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MVAFG: Multiview Fusion and Advanced Feature
Guidance Change Detection Network for Remote

Sensing Images
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Abstract—In recent years, change detection (CD) methods have
faced challenges in being applied to various types of remote sensing
datasets and related research fields, particularly in the domain of
CD in remote sensing images. While convolutional neural networks
(CNNs) have significantly advanced CD in remote sensing images,
they struggle with modeling long-distance dependencies between
image pairs, leading to poor recognition of semantically similar
objects with different features. Meanwhile, transformer technology
has gained widespread popularity for global applications, but it
lacks in extracting local features effectively. Current approaches
typically rely on single or dual-branch network structures for
mining change-related features in remote sensing images, yet they
still lack in extracting both local and global features comprehen-
sively. To address these issues, this article proposes a triple-branch
network combining transformer and CNN, comprising CNN, trans-
former, and channel feature-guided branch. These branches ex-
tract and fuse three types of change features from both global
and local perspectives. Importantly, the channel feature-guided
branch is introduced to capture continuous and detailed change
relationship features, thus enhancing the model’s change discrimi-
nation ability. Experimental results on three datasets (LEVIR-CD,
WHU-CD, and GZ-CD) demonstrate the superior performance of
the model over state-of-the-art methods.

Index Terms—Change detection (CD), change relation features,
channel feature-guided (CGF), convolutional neural networks
(CNNs), remote sensing, transformer.

I. INTRODUCTION

CHANGE detection (CD) in dual-temporal remote sens-
ing imagery is a crucial component of terrestrial change

monitoring and is extensively applied in fields such as urban
planning [1], forest cover mapping [2], and disaster damage
assessment [3], [4]. Although the definition of CD varies by
application, its core objective is to mark binary changes on the
surface from registered images taken at two different times [5],
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[6], [7], [8]. With the rapid development of optical sensor
technology, automated CD techniques have gained increasing
attention. Automation can significantly reduce labor costs and
time consumption. While high-resolution optical images offer
new opportunities for remote sensing applications, conduct-
ing CD on a fine scale remains challenging. There are three
main issues: first, imaging conditions differences due to varying
shooting times—such as lighting, seasonal changes, and appear-
ance variations—can cause the same semantic objects to appear
different in color and shape across different image pairs, thereby
complicating CD. Second, the scale of the target area varies
widely, necessitating deeper consideration of smooth contours
to reduce false positives and false negatives. Third, irrelevant
changes interfere with the accurate representation of true change
features, causing areas with the same semantic concepts to
differ in spatial and temporal characteristics, which increases
the complexity of CD.

To enhance the accuracy of change detection, numerous ex-
cellent CD algorithms have been proposed over the past few
decades [9], [10], [11]. In the early stages, due to limitations in
computer hardware, such as GPUs, CD tasks relied on traditional
methods, including random forests [12], decision trees [13], and
support vector machines [14]. These conventional approaches
focused on detecting and classifying changed pixels in bitem-
poral images to produce the final change map. While these
methods have achieved notable success in some CD tasks, they
often lack advantages in terms of change target recognition
and accuracy due to the limitations of algorithmic thresholds
and the influence of complex targets and environmental noise
present in the images. However, it is important to acknowledge
that traditional methods in the CD field have made significant
contributions to the subsequent advancements in deep learning
technologies [14].

With the advancements in computer hardware performance
and artificial intelligence technologies, deep learning has been
extensively applied in the CD field, yielding numerous out-
standing algorithms [15], [16], [17], [18], [19]. Deep learn-
ing, by learning from sample spaces, is capable of identifying
change targets. Among various deep learning approaches, those
based on convolutional neural networks (CNNs) have gained
widespread popularity. CNN-based algorithms excel over tradi-
tional methods in handling environmental factors such as light-
ing and shadows. Early deep learning strategies were primarily
derived from semantic segmentation and image segmentation
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algorithms, such as VGG [20], FCN [21], and U-Net [22].
For instance, the FC-EF [23], based on the U-Net architec-
ture concatenates bitemporal images and feeds them into an
encoder to extract semantic information at different depths.
Through the decoder and skip connections, the changed targets
are reconstructed. While this method achieves low resource
occupancy, the fused bitemporal image feature extraction pre-
viously disrupted the structural information within a single
image, leading to suboptimal performance in edge handling
by FC-EF [23]. Subsequently, two “late fusion” approaches
based on U-Net [23], FC-Siam-conc and FC-Siam-diff, were
proposed. Both methods replicate U-Net-s encoder into two
identical ones with shared parameters, processing the bitem-
poral images separately for feature extraction. Their differ-
ence lies in the decoding phase: FC-Siam-conc concatenates
the skip connections from both encoders, while FC-Siam-diff
connects their absolute differences. Zhang et al. [5] followed
the same architecture as FC-Siam-conc and employed a dif-
ferential discrimination operation in the decoder to achieve
uniform detection maps. These methods focus on exploring
various connection and fusion strategies to fully exploit the
spatial neighborhood context, achieving certain successes. How-
ever, they treat changed and unchanged information equally in
context without discrimination, which limits the performance
of CD [24]. A novel context aggregation network (CANet) [25]
introduced a comprehensive approach to aggregate intraimage
and interimage context to enhance the representativeness of
specific category objects, thus enhancing the model’s ability
to detect changes of various scales. Overall, CNN-based CD
methods can achieve satisfactory detection performance, espe-
cially on prominently changed or unchanged objects. However,
when bitemporal images contain ambiguous areas—where pseu-
dochanges occur or real changes are obscured or damaged—
most existing CNN-based CD models encounter difficulties [26].
To effectively address ambiguous areas, Hang et al. [26]
proposed a remote sensing image change detection network
(AANet) focused on exploring ambiguous areas, effectively
resolving pseudochanges caused by seasonal variations, lighting
changes, and scenarios where real changes are obscured or
damaged.

