fig. 2.

https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
https://asf.alaska.edu/data-sets/derived-data-sets/alos-palsar-rtc/alos-palsar-radiometric-terrain-correction/
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Fig. 2. Flowchart of the proposed method.

A. Extraction of DSMs Using GF-7 Stereo Images

The process of extracting a DSM from optical stereo imagery
involves a series of intricate steps. Fortunately, extensive re-
search has been conducted in this field [40], [41], [42], [43]. To
enhance the accuracy of optical remote sensing stereo mapping,
we harnessed elevation control points derived from satellite laser
altimetry (SLA) data [44], [45]. In this study, we leveraged GF-7
satellite SLA data and high-resolution stereo imagery to extract
the DSM. The primary steps in extracting the high-precision
DSM from stereo imagery are as follows. Initially, elevation
control points are extracted from the SLA data obtained via the
GF-7 satellite [46], [47]. Given that the study area is situated in
a mountainous region, we relaxed the constraints for extracting
elevation control points to increase their quantity. Subsequently,
tie points are extracted from the high-resolution stereo imagery
of the GF-7 satellite, and the laser elevation control points are
matched with the stereo imagery [45]. Following this, a bundle
adjustment is executed on the stereo imagery with the aid of
laser elevation control points, elevating the overall accuracy of
the study area [45]. Finally, a dense matching algorithm known
as semiglobal matching is employed to extract the DSM of the
study area [48]. With a maximum spatial resolution of 2 m, DSM
products can be generated through dense matching of front and
back images [49]. According to the application requirements of
this study, the produced DSM products have a resolution of 4 m.

B. Identifying Rock Glacier and Talus Using GF-7 Optical
Images

The identification and delineation of rock glaciers followed
the established guidelines of the IPA action group on “Rock
glacier inventories and kinematics” [24], [30]. This was carried
out using cloud-free GF-7 multispectral and pan-color merged

images. Leveraging the high resolution of GF-7 imagery (1 m),
we identified 245 rock glaciers covering an approximate area of
400 km2, with the smallest identified unit being 0.009 km2.

Talus, a landform marked by the accumulation of loose,
angular rock fragments, typically develops at the base of cliffs
[2]. These talus slopes are prevalent in high mountain periglacial
environments, such as the Rocky Mountains, Alps, Andes,
Southern Alps, Sierra Nevada, and Hindu Kush Range [50]. The
formation of talus primarily occurs over prolonged periods due
to discrete rockfall events but is frequently altered by slope-
face rockslide processes influenced by various individual or
combined factors. In permafrost environments, these processes
encompass avalanches, debris flows, frost action, permafrost
creep, and the displacement of avalanche deposits [2]. Due to the
diversity of debris slope forms, there are currently no standard
guidelines for interpreting talus landforms. To address this, we
referred to prior morphological studies on talus landforms [2],
[51], [52], [53], [54]. This allowed us to identify a total of
351 periglacial talus by delineating their boundaries using GF-7
imagery [Fig. 1(e)].

C. Detecting Periglacial Landforms Deformation

The Radarsat-2 and Sentinel-1A SAR data underwent ini-
tial processing, which included coregistration and differential
interferometry. Each interferogram was then multilooked, with
factors of 8 and 2 for Sentinel-1A and 2 and 2 for Radarsat-2
in the range and azimuth directions, respectively. To ensure the
accuracy of our analysis, we selected a small baseline network
based on the average interferometric coherence of pixels within
the area covering rock glaciers and talus [26], [28]. Interfero-
grams with a mean coherence exceeding 0.6 were chosen for
subsequent processing [26], [28].
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To ensure an adequate number of monitoring points across
the surfaces of rock glaciers and talus, initially, we selected the
scatterers with a mean coherence exceeding 0.7 from all the
chosen interferograms with small baselines, designating them as
PS. To further enhance the density of measurement points, we
then identified DS using a combination of statistically homoge-
neous pixels (SHPs) and the Anderson–Darling (AD) test. These
DS points were subsequently adaptively filtered by leveraging
SHP information and coherence weighting. The phase filter with
SHP-based coherence weight was utilized to mitigate errors
arising from low-coherence SHPs in the interferometric phase.
The coherence-weight filtered interferometric phase (ϕDS) is
defined as follows:

ϕDS =

∑N
i=1 cohi · ϕi

N
(1)

where ϕi represents the interferometric phase of SHPs, N is the
count of SHPs, and cohi is the mean coherence between the
central pixel and the SHP in the time-series SAR images.