The self-attention mechanism introduced in the trans-
former [27] model has been proven effective in capturing long-
range dependencies between feature information, leading to its
widespread use in the remote sensing field due to its capability
to acquire global feature information [28], [29], [30]. Although
the transformer [27] model can capture global concepts, its
outputs exhibit a uniformly consistent global representation
across different stages, resulting in redundancy between shallow
and deep layers. To address the challenge of encoding both
local features and global concepts simultaneously, an intuitive
approach is to integrate CNNs and the transformer into a single
network. For example, the BIT [28] model utilizes the trans-
former encoder to establish global feature relations for fused
high-dimensional information, thereby enhancing the intensity
of semantic information. However, BIT’s use of ResNet18 for
different scale feature information has limitations [28], and it
lacks finesse in the differential marking process during image

restoration and decoding phases. The subsequently developed
Changeformer [29] employs a multihead self-attention module
as the backbone network for feature information extraction, but
it also significantly increases resource utilization. ICIF-Net [30]
adopts a parallel approach, using both CNN and transformer [27]
backbone networks simultaneously to extract feature infor-
mation, and creates a dual-branch, multistage cross-temporal
network to fuse the features obtained from the two different
backbone networks.

Although these deep networks have achieved good results in
CD, they also have some shortcomings. Single-branch struc-
tures that concatenate two input images and then feed them
into the network often lack detailed and locational information
about individual images [21]. Two-branch structures typically
employ conjoined encoders to extract features from each image
separately and fuse these features at the decoder stage. The
architectural contradiction between the dual-branch encoders
and a single decoder leads to vanishing gradient propagation and
affects the learning of low-level features from the two original
images [22]. Moreover, these networks do not explicitly mine
the features of change relationships, leading to a blurred un-
derstanding of the changes between the two images. To address
the problem of undercharacterizing mining change relationships,
we propose a network structure with three branches, each ded-
icated to mining three types of change features: the features
of the prechange remote sensing image, the postchange remote
sensing image, and the change relationship features between the
prechange and postchange images. Starting from the perspec-
tive of extracting both global and local information from the
images, we combine transformers and CNNs to further extract
and fuse these three types of features. In the upsampling stage
of the decoder, we address the deficiencies in detail features
extracted by CNNs and transformers by introducing a channel
feature guidance module, which enhances the model’s precise
detection performance. The triple-branch structure extracts local
multiscale and global multiscale features in parallel, achieving
the final binary map of change through feature guidance and
fusion.

In summary, the contributions of this work can be summarized
as follows.

1) We first introduce a triple-branch network MVAFG,
which, through its triple-branch structure, can more deeply
mine the features of images before and after change, as
well as the change relationship features between them.
This capability facilitates better performance in CD. The
triple-branch network extracts, interacts, and fuses fea-
tures from bitemporal images by combining transformers
and CNNs.

2) We propose a channel feature-guided (CGF) branch to
construct the third branch of the network, which is a
feature module based on an encoder–decoder architecture.
Through the channel feature-guided encoder (CGFE), this
branch deeply mines feature information. After operations
such as channel swapping, and spatial and channel feature
fusion, the channel feature-guided decoder (CGFD) gener-
ates target outputs more accurately. This approach enables
the learning of continuous and detailed features of changes
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in remote sensing images, further enriching the model’s
information on change relationships.

3) We propose an adaptive feature refinement module
(AFRM) with reweighting capabilities to further enrich
and enhance the features of bitemporal images extracted
by the transformer across different dimensions, signifi-
cantly improving feature extraction. Additionally, we in-
troduce a global context integration module (GCIM) to
substantially enhance the CNNs feature extraction capa-
bilities. We also employ a deep convolutional attention
(DCA) module to interact with the bitemporal features
extracted by the dual branches of CNN and transformer,
capturing feature information under different branches and
better integrating bitemporal feature information.

4) We conducted a series of experiments to validate the
effectiveness and superiority of the proposed methods.
The experimental results demonstrate that the MVAFG
network achieved better or more competitive detection
performance compared to nine of the most advanced mod-
els on three benchmark datasets.

The rest of this article is organized as follows. Section II dis-
cusses related work associated with the CD framework. Section
III provides a detailed description of the methods we propose. To
validate the effectiveness of the approach, we conducted several
ablation experiments and comparisons with proposed methods
in Section IV. Finally, Section V concludes this article.

II. RELATED WORK

With the continuous development of deep learning technolo-
gies, many new methods based on CNNs, attention mechanisms,
and transformers have emerged in the field of CD tasks [31].
Currently, significant efforts have been made by these methods
to explore how to better execute CD tasks, resulting in numerous
innovative approaches based on various technologies [32]. Given
the tremendous success of deep learning-based methods in the
CD domain, we will next briefly review the three most relevant
branches, which form the research foundation of the work.
These clearly categorized approaches will help to deepen the
understanding of different aspects of bitemporal remote sensing
image CD models, thereby further advancing the field of remote
sensing CD.

A. CNN-Based Module

Remote sensing CD involves using remote sensing imagery to
compare differences and similarities at two different time points,
identifying changes on the Earth’s surface. In recent years,
methods based on CNNs have become one of the mainstream
approaches in the field of remote sensing CD [5], [33], [34],
[35], [36], [37]. First, CNNs, as powerful feature extractors, are
capable of learning high-level semantic features from remote
sensing images. Many existing studies focus on using CNNs
to extract feature representations from remote sensing images.
For example, some studies utilize pretrained CNN models (such
as VGGNet, ResNet) as feature extractors, acquiring high-level
semantic features of images through transfer learning. These
features are able to capture target shapes, textures, and structures

in remote sensing images. Second, to address the scale varia-
tions and complexities in remote sensing images, many studies
have introduced multiscale feature fusion strategies [33], [34].
These strategies enable feature extraction at different scales and
fuse multiscale features to obtain more comprehensive and rich
feature representations. For instance, some research employs
pyramid-structured CNNs to extract features at various scales,
and these features are fused through convolutional or pooling
operations [38]. This approach retains both low-level detail fea-
tures and high-level semantic information, enhancing CD per-
formance. Additionally, to incorporate contextual information
and enhance the capability of feature representation, some stud-
ies have also adopted attention mechanisms. Channel attention
mechanisms [34] can recalibrate the channel responses in feature
maps, emphasizing features relevant to CD. Spatial attention
mechanisms [36] can highlight important regions in specific
locations of the image. By integrating attention mechanisms,
CNNs can focus more on learning information relevant to CD
tasks, thereby improving CD performance.

Overall, remote sensing CD methods based on CNNs ef-
fectively enhance the performance of CD in remote sensing
images by leveraging high-level semantic features extracted by
CNNs, multiscale feature fusion, and the introduction of atten-
tion mechanisms. The development of these methods provides
a feasible and effective solution for remote sensing image CD.
However, it is important to note that while multiscale feature
maps with local features extracted by CNNs are crucial for
CD in bitemporal remote sensing image pairs, CNNs lack the
capability to model long-range dependencies and global context
interactions, which are essential for accurately reflecting change
relationship features. The three-branch network structure we
propose addresses the shortcomings of CNNs in capturing global
contextual information, allowing for a deeper exploration of
change relationship features and resolving the lack of long-range
dependence modeling in CNNs.

B. Transformer-Based Model

Since their inception, transformers have been widely applied
in the field of natural language processing to model long-
range dependencies with ease. With their superior modeling
capabilities, transformers have demonstrated considerable, and
sometimes superior, performance, subsequently causing a sig-
nificant stir in the field of computer vision. More recently,
transformer-based methods have also gained attention in the
field of remote sensing CD and have achieved some important
research outcomes [39], [40]. First, as a powerful method for
sequence modeling, transformers can handle spatiotemporal
sequence data in remote sensing images and capture long-term
dependencies and global context interactions within images.
Compared to traditional CNN-based methods, transformers are
better equipped to model nonlocal and long-range dependencies.
Second, some studies have transformed remote sensing images
into a series of spatiotemporal sequence data and fed them
into a transformer model. Through its self-attention mechanism,
the transformer can interact with different positions within the
image and learn the feature representations of each position.
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This mode of sequence modeling effectively captures the spatial
and temporal correlations in remote sensing images, thereby
enhancing the performance of remote sensing CD. Additionally,
to further enhance the CD capabilities of the transformer model,
some research works have also incorporated attention mech-
anisms. Attention mechanisms can highlight important areas
within the image and enhance the feature representation capa-
bilities of these areas. By combining attention mechanisms with
the transformer model, researchers are able to more specifically
learn features relevant to CD tasks.

In summary, transformer-based methods for remote sensing
CD leverage the modeling of spatiotemporal sequence data, the
incorporation of attention mechanisms, and the integration of
techniques such as CNNs to enhance the performance of CD
in remote sensing images. The development of these methods
provides a novel and effective solution for remote sensing image
CD. However, transformers lack the capability to extract local
feature information. The triple-branch network combines the
local feature extraction capabilities of CNNs with the global
feature extraction capabilities of transformers, enabling a more
effective extraction of both global and local feature information.

C. Model Combining Transformer With CNN

Recent studies have shown that combining transformers
with CNNs has made significant progress in remote sensing
CD [28], [30]. This approach effectively utilizes the spatial
feature extraction capabilities of CNNs and the global feature
modeling capacity of transformers to further enhance the perfor-
mance of remote sensing CD. First, employing CNNs as a feature
extraction branch captures low-level and local features within
the image. Typically, CNNs extract feature representations of the
image through multiple convolutional and pooling operations,
which are then passed to the transformer branch. Second, the
transformer, serving as another branch, learns the high-level
semantics and global features of the image. It models long-
term dependencies within the image through its self-attention
mechanism and captures interactions among features through
multiple layers of self-attention blocks. This enables the model
to understand the image holistically and better model the CD
task. In the process of combining CNNs with transformers, a
common approach is to use feature fusion. Feature fusion can be
achieved through concatenation, stacking, or averaging, merging
the low-level features extracted by CNNs with the high-level
features extracted by transformers, resulting in a richer, more
robust feature representation. Such fusion effectively leverages
the respective strengths of CNNs and transformers, enhancing
the performance of remote sensing CD. Additionally, some
studies have introduced attention mechanisms to enhance the
fused feature representation. By incorporating channel attention
or spatial attention mechanisms, the model can adaptively adjust
the feature weights of different channels or locations, further
enhancing the expression of key features. In summary, remote
sensing CD methods based on the combination of transformers
and CNNs capitalize on the spatial feature extraction advan-
tages of CNNs while utilizing the global feature modeling and
long-term dependency modeling capabilities of transformers.

This approach enhances the accuracy and robustness of remote
sensing CD, holding significant applicative value for complex
remote sensing image CD tasks.

Although the methods combining transformers with CNNs
have made significant progress in the field of remote sensing
CD, there remain issues such as insufficient capture of local
features and a lack of advanced semantic features that affect
the accuracy of CD. Although transformers can learn high-level
semantic features and global context information of images, in
some cases, relying solely on local information is insufficient to
capture the comprehensive features of changes in remote sensing
images. Transformer models may not fully utilize the low-level
features extracted by CNNs to gain more advanced semantic
information, leading to inadequate feature representation. The
proposed triple-branch network model addresses these issues
through a channel feature guidance branch that better compen-
sates for insufficient feature representation. By starting from
both global and local feature information, it delves deeper into
exploring change relationship features, effectively resolving the
issues of insufficient local feature capture and missing advanced
semantic features found in methods that combine transformers
with CNNs.

III. METHODOLOGY

A. Network Architecture

In this section, we will provide a detailed introduction to
the MVAFG model, as shown in Fig. 1. The CD framework
mainly consists of three important branches: CNN, transformer,
and the CGF branch. These three branches are processed in
parallel to effectively obtain both local and global features of
the input images. Specifically, in the CNN branch, we adopt the
widely used ResNet18 [41], while in the transformer branch, we
employ the state-of-the-art PVTv2-B1 [42] to obtain multiscale
feature maps. Additionally, to enhance the features extracted
by both CNN and transformer, we introduce an AFRM with
reweighting functionality to improve the transformer’s abil-
ity to extract features of different dimensions. We also in-
corporate a GCIM to enhance feature extraction in the CNN
branch significantly. Furthermore, by employing the DCA, we
deeply fuse the features extracted by CNN and transformer,
allowing for comprehensive complementarity of features from
the dual-temporal images. To provide a more intuitive under-
standing of the approach, we detail the reasoning process in
Algorithm 1.