Subsequently, we constructed a Delaunay triangulation net-
work (DTN) using the selected PS and DS points. This network
facilitated the inversion of line of sight (LOS) deformation for
rock glaciers and talus. The DTN plays a crucial role in removing
the atmospheric phase screen (APS) through phase differencing
of two adjacent pixels, assuming that the APS of adjacent pixels
is similar. This step helps in mitigating atmospheric effects from
the wrapped interferometric phase.

In the DTN network, the deformation gradients of intercon-
nected arcs were resolved through the differential wrapped phase
of connecting nodes. This was achieved using optimization
techniques such as the Nelder-Mead, modified residue-signal
ratio (RSR), and M-estimator algorithms [26]. To begin, long
arcs with a spatial distance exceeding 400 m were excluded to
eliminate arcs with significant differences in APS. The relative
deformation rate between nodes within the arcs of the DTN
was then determined by maximizing the absolute value of the
temporal coherence (γ), as described as follows [55]:

γ =
1

N

N∑
k = 1

xk · exp
[
j
(
Δϕk

phase −Δϕk
model

)]
/

N∑
k = 1

xk

(2)
in which N is the number of interferograms, xk is the sum of
the coherence connection nodes of the interferogramk,Δϕk

phase

and Δϕk
model are the kth-measured and kth-modeled interfero-

metric phase differences between the connection nodes.
The initial estimation of the relative deformation rate in the

model interferometric phase was carried out using the local
search Nelder–Mead algorithm, as described in previous works
by Zhang et al. [26]. To enhance the robustness of the estima-
tion, we introduced a modified Residue-Signal Ratio (RSR) to
assess the effectiveness of the estimation of relative deformation
parameters. RSR values exceeding a threshold of 0.3 indicated
either an ineffectively calibrated APS or an inaccurate estimation
of relative deformation parameters. In cases where RSR values
exceeded this threshold, we employed an M-estimator to calcu-
late the final deformation parameters [J in (5)]. This involved
assigning smaller weights to larger phase residuals, improving

the accuracy of the estimation.

J (l) =
(
DTW (l)D

)−1

DTW (l)Δϕ (3)

D =

⎡
⎢⎣
2πξ1 2πη1

...
...

2πξN 2πηN

⎤
⎥⎦ (4)

J = [h, v]T . (5)

In (3) –(5), Δϕ represents the temporal unwrapped phase,
which was obtained based on preliminary estimates derived from
(2) and the measured phase. Additionally, ξ is defined as ξ = 2
b_�/λR, and η as η = 2 Δt/λ, with Δt representing the period
of the interferogram, b, λ, and R are the perpendicular baseline,
wavelength, and slant range, respectively. l being the iteration
index, parameter b, andW being an iteratively calculated weight
matrix based on the phase residuals [26], [56].

Once the relative parameters for each arc were resolved,
the absolute deformation parameters for each monitoring point
were integrated using network adjustment. The integration was
performed for the largest connected network using a ridge-
estimator-based weighted least square approach.

S =
(
GTWG+ σI

)−1
GTWH. (6)

In the equation, S contains the absolute deformation param-
eters of the identified monitoring points. G is the adjustment
matrix, composed of elements −1, 0, and 1. W represents the
weight matrix, which takes into account the temporal coherence.
H contains the estimated relative deformation parameters for
the arcs, I is the identity matrix. To address issues related to
global errors and ill-conditioned problems, a ridge estimator
was introduced. In this study, the optimal parameter σ was
determined through an iterative optimal estimation of the corner
in dispersed L-curve sampling points. This was accomplished
using the Menger curvature of a circumcircle and the golden
section search method [26].