To highlight the features extracted by both the CNN and
transformer branches, a personalized filtering module (Filter)
was added, as illustrated in Fig. 2(a). The features obtained
from low dimensions are applied to those obtained from high
dimensions to obtain f1, focusing on collecting features such
as edges and spatial structures. However, the learned features
may be sensitive to background noise. As a supplement, the
features obtained from high dimensions introduce rich semantic
information into low-dimensional features to obtain f2, aiding
in localization and noise suppression. Therefore, the output
combines multiple valuable features in the multiscale feature
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Fig. 1. Proposed MVAFG architecture consists of three branches composed of CNN, transformer, and the CFG branch. These three branches extract richer
multidimensional features for fusion to generate the final output image.

Fig. 2. Personalized filtering module (a) integrates high- and low-dimensional features to combine multiple valuable features in multiscale features. The location
adjustment module (b) combines local features with long-range dependent features to share information between local and global features.

f . The relevant formulas are represented as follows:

f1 = Apply1(L,H) (1)

f2 = Apply2(H,L) (2)

f = Combine(f1, f2) (3)

where L represents low-dimensional features, H represents
high-dimensional features, Apply1 denotes the operation of

applying low-dimensional features L to high-dimensional fea-
tures H , and Apply2 represents the operation of applying high-
dimensional featuresH to low-dimensional featuresL. Combine
is the operation of merging f1 and f2 to obtain the final output
feature f . Thus, the output feature f combines multiple valuable
features, including the boundary and spatial structure features
of low-dimensional features as well as the rich semantic infor-
mation of high-dimensional features, aiding in localization and
noise suppression.
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Algorithm 1: MVAFG: Multiview Fusion and Advanced
Feature Guidance Change Detection Network for Remote
Sensing Images.

Input: Image1 = xi, i ∈ [1, n];
Image2 = xi, i ∈ [1, n];
GT = Gi, i ∈ [1, n];
Output: Final change mask: Y ;
1: for i = 1, 2, 3 do
2: Fi = CNN(I1, I2)
3: Fi = transformer(I1, I2)
4: Fi = CGFE(I1, I2)
5: end for
6: return Filter(F1, F2); Adjustment(F3);

CGFE(F1, F2, F3);
7: Final1 = Conv(1×1)(Filter(F1), CGFD(F1))
8: Final2 = Conv(1×1)(Filter(F2), CGFD(F2))
9: Final3 =

Conv(1×1)(Adjustment(F3), CGFD(F3))
10: Output = Add(Final1 + Final2 + Final3)
11: return fusion result change mask: Y

For the part where features extracted from both CNN and
transformer are fused, we introduce a position adjustment mod-
ule based on attention mechanism (Adjustment), as shown in
Fig. 2(b). By integrating high-dimensional features and low-
dimensional features to model the overall spatial attention dis-
tribution associated with both local and global features, we aim
to obtain more accurate fusion features

f = Concat(Spaital(RELU(L,H)), L). (4)

Here, L represents low-dimensional features, H represents
high-dimensional features, Spaital stands for spatial attention
mechanism, and Concat denotes concatenation operation along
the feature dimension to obtain the final fusion operation f .

More importantly, to complement the feature extraction from
both the CNN and transformer branches, we propose a third
branch called the CGF branch to further enhance the feature
extraction capability of our network architecture. This module
transfers the features extracted by the channel feature guidance
encoder to the deeper layers of the encoder, enabling rough
identification of change regions in the encoder by leveraging
the semantic features of the dual-temporal information. This
provides guidance for the dynamic localization of CD features
in subsequent steps. The following illustrates the model training
process:

Y = Add(CNN(I1, I2) + transformer(I1, I2)

+ CGFE(I1, I2)) (5)

where CNN, transformer, and CGFE represent the three different
branches of the model graph, Y represents the training result
image of the model, and I1, I2 denote the input dual-temporal
images.

B. Channel Feature-Guided Branch

The CGF branch comprises the CGFE, channel exchange
(CE), spatial and channel fusion module (SCF), and the CGFD.
The CGFE includes multiple semiconvolutional, semipooling
modules. Through these modules, input features are split into
two halves along the channel dimension; one half is passed
through a convolution layer for enhancement, while the other
undergoes max pooling to preserve essential feature information.
The features from the two branches are then concatenated and
shuffled in an alternating pattern along the channel dimension
to produce the output features. The channel shuffling operation
ensures sufficient cross-channel interaction and the preservation
of critical features, which benefits gradient backpropagation and
feature reuse, thereby facilitating effective feature extraction.
Details of the channel feature guidance encoder implementation
are illustrated in Fig. 3. As the CGFD extracts bitemporal
image features, performing channel exchange (CE) on these
features enriches the bitemporal information. This means that
the bitemporal features are joined, ensuring that features, which
previously contained only single-time information, now include
rich spatial characteristics, which can be utilized to refine change
areas and precisely locate change objects at the same temporal
phase. Semiexchange of the extracted bitemporal features in
the CGFE involves alternatingly swapping half of the input
bitemporal features along the channel dimension through the
channel exchange (CE) module, thus accentuating the change
feature information of the b-temporal images. The (CE can be
formalized as follows:

T1, T2 = M ∗ t1 + (1−M) ∗ t2 (6)

where t1 and t2 represent the dual-temporal features, T1 and
T2 represent the exchanged dual-temporal features, and M
represents a 1-D exchange mask with a length equal to the
channel dimension of the dual-temporal features, alternating
between 0 and 1. Thus, each exchanged feature contains half
of the dual-temporal features, implying that each exchanged
feature encompasses the dual-temporal semantic features of the
dual-time remote sensing images.

The spatial and channel fusion module effectively merges the
dual-temporal semantic features of the dual-time remote sensing
images after channel swapping. The specific implementation
details of the spatial and channel fusion module are illustrated
in Fig. 4(a). This method utilizes channel and spatial attention
to identify important parts of the features. In the channel branch,
the input dual-temporal features are aggregated spatially through
global pooling across spatial dimensions. In the spatial branch,
the input dual-temporal features are aggregated across channel
dimensions through global pooling. The deep fusion of both
channel and spatial information results in the output aggregated
dual-time features containing rich global dual-temporal infor-
mation features. The spatial and channel fusion module can be
formalized as follows:

Sc = Concat

(
Channel dim (Avg(T1),Max(T1))
Channel dim (Avg(T2),Max(T2))

)
(7)
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Fig. 3. CGFE comprises four semiconvolutional pooling modules, enabling the extraction of rich dual-temporal information and facilitating precise localization
of changing targets.

Fig. 4. Spatial and channel fusion module (a) utilizes channel and spatial attention to achieve a more comprehensive fusion of temporal information between
diachronic features. The channel feature-guided decoder (b) to accurately localize all change objects and generate change maps as model results.

Ss = Concat

(
Spatial dim (Avg(T1),Max(T1))
Spatial dim (Avg(T2),Max(T2))

)
(8)

X1 = X3 = Conv(Sc, Ss) (9)

X2 = X1 +X3 (10)

where T1 and T2 represent the dual-temporal features, Sc rep-
resents the fused channel dual-temporal features, Ss represents
the fused spatial dual-temporal features, and X1, X2, X3, re-
spectively, denote different output features.

The CGF branch first accurately extracts layer-by-layer fea-
tures of the dual-temporal images through the CGFE. It utilizes
spatial and channel attention for deep fusion of the dual-temporal
features. After passing through the CGFD, it accurately locates
all changed objects, ultimately generating a change map as the
model’s result. The implementation details of the CGFD are
illustrated in Fig. 4(b). The training process of the entire module
branch can be represented as follows:

Y = CGFD(SCF(CGFE(X,T ))) (11)

where X represents the input feature map, and T represents the
temporal information. CGFE stands for the CGFE, which takes
input feature mapX and temporal informationT , and outputs the
processed feature map after encoding. SCF represents the spatial

and channel fusion module, which takes the channel-swapped
dual-temporal features and utilizes spatial and channel attention
to determine important feature parts, facilitating a more thorough
fusion of feature information between the dual temporalities.
CGFD represents the channel feature-guided decoder, which
accepts the input feature map after deep fusion processing and
generates the output change map. Y represents the final result
of CD in this branch.

C. Adaptive Feature Refinement Module

The AFRM is a module designed to address the issues of
insufficient contextual guidance, excessive noise, and difficulty
in information aggregation in the multilevel feature fusion pro-
cess of the feature pyramid network, as illustrated in Fig. 5.
It recalibrates features to provide improved multilevel feature
fusion capability.

In the AFRM module, let d1 represent the input features.
Initially, a 1 × 1 convolutional layer with an S-shaped activation
function is employed to generate the change map c1. This indi-
cates that within the AFRM module, convolutional operations
with activation functions are introduced to generate the change
map c1, representing the recalibration of features based on the
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Fig. 5. AFRM enhances the fusion capability of multilevel features by recal-
ibrating them.

input features d1. The formula is as follows:

c1 = σ(Conv(1×1)(d1)) (12)

where σ(·) denotes the sigmoid function, used to transform
the change mapping into the range [0, 1]. Subsequently, we
obtain the reverse change mapping cr1 =Rev(c1) through inverse
operations.Rev(c1) is computed by subtracting c1 from a matrix
E, where all elements are 1. The derived change map c1 and
the reversed change map cr1 depict contextual information about
changed objects and unchanged background. Here, we employ
a 1 × 1 convolutional layer to generate the pixelwise attention
mask a1 from c1 and cr1, which has the same shape as d1, as
shown as follows:

a1 = Conv(1×1)(Concat(c1, c
r
1)). (13)

Subsequently, we recalibrate d1 using a1 to obtain the feature
guided by the AFER module. This process can be described as
follows:

dr1 = Conv(3×3)(d1 ⊗ a1). (14)

Here, ⊗ denotes elementwise multiplication operation. In such
a formula, a1 can be regarded as a pixelwise gate used to guide
the learning process of d1, allowing only information relevant
to the changed objects to pass through. Finally, the supervised
attention-guided feature dr1 generated by AFRM is further fused
with higher-level features. This allows AFRM to reweight the
features extracted by the transformer across different dimen-
sions, thereby refining the accuracy of the features extracted
by the transformer and further enhancing the feature extraction
capability of the transformer branch.

D. Global Context Integration Module

Capturing long-range dependencies can harness useful con-
textual information that benefits visual understanding tasks.
Traditional CNN models may be restricted by local features
when addressing long-range dependencies, making it difficult
to fully capture global information. This limitation often re-
sults in suboptimal performance in tasks that require an under-
standing of global context. In this work, we propose a GCIM
that amalgamates contextual information to enhance the low-
level, mid-level, and high-level feature information extracted by
CNNs, thereby improving the model’s semantic understanding
capabilities. As illustrated in Fig. 6, “R” denotes the number
of iterations for the deep associative attention module, with

multiple deep associative attention modules sharing parameters
to augment the CNN’s ability to identify critical features in
CD more effectively and efficiently. Specifically, the GCIM
consists of two deep associative attention modules. The inner
structure of the deep associative attention is depicted within the
dashed lines in Fig. 6. Through two consecutive deep associative
attention processes, each pixel can aggregate feature information
from all pixels, thereby capturing the context information of its
surrounding pixels across intersecting paths. By engaging in
further iterative operations, each pixel can ultimately capture
the long-range dependencies of all pixels, further enhancing the
feature extraction capabilities of CNNs. The training process for
this module is elucidated by the equations below. The following
describes the training process of this module:

GCIM(X) = DAA(DAA(X)) +X (15)

where X represents the input features (comprising information
from low, mid, and high dimensions), GCIM represents the
global context integration module, andDAA represents the deep
associative attention module.

The GCIM module proposed in this work is an independent
module that can be seamlessly integrated into any CNN archi-
tecture at any point in the network to capture rich contextual
information. The module is computationally inexpensive and
adds only a few adjustable parameters, resulting in minimal GPU
memory usage.