IV. RESULTS

A. Accuracy Evaluation of DSMs Extracted Using GF-7
Stereo Images

The overall result of DSM generated by GF-7 stereo images
is shown in Fig. 1(b). The resolution of the DSM product
is 4 m. We collected a total of 1050 GLAS points to assess
the accuracy of the DSM product. The results indicate a high
correlation between the GF-7 DSM product and GLAS eleva-
tion, with a correlation coefficient (R) of 0.96 and a root mean
square error of 5.7 meters [Fig. 3(a)]. The elevation difference
distribution histogram between GF-7 DSM and GLAS follows
a Gaussian error distribution, with differences primarily con-
centrated within 10 m [Fig. 3(b)]. This concentration suggests
the high accuracy of the DSM product extracted from GF-7
stereo images. It is worth noting that this study primarily utilized
slope information generated from DSM products to analyze the
relationship between the activity of periglacial landforms and
terrain. Since the generation of DSM slope is mainly based on
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Fig. 3. (a) Density scatter between DSM generated by GF-7 and GLAS
elevation. (b) Histogram of differential frequency distribution between GF-7
DSM and GLAS.

relative elevation, the influence of DSM errors on slope results
is minimal. Therefore, the DSM products obtained in this study
can provide high-precision, high-resolution slope information
for periglacial landforms research.

B. LOS Deformation

The LOS deformation velocities of the total recognized
periglacial landforms in the study area were obtained from
Radarsat-2 and Sentinel-1A data with the proposed MT-InSAR
method [Fig. 4(a)]. For a visual representation of the spatial
deformation characteristics of these landforms, we employed a
high-resolution DSM derived from GF-7 stereo imagery. This
allowed us to create a high-resolution three-dimensional visu-
alization alongside the deformation results. For example, in the
case of rock glaciers, as shown in Fig. 5, Radarsat-2 provides
more detailed insights into their activity. The spatial deformation
within the rock glacier boundaries is better captured. While the
overall trends in rock glacier activity between Radarsat-2 and
Sentinel-1A are similar [see S3 region in Fig. 5(c) and (d)],
some differences exist between the two datasets. In specific

TABLE II
ROCK GLACIER ACTIVITIES CLASSIFICATION RESULTS

areas, such as S1 and S2 in Fig. 5(c), Radarsat-2 results exhibit
more comprehensive deformation details compared to Sentinel-
1 [Fig. 5(c) and (d)]. Radarsat-2 data effectively detected defor-
mation anomalies in some rock glaciers that were not evident
in the Sentinel-1 results [see S4 region in Fig. 5(c) and (d)].
Furthermore, a comparison between Radarsat-2 deformation
estimates and stereo-optical imagery reveals that rock glacier
deformation mainly occurs in steeper slope areas, illustrating
the topography impact on glacier movement [see S1-S4 regions
in Fig. 5(b) and (c)]. These details are challenging to capture
through two-dimensional optical imagery [Fig. 5(a)]. Thus, this
study demonstrates that integrating high-resolution DSM, opti-
cal imagery, and deformation monitoring significantly enhances
our understanding of periglacial landforms.

C. Rock Glacier Activities

The deformation rates obtained through the MT-InSAR
method were measured in the SAR LOS direction. However,
it is worth noting that most of the rock glaciers primarily move
in the downslope direction [31]. To account for this, we initially
projected the LOS velocities along the steepest slope direction
[26], [28]. We conducted a statistical analysis, considering the
50th, 75th, and 100th percentiles of the downslope-parallel de-
formation velocities from all monitored pixels within each rock
glacier’s outline. The distribution of slope-parallel deformation
for the rock glaciers across the study area is depicted in Fig. 6.
The median value of the maximum deformation for rock glaciers
in the study area reached 238.89 mm/y. By selecting the 75th
percentile as a representation of the rock glaciers’ activity, the
median value of deformation within the study area was found to
be 96.91 mm/y, indicating active rock glaciers in the study area.

To categorize the deformation velocity of the rock glaciers, we
used the 75th percentile of the downslope-parallel deformation
velocities from all monitored pixels within the rock glaciers’
outlines, as recommended by Brencher et al. [32] and Zhang
et al. [28]. We determined the activity type of each rock glacier
by applying the slope-parallel deformation thresholds recom-
mended by the IPA action group to the detected final deformation
velocity [57]. On a regional scale, 47.5% (116 rock glaciers)
were classified as active rock glaciers with slope deformation
exceeding 100 mm/y (Table II). Another 128 rock glaciers
were classified as transitional (Table II). We found that obvious
deformation was observed in some of these transitional rock
glaciers. When compared with the Sentinel-1A classification



10868 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 4. LOS deformation velocities estimated by (a) Radarsat-2 and (b) Sentinel-1A data.

Fig. 5. (a) Optical imagery displaying the features of typical rock glaciers. (b) Three-dimensional representation of the rock glacier terrain, generated from GF-7
optical imagery and DSM. (c) LOS deformation monitoring results of the rock glacier using Radarsat-2 data. (d) LOS deformation monitoring results of the rock
glacier using Sentinel-1A data.

results, Radarsat-2 identified a greater number of active rock
glaciers (Table II).

In terms of morphology, rock glaciers can be categorized as
tongue-shaped and lobate-shaped. Both morphologies include
front, lateral margins, and optional ridge-and-furrow surface
topography [30]. The geomorphological unit directly upslope
of a rock glacier unit or system can provide insights into the
characterization of the latter [30]. Regarding the spatial con-
nection of rock glaciers to the upslope unit, as discerned from
GF-7 optical images, two widely distributed types are glacier-
connected and talus-connected within the study areas. To gain a
deeper understanding of the deformation characteristics of rock

glaciers with different morphological structures, we selected
the deformation velocity data of typical rock glaciers obtained
from Radarsat-2 [Figs. 7(b), (e) and 8(b), (e)] and Sentinel-1A
[Figs. 7(c), (f) and 8(c), (f)] using the proposed MT-InSAR
method for analysis. The deformation monitoring results from
Radarsat-2 and Sentinel-1 exhibit similar spatial distribution
trends, confirming the effectiveness of the MT-InSAR method
employed in this study. We analyzed typical glacier-connected
tongue-shaped rock glaciers [Fig. 7(a)] and lobate-shaped rock
glaciers [Fig. 7(d)] and talus-connected tongue-shaped rock
glaciers [Fig. 8(a)] and lobate-shaped rock glaciers [Fig. 8(d)]
across the study area. As shown in Fig. 7(a), a glacier-connected
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Fig. 6. Boxplot illustrating slope-parallel deformation of rock glaciers across
the study area. The x-axis represents the statistical standards for each individual
rock glacier, including the 50th percentile, 75th percentile, and 100th percentile.

tongue-shaped rock glacier displayed a pronounced ridge-and-
furrow surface topography, corresponding to evident movement
[Fig. 7(b) and (c)]. The deformation velocity of the front mar-
gins was reduced due to decreased material transport capacity
and increased material accumulation compared to the ridge-
and-furrow topography region. Additionally, as depicted in
Fig. 7(a)–(c), the rock glacier is connected to a steep slope topog-
raphy. Deformation anomalies on this steep slope were clearly
visible in Radarsat-2 data but went undetected in Sentinel-1 data,
emphasizing the advantages of using high-resolution Radarsat-2
for deformation monitoring.

Similar to tongue-shaped rock glaciers, glacier-connected
lobate-shaped rock glaciers exhibited front, lateral margins,
optional ridge-and-furrow surface topography, and a large de-
velopmental area [Fig. 7(d)]. The deformation velocity and
topography within the rock glacier outline showed spatial het-
erogeneities, which were also observed in lobate-shaped rock
glaciers, with relatively lower deformation velocities in this
region [Fig. 7(e) and (f)].

Compared to glacier-connected rock glaciers, talus-connected
rock glaciers exhibited a lower viscosity in terms of morphology,
indicating a lower proportion of ice debris in talus-connected
rock glaciers [Fig. 8(a) and (d)]. While a high deformation
velocity was exhibited in talus-connected rock glaciers with
tongue-shaped [Fig. 8(b) and (c)] and lobate-shaped [Fig. 8(e)
and (f)] morphologies. Therefore, in certain scenarios, the ice
content within the debris may not be the primary factor in-
fluencing the activity of talus-connected rock glaciers. Factors
such as the geomorphic environment in which the ice glacier
develops, the ice content within the ice core layer, and external
climatic conditions could potentially be critical factors affecting
the movement of talus-connected rock glaciers.