E. Deep Convolutional Attention Module

To facilitate the deep fusion of bitemporal features extracted
by both CNN and transformer, capturing complementary in-
formation of the same scene from two different perspectives,
we propose a linearized deep convolutional attention module
(DCA) inspired by traditional cross-attention mechanisms for
interactive propagation. This approach encourages one branch to
retain the original features while glimpsing feature information
from the other branch. We achieve feature coupling by alter-
nately using the linearized expansions of Q from both CNN and
transformer branches. Specifically, for cross-branch interaction,
we apply the Q from one branch to connect with the K and V
from the other branch, facilitating feature interaction between
different branches and enabling deeper exploration of the feature
space. The implementation details are illustrated in Fig. 7. The
following equations demonstrate the specific implementation
process of this module:

DCA = Concat[softmax(K)× V ×Q,

Hadamard(Conv(V ), Q)] (16)

M1 = DCA(Qt,Kc, Vc) (17)

M2 = DCA(Qc,Kt, Vt) (18)

where M1 represents the output features of the CNN branch
after feature interaction, M2 represents the output features of
the transformer branch after feature interaction, Qt, Kt, Vt,
represent the key-value pairs of the image features extracted
by the transformer Qc, Kc, Vc, represent the key-value pairs of
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Fig. 6. Global context integration module consists of two deep associative attention modules designed to capture contextual information and enhance feature
extraction. The internal structure of the deep associative attention module is shown within the dashed line and is designed to capture the long-range dependencies
of all pixels.

Fig. 7. DCA module: Linearly expanding the feature maps of CNN and transformer into vectors to capture complementary information from the same image
under two different perspectives, facilitating a better deep fusion of bitemporal features.

the image features extracted by the CNN, and Hadamard denotes
the elementwise product. In Fig. 7, it is represented as �.

F. Loss Function

In remote sensing CD tasks, we need to train a model to
learn to classify remote sensing images to differentiate between
changed and unchanged regions. To ensure that the model accu-
rately classifies the images and sensitively learns changes, we
have selected the cross-entropy loss function as our optimization
objective, as shown in (19), where p(x, y) represents the ground
truth (GT) pixel values, and p̂(x, y) represents the predicted pixel
values. The cross-entropy loss function measures the difference
between the model’s predicted results and the GT labels to
drive the model to learn accurate classification boundaries. This
loss function can be expressed as the average of the negative
log-likelihood function. Specifically, for each sample in the
remote sensing CD task, we calculate the cross-entropy loss

using the model’s predicted probability distribution and the
true label information. During training, we optimize the model
parameters by minimizing the cross-entropy loss between f1,
f2, f3, and the GT individually. The total training loss function
is shown in (20)

LCE(p,p̂) =
−1

WH

W−1∑
x=0

H−1∑
y=0

p(x, y) log p̂(x, y)

+ (1− p(x, y)) log(1− p̂(x, y)) (19)

Ltotal = λ1L(g, φ(f1)) + λ2L(g, φ(f2))

+ λ3L(g, φ(f3)) (20)

where φ(·) consists of the Sigmoid function applied pixelwise
along the channel dimension and upsampling operation consis-
tent with the size of the input image, λ1, λ2, and λ3 are tradeoff
parameters used to adjust the influence of each loss. Following
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experimental comparison, here, we select the parameters to be
1, 0.5, and 0.5, respectively. During the inference stage, the
predicted mask is computed by performing pixelwise Argmax
operation along the channel dimension on the sum of φ(f1),
φ(f2), and φ(f3).

IV. EXPERIMENT

This section provides a detailed introduction to the experi-
mental part, including the equipment information used in the
experiments, the setting of experimental parameters, the config-
uration of the loss function, as well as the design of comparative
experiments and ablation studies. These experiments aim to
evaluate the detection performance and effectiveness of the
proposed network framework MVAFG.

A. Experiment Details

The network architecture MVAFG was implemented using the
PyTorch toolkit and the program was run in the PyTorch1.8 en-
vironment. Training and inference stages were conducted using
two NVIDIA TITAN RTX GPUs, each with 12 GB of memory.
For the backbone of the network, we initialized parameters using
pretrained ResNet18 [41] and PVT-b2 [42] models. Consistent
with other comparative experiments, we applied common data
augmentation operations to the input image blocks, including
flipping, resizing, cropping, and Gaussian blurring. Through
these operations, we increased the diversity of training data,
enhancing the robustness and generalization capability of the
network. For model optimization, we employed the AdamW [43]
optimizer with a momentum parameter set to 0.9 and weight
decay set to 0.001, while parameters β1 and β2 were set to 0.9
and 0.99, respectively. The initial learning rate was set to 0.0005,
and the batch size was set to 16. These configurations were
chosen to achieve better convergence speed and performance
during training, balancing model complexity and computational
resource consumption.

B. Datasets

LEVIR-CD dataset [44] is a large-scale dataset specifically
designed for CD tasks, consisting of very high-resolution (0.5
meters/pixel) Google Earth images. These images capture vari-
ous types of changes in buildings that have occurred over the past
5–14 years. The dataset primarily focuses on changes related
to buildings, such as building growth and decline. To annotate
the change regions in these images, experts used binary masks,
where “1” indicates change and “0” indicates no change. There
are a total of 31 333 independent change samples in the entire
dataset. For ease of model training and evaluation, we cropped
the images into patches of size 256 × 256 pixels. Subsequently,
the dataset was divided into training, validation, and testing sets
in a ratio of 7:1:2.

WHU-CD dataset [45] (The Wuhan University Change Detec-
tion) is focused on detecting changes in buildings. This dataset
comprises a pair of aerial images with spatial dimensions of
32507 × 15354 and a resolution of 0.2 meters/pixel. These
images document the changes in buildings in the Christchurch

area of New Zealand following a 6.3 magnitude earthquake
in 2011. Due to limited information in reference regarding
the sample partitioning scheme, we cropped these large-scale
image pairs and generated patches of size 256 × 256 pixels.
Subsequently, we randomly split the total patch pairs into 6096
for training, 762 for validation, and 762 for testing, according
to certain proportions.

The Guangzhou Dataset (GZ-CD) [36] is a dataset focused on
high-resolution satellite imagery CD with a spatial resolution of
0.55 meters per pixel. This dataset covers suburban areas of
Guangzhou, China, spanning from 2006 to 2019. The dataset
comprises 19 pairs of seasonally varying images, with dimen-
sions ranging from 1006 × 1168 pixels to 4936 × 5224 pixels.
For uniform processing, images were cropped into patches of
256× 256 pixels. The dataset is divided into training, validation,
and testing sets, with a total of 2504 training samples, 313
validation samples, and 313 testing samples. Compared to the
LEVIR-CD and WHU-CD datasets, the Guangzhou Dataset
(GZ-CD) is relatively small in scale. Nevertheless, it still pro-
vides an important resource for the research and evaluation of
building CD algorithms.

C. Comparison Method

In order to comprehensively compare the performance of this
network, we selected mainstream and state-of-the-art methods
for comparison. We conducted extensive experiments on three
dual-temporal remote sensing image CD datasets to evaluate
the effectiveness of the MVAFG model. We compared MVAFG
with the following nine state-of-the-art methods, which are FC-
EF [23], FC-Siam-Di [23], FC-Siam-Conc [23], SNUNet [29],
IFNet [5], BIT [28], ChangeFormer [29], FTN [46], and ICIF
-Net [30].

D. Evaluation Metrics

For the performance evaluation of the model, we employ five
metrics to measure the similarity between the predicted change
probability maps and the GT, including Precision (Pre.), Recall
(Rec), F1-score (F1), intersection over union (IoU), and overall
accuracy (OA). In binary classification tasks, OA is used to
compute the ratio of correctly classified samples to the total
number of samples. Its maximum value is 1, indicating better
performance as the model’s result approaches 1. The F1-score
combines Precision and Recall with equal weights. Its maximum
value is 1, effectively reflecting the model’s accuracy and its
ability to correctly identify positive samples. IoU represents the
overlap between the model’s predicted results and the GT, with a
maximum value of 1. Precision indicates the proportion of true
positive samples among samples predicted as positive, while
Recall indicates the proportion of correctly identified positive
samples among the actual positive samples. The maximum
values for Precision and Recall are both 1. Each metric is defined
as follows:

Precision =
TP

TP + FP
(21)
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TABLE I
MODULE ABLATION MODEL DEMONSTRATION

Recall =
TP

TP + FN
(22)

F1 =
2

Recall−1 + Precision−1
(23)

IOU =
TP

TP + FP + FN
(24)

OA =
TP + TN

TP + TN + FP + FN
(25)

where TP , TN , FP , and FN represent the numbers of true
positives, true negatives, false positives, and false negatives,
respectively. It is worth noting that F1 is a composite metric
that integrates Precision and Recall.

E. Ablation Experiment

To further verify the impact of various modules and different
branches on the performance of remote sensing CD, this sec-
tion conducted comprehensive ablation experiments to assess
the effects of different modules and branches, and presented
the experimental results across three datasets. All experimental
results were visualized using GT overlays, where red indicates
misidentified areas, and green represents areas that were not
detected.

1) Module Verification: The specific models used for the
ablation study are shown in Table I.

MVAFG-1 represents the network structure with the DCA
module disabled. To verify the importance of feature interaction
between CNN and transformer, we disabled the DCA module.
Experimental results demonstrate that the DCA module signifi-
cantly enhances feature interaction between different branches.

MVAFG-2 represents the network structure with the GCIM
module disabled. To validate the importance of the GCIM
module in enhancing CNN feature extraction, we disabled the
GCIM module. Experimental results demonstrate that the GCIM
module indeed enhances the ability of CNN feature extraction.

Similarly, in MVAFG-3, we disabled the AFRM module to
validate its capability in enhancing features of different dimen-
sions extracted by the transformer. Experimental results indicate
that the AFRM module indeed possesses the ability to improve
the features extracted by the transformer across different dimen-
sions.

LEVIR-CD dataset: On the LEVIR-CD dataset, we conducted
experiments on several dilution models, and some experimental
results are shown in Fig. 8. Although MVAFG-3 yielded similar
results to MVAFG in handling the second group of samples,

Fig. 8. Results of module ablation experiments on LEVIR-CD.

TABLE II
INDICATORS FOR ABLATION MODELS ON THE LEVIR-CD DATASET

Fig. 9. Results of module ablation experiments on WHU-CD.

varying degrees of unrecognized areas were observed in pro-
cessing other groups of samples. This indicates that without
enhancing the transformer for long-range dependency, it cannot
effectively capture change features. Table II lists the perfor-
mance metrics of several dilution models and MVAFG on the
LEVIR-CD dataset. Comparatively, the performance metrics of
several dilution models are lower than MVAFG. Overall, through
subjective analysis, it is supported that the modules and pro-
cessing mechanisms corresponding to the five dilution models
positively affect the performance of the network. This indicates
that the MVAFG network architecture we finally selected is
reasonable and effective.

WHU-CD dataset: Fig. 9 illustrates the processing results of
various dilution models on the WHU-CD dataset. This dataset
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TABLE III
INDICATORS FOR ABLATION MODELS ON THE WHU-CD DATASET

Fig. 10. Results of module ablation experiments on GZ-CD.

has a high resolution, enabling better display of detailed infor-
mation, but it also introduces more prominent environmental
interference factors. In the first and second groups of samples,
environmental factors affected MVAFG-1, MVAFG-2, and
MVAFG-3, with the results showing that only MVAFG dis-
played the changed areas more comprehensively, albeit with
some slight issues in edge detection. However, overall, the
experimental results of MVAFG are the best when compared
comprehensively. Table III, lists the performance metrics of
several dilution models and MVAFG on the WHU-CD dataset.
Through comprehensive comparative analysis, it is supported
that the MVAFG network architecture we finally selected is
reasonable and effective.