The ridge-and-furrow surface topography was an optional fea-
ture for discriminating the rock glaciers. As shown in Fig. 8(a),
the surface of a talus-connected tongue-shaped rock glacier
appeared uniform without a ridge-and-furrow structure, yet it
exhibited clear activity. This suggests that relying solely on
morphology from optical images may not accurately determine
the activity of rock glaciers. MT-InSAR is a crucial technique
for investigating the activity dynamics of rock glaciers. Fig. 8(b)

depicts a typical talus-connected lobate-shaped rock glacier,
where the talus delivered debris to the rock glacier. The upslope
of the rock glacier has a steep slope and serves as a material
source, correspondingly, obvious deformation is occurring in
this region. As the slope gradually becomes gentler and debris
accumulates, the rock glacier progressively develops ridge-and-
furrow topography, likely attributed to insufficient gravity force
and a lower ice content within the ice core layer, resulting in
less pronounced deformation at the rock glacier’s front edge
and ridge-and-furrow topography region [Fig. 8(e) and (f)].

Through the analysis of the morphologies and deformation
velocities of different typical rock glacier types, it becomes
evident that rock glacier activity cannot be easily determined
based solely on morphology. Deformation velocities of different
surface structures within rock glacier morphological outlines
exhibit significant spatial heterogeneity. Typically, deformation
rates are lower at the front margins, and the activity of ridge-
and-furrow topography varies significantly among different rock
glaciers.

D. Talus Activities

Differing from rock glaciers with distinct and unique mor-
phological characteristics, talus displays notable diversity in
terms of profiles, size, and other attributes. The identification
of talus morphology was made possible through high-resolution
GF-7 optical imagery. Similar to the statistical analysis for rock
glaciers in Fig. 6, we conducted a statistical analysis of the 50th,
75th, and 100th percentiles of the downslope-parallel deforma-
tion velocities for all monitored pixels within the individual talus
outlines.

For all the talus in the study area, the median deformation
rate was 37.85 mm/y in the 50th percentile, 44.69 mm/y in the
75th percentile, and 51.24 mm/y in the 100th percentile (Fig. 9).
When compared to the rock glacier landforms (Fig. 6), talus
generally exhibited lower deformation velocities (Fig. 9). Some
small-scale talus are typically in a stable state, while larger talus
exhibit significant spatial heterogeneity, with deformation zones
typically concentrated in a smaller portion (Fig. 10). The lower
activity of talus compared to rock glaciers can be attributed
to two factors. First, talus typically contains less internal ice,
experiencing less influence from freeze-thaw processes and tem-
perature variations. Their primary driving forces are gravity and
the thickness of surface debris. Second, unlike the continuous
movement of rock glaciers, the sliding of talus can occur rapidly
and come to an end swiftly, which may not be captured by InSAR
techniques.

Although high-resolution optical imagery has provided an
effective foundation for identifying talus, in some cases, or-
thoimagery can obscure slope information. Due to the less
distinct morphological characteristics of talus compared to rock
glaciers, this can lead to issues of misidentification of talus.

As shown in Fig. 11, some talus [e.g., the talus within the white
rectangle in Fig. 11(a)] were hard to recognize but were dis-
covered after being displayed in three dimensions [Fig. 11(b)].
Furthermore, the deformation in these areas was also significant
in the deformation monitoring results [Fig. 11(c)]. Therefore, in
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Fig. 7. Three-dimensional GF-7 optical imagery of typical glacier-connected tongue-shaped (location:28°1′30′′N, 90°41′0′′E) (a) and lobate-shaped
(location:28°0′18′′N, 90°35′39′′E) (d) rock glaciers. Additionally, (b) and (e) display the LOS deformation monitoring results of typical glacier-connected
tongue-shaped (a) and lobate-shaped (d) rock glaciers using Radarsat-2 data, while (c) and (f) showcase the LOS deformation monitoring results of typical
glacier-connected tongue-shaped (a) and lobate-shaped (d) rock glaciers using Sentinel-1A data.

Fig. 8. Three-dimensional GF-7 optical imagery of typical talus-connected tongue-shaped (location:28°0′24′′N, 90°39′30′′E) (a) and lobate-shaped
(location:27°55′53′′N, 90°37′0′′E) (d) rock glaciers. Additionally, (b) and (e) display the LOS deformation monitoring results of typical talus-connected
tongue-shaped (a) and lobate-shaped (d) rock glaciers using Radarsat-2 data, while (c) and (f) showcase the LOS deformation monitoring results of typical
talus-connected tongue-shaped (a) and lobate-shaped (d) rock glaciers using Sentinel-1A data.



ZHANG et al.: HIGH-RESOLUTION DETECTION OF PERIGLACIAL LANDFORMS DEFORMATION 10871

Fig. 9. Boxplot illustrating slope-parallel deformation of talus across the study
area. The x-axis represents the statistical standards for each individual talus,
including the 50th percentile, 75th percentile, and 100th percentile.

Fig. 10. (a) Three-dimensional GF-7 optical imagery of typical
talus(location:28°0′33′′N, 90°40′36′′E). (b) LOS deformation monitoring
results of typical talus acquired by Radarsat-2 data.

addition to high-resolution optical imagery recognition, the inte-
gration of high-resolution topographic data and high-resolution
MT-InSAR deformation monitoring information can effectively
enhance the identification of talus.

V. DISCUSSION

A. Accuracy of MT-InSAR Results

Previously, we used the multibaseline PS and DS combined
MT-InSAR method to monitor rock glacier activity in the cen-
tral Himalayas using Sentinel-1 data. We conducted a cross-
comparison between the proposed MT-InSAR method and the
SBAS method, preliminarily validating the effectiveness of our
approach [26]. In the process of surface deformation estima-
tion, atmospheric phase delay is a crucial factor affecting the
accuracy of deformation observation results. Network differ-
encing of monitoring points and improvements in the RSR
assessment criteria can effectively eliminate the influence of
topography-related atmospheric phase. In terms of the com-
putational efficiency of the proposed MT-InSAR method, the
deformation parameter solving process of the multibaseline
PS-DS combined network method is lower than that of the SBAS
method. However, the SBAS method requires phase unwrapping

Fig. 11. (a) Optical imagery characteristics of the typical talus. (b) Three-
dimensional representation of the study terrain, which is generated by GF-7
optical imagery and DSM. (c) LOS deformation monitoring results of the rock
glaciers and talus using Radarsat-2 data.

operations, which increases the overall time required to obtain
the final deformation results. The method applied in this study
involves a network integration process, utilizing a weighted
least squares-ridge estimation algorithm. The implementation
of ridge estimation relies on determining the optimal regular-
ization parameter, achieved through the use of the L-Curve to
determine the optimal regularization parameter dependent on
the truncated singular value decomposition (TSVD) method for
solving equations. The computation efficiency of deformation
solving is unavoidably reduced by the determination of the
eigenvalues and eigenvectors of the super-large matrix TSVD.
The introduced Menger curvature of a circumcircle and the
golden section search method in this paper can greatly improve
the computational efficiency of point operations based on the
network differencing method.

In this study, we applied the method to Radarsat-2 data
(Fig. 12), we can observe that the extracted results from
Radarsat-2 data are in good spatial consistency with those
obtained from Sentinel-1 data, with a correlation of 0.65
[Fig. 12(c)]. Notably, the high resolution of Radarsat-2 enables it
to differentiate active displacements occurring on smaller-scale
rock glacier landforms [Fig. 12(b)]. Furthermore, the monitoring
values of active rock glaciers using Radarsat-2 high-resolution
SAR data are generally higher than those of Sentinel-1 results
[Fig. 12(c)]. Sentinel-1A data tends to underestimate the true
activity of the rock glacier compared to Radarsat-2 data. This
underestimation can be attributed to the spatial averaging of
Sentinel-1 data, which may miss smaller rock glacier features
with strong displacement trends. Additionally, due to the rela-
tively low spatial resolution of Sentinel-1 data compared with
Radarsat-2, the spatial extent of the deformation signal may
not adequately capture fast deformation fringes. Some studies
have indicated differences in the observational levels between
Radarsat-2 and Sentinel-1 data, with Radarsat-2 being capable
of capturing subsidence down to −10 centimeters, whereas
Sentinel-1 captured subsidence down to −4.5 cm or −2.5 cm
using different multilooking modes [58]. Moreover, the different
incidence angles of Sentinel-1 and Radarsat-2 data contribute to
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Fig. 12. LOS deformation velocities estimated by (a) Sentinel-1A and (b) Radarsat-2 data. (c) Density scatter plot comparing Radarsat-2 and Sentinel-1A data
results.

variations in the observed LOS deformation values [59], [60].
It is important to note that the limited capability of InSAR to
detect movement perpendicular to the LOS direction presented
challenges in accurately determining the deformation status of
certain rock glaciers and talus formations facing north or south.

Periglacial landforms, especially surface geometry changes in
rock glaciers, have been quantified at fine scales using methods
such as UVA surveys, and terrestrial and airborne laser scanning
[61]. These approaches provide effective means for investigating
periglacial landform movement, but their use is limited by high
costs and challenging environmental conditions. As a result,
the focus of high-resolution deformation detection has been
primarily on single-rock glaciers. In this study, we quantitatively
captured the deformation characteristics of typical rock glaciers
and talus at a regional scale with high resolution [Figs. 11(b)
and 12(b)]. It is clear that Radarsat-2 high-resolution data out-
performs Sentinel-1 IW mode data in capturing finer details of
terrain deformation. Despite Radarsat-2’s 24-day revisit cycle,
the ultrafine mode data maintains strong coherence retention
capabilities in rock glacier and talus terrain, demonstrating the
suitability of high-resolution Radarsat-2 SAR data for quantify-
ing the spatial and temporal dynamics of periglacial landforms
in complex topographical environments.

In recent years, space agencies worldwide have shown in-
creasing interest in the development of high-resolution SAR
systems operating at the L-band due to its superior penetration
capabilities compared to the X and C-bands. This is evident
from the successful L-band systems already in operation, such
as SAOCOM-1A/B [62] and Lu Tan-1A/B [63]. For example,
Lu Tan-1 (LT-1) is the first L-band SAR satellite constellation
with a repeat orbit of 8 days for a single satellite and 4 days for
two satellites, and it offers a resolution of 3 m in stripmap1
mode. It is foreseeable that with the continued development
of high-resolution SAR satellites, the monitoring of periglacial

landform deformation based on high-resolution SAR data and
InSAR technology will have broad applications at regional
scales with high resolution.

B. Deformation Characteristics of Rock Glaciers

Gravity-driven creep of debris and interstitial ice are key
indicators of an active rock glacier [64]. Previous studies have
suggested that environmental factors play a crucial role in
controlling the variability of rock glacier flow on interannual
and annual time scales [28]. The correlations between pre-
cipitation, freeze-thaw events, altitude, permafrost occurrence
probability, and activity were found in our previous study [28].
To comprehensively analyze the impact of gravitational forces
on the movement of rock glaciers, we extracted deformation
and topographic profiles from representative rock glaciers to
quantitatively assess the relationship between deformation and
topography (Fig. 13).

From the profiles of these representative rock glaciers [P1-P2,
P3-P4, P5-P6 in Fig. 13(a)], it can be observed that in areas
with gentler slopes (<20°), the corresponding deformation is
lower [Fig. 13(c) and (d)]. Conversely, in regions with steeper
slopes or significant slope variations [Fig. 13(b)–(d)], defor-
mation noticeably increased or exhibited obvious oscillations.
However, it is evident that in areas with extremely steep slopes,
deformation values do not increase with slope steepness. Instead,
they exhibit decreased activity [Fig. 13(d)]. This is likely because
steep slopes can trigger rapid movement in rock glaciers but
are not conducive to the long-term retention of debris material.
This leads to predominantly stable conditions over most of
the time, with movement beginning after debris material has
sufficiently accumulated. As shown in Fig. 13(b), in certain
areas with relatively minor slope variations, there are observed
differences in deformation intensity and a continuous changing
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Fig. 13. (a) Optical imagery characteristics of the typical rock glaciers. (b), (c), and (d) are the LOS deformation and slope profile of P1-P2, P3-P4, and P5-P6
in (a), respectively.

trend within the rock glacier. This indicates that, apart from
slope, the deformation of rock glaciers is also influenced by
other factors, such as variations in ice content within the ice
core layer of the rock glacier.

C. Deformation Characteristics of Talus

During the evolution of periglacial landforms, the ice content
beneath the surface gravel gradually decreases from massive ice
deposits to soil matrix ice lenses, and the talus is an integral part
of the periglacial landform evolution, transitioning from debris
glacier to rock glaciers and talus [4]. The difference in ice content
between talus and rock glaciers can be visually distinguished
from optical images (Figs. 7 and 10). Therefore, unlike the
movement of rock glaciers, which is primarily influenced by
internal ice content, and topography, the movement of rock
slopes is mainly influenced by the slope of the terrain and the
surface gravel coverage of the landform itself [65]. Clearly, the
downslope paths of rockfall debris of talus are strongly influ-
enced by overall talus relief and detailed surface roughness and
hardness [2]. As shown in Fig. 14, there are significant spatial
differences in the content of surface debris cover within the talus
contour, with some areas exposed to bedrock. Correspondingly,
the obvious deformation is mainly concentrated in areas with
more surface debris cover [Fig. 14(b)]. In addition, the activity
of talus in areas with debris cover shows a significant response
relationship with slope gradient, indicating the influence of
topography on the movement of talus [Fig. 14(b)].

Fig. 14. (a) Optical imagery of the typical talus. (b) LOS deformation and
slope profile of P1-P2 in (a).

VI. CONCLUSION

In this study, we employed the MT-InSAR method to mon-
itor the deformation of periglacial landforms in the Eastern
Himalayas. High-resolution GF-7 optical images and Radarsat-2
SAR data allowed us to identify 245 rock glaciers and 351 talus
deformations. Our analysis focused on the fine-scale deforma-
tion characteristics of these rock glaciers and talus, leading to
the following main conclusions:

The Radarsat-2 findings offer a nuanced and thorough per-
spective on spatial deformation within periglacial landforms,
surpassing Sentinel-1 data. Specifically, analysis of Radarsat-2
data showed that 47.5% (116) of identified rock glaciers were
classified as active. Conversely, talus deformations in the Eastern



10874 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Himalayas exhibited lower levels of activity compared to rock
glaciers.

The morphology of glacier-connected tongue-shaped and
lobate-shaped rock glaciers is defined by prominent ridge-and-
furrow surface features, reflecting their unique movement pat-
terns. The front margins of these rock glaciers demonstrate
decreased deformation velocity attributed to reduced material
transport and increased accumulation. However, spatial het-
erogeneity is notably evident, especially in lobate-shaped rock
glaciers.

Environmental factors such as precipitation, freeze-thaw pro-
cesses, and gravity-driven forces are pivotal in dictating rock
glacier movement. While deformation in certain rock glaciers
correlates strongly with slope topography, the intricate process
of rock glacier development demands a holistic approach consid-
ering diverse factors, such as topographic terrain, climatic con-
ditions, surface composition, internal structure, and ice content.
Conversely, talus landforms display notable spatial variability
in deformation, with pronounced deformation mainly clustered
in regions with greater surface debris cover. Terrain slope and
gravel coverage on the surface of the landform are the primary
influencers of talus movement.

The application of multisource data can effectively enhance
the depth of research into periglacial landforms geomorphology
kinematics. In this study, high-resolution optical data were used
to accurately identify the contours of glacial landforms and
obtain high-resolution topographic information. Building upon
this, high-resolution SAR data were employed to capture the
spatial deformation characteristics of rock glaciers and talus
slopes, demonstrating the value of high-resolution SAR data in
periglacial research. It can be anticipated that with the utilization
of long-term, high-frequency, high-resolution SAR data, we
will be able to not only acquire the spatial characteristics of
periglacial landforms but also capture their temporal dynamics
and their responses to environmental changes. This will further
enhance our understanding of the spatiotemporal kinematics of
periglacial landforms.
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