GZ-CD dataset: As shown in Fig. 10, the results of the final
model and five dilution models on the GZ-CD dataset are pre-
sented. In the second group of samples, MVAFG-1, MVAFG-2,
and MVAFG-3 all failed to identify changed areas, with only
MVAFG recognizing the changed areas relatively comprehen-
sively, albeit with many false detections. However, overall, the
experimental results of MVAFG are the best when compared
comprehensively. This indicates that the three-branch structure
and feature enhancement modules contribute to improving the
model’s performance and also validates the rationality of the
MVAFG network architecture. Table IV lists the performance
metrics of several dilution models and MVAFG on the GZ-CD
dataset. The experimental results show that, compared to sev-
eral dilution experiments, the MVAFG architecture performs
well. However, there is still some gap between the experi-
mental results of MVAFG and the GT, indicating that there
is room for improvement in the performance of MVAFG. In

TABLE IV
INDICATORS FOR ABLATION MODELS ON THE GZ-CD DATASET

TABLE V
BRANCH ABLATION MODEL DEMONSTRATION

Fig. 11. Results of branch ablation experiments on LEVIR-CD.

the future, we will continue to optimize MVAFG to achieve
high-quality CD.

2) Branch Verification: It is important to note that the pro-
posed module is a multibranch structure, thus it is necessary
to study the contribution of each branch. We simplified the
complete MVAFG into three baseline branches: CNN, trans-
former, and CGFM. We validate the contributions of multibranch
approach by adding branches incrementally. The specific models
used for the ablation study are shown in Table V.

Ablation experiments on LEVIR-CD: On the LEVIR-CD
dataset, we conducted experiments with several ablation models,
with partial results shown in Fig. 11. In the first and second
sample groups, thanks to the advantage of transformer’s global
context modeling, the dual-branch Branch 2 model consistently
outperformed the single-branch Branch 1 model in feature han-
dling. Furthermore, by comparison, only the Branch 3 model
comprehensively displayed the change areas, directly validating
the triple-branch model structure’s ability to compensate for
the deficiencies in feature extraction by transformer and CNN,
thereby proving its dominant position in feature extraction. Table
VI lists the performance metrics of the three ablation branches on
the LEVIR-CD dataset. By comparison, the performance of the
proposed triple-branch network consistently surpasses that of the
single-branch and dual-branch networks, demonstrating that the
triple-branch network structure is both reasonable and effective.

Ablation experiments on WHU-CD: On the WHU-CD
dataset, we conducted experiments with several ablation models,
with partial results shown in Fig. 12. In the first and second
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TABLE VI
INDICATORS FOR BRANCH ABLATION MODELS ON THE LEVIR-CD DATASET

Fig. 12. Results of branch ablation experiments on WHU-CD.

TABLE VII
INDICATORS FOR BRANCH ABLATION MODELS ON THE WHU-CD DATASET

Fig. 13. Results of branch ablation experiments on GZ-CD.

sample groups, thanks to the advantage of transformer’s global
context modeling, the dual-branch Branch 2 model consistently
outperformed the single-branch Branch 1 model in handling fea-
tures, although there remained some gaps in processing local fea-
tures. By comparison, only the Branch 3 model comprehensively
displayed the change areas, directly validating the triple-branch
model structure’s ability to compensate for the deficiencies in
feature extraction by transformer and CNN, thereby proving
the dominant role of the CGF branch in feature extraction.
Table VII lists the performance metrics of the three ablation
branches on the WHU-CD dataset. By comparison, the per-
formance of our proposed triple-branch network consistently
surpasses that of the single-branch and dual-branch networks,
demonstrating that the triple-branch network structure is both
reasonable and effective.

Ablation experiments on GZ-CD: On the GZ-CD dataset,
we conducted experiments with several ablation models, with
partial results shown in Fig. 13. In the first and second sample

TABLE VIII
INDICATORS FOR BRANCH ABLATION MODELS ON THE GZ-CD DATASET

groups, only the Branch 3 model comprehensively displayed
the change areas, while Branch 1 and Branch 2 exhibited clear
deficiencies in feature extraction. This directly validates the
triple-branch model structure’s ability to compensate for the de-
ficiencies in feature extraction by transformer and CNN, thereby
confirming the dominant role of the CGF branch in feature
extraction. Table VIII lists the performance metrics of the three
ablation branches on the GZ-CD dataset. By comparison, the
performance of the proposed triple-branch network consistently
surpasses that of the single-branch and dual-branch networks,
demonstrating that the triple-branch network structure is both
reasonable and effective.

This section of this article presents only the most represen-
tative ablation models and experimental data. Through ablation
studies, we have finalized the architecture of the network, which
is MVAFG.

F. Comparison Experiment

After finalizing the network architecture, we conducted com-
parisons between MVAFG and current mainstream as well as
state-of-the-art methods across three datasets. All compared
methods underwent a maximum of 200 training epochs, with the
best model updated at the end of each epoch. We uniformly set
the learning rate to 0.0005. Other parameters for each compared
method were assigned as detailed in their respective papers. Ex-
periments were grouped according to the different datasets. All
experimental results were visualized using GT visual overlays,
where red denotes misidentified regions and green represents
unrecognized regions.

1) LEVIR-CD: Fig. 14 illustrates the results obtained by
various methods on the LEVIR-CD dataset. We selected the most
representative eight sets of samples. In the first set of images,
due to differences in the color of the buildings, all previous
methods failed to identify the variations caused by external
factors affecting the building colors, whereas only the method
detected results most similar to the GT. Other methods exhibited
significant deficiencies. The second and third sets both involve
detection of large buildings. SNUNet, IFNet, and Changeformer
exhibited varying degrees of detection omission. Although BIT
and ICIF-Net performed well in CD, they both identified erro-
neous regions, mistaking environmental interference factors as
detection targets. Overall, the method yielded results closest to
the GT. The fourth and fifth sets contain densely populated res-
idential areas with small and densely packed buildings. Nearly
all methods showed varying degrees of detection omission. The
method roughly detected the target areas of changes. From
the processing results, the method not only outperformed all
compared methods in edge handling but also performed well



ZHANG et al.: MVAFG: MULTIVIEW FUSION AND ADVANCED FEATURE GUIDANCE CHANGE DETECTION NETWORK 11063

Fig. 14. Comparative experiments on the LEVIR-CD dataset. Different colors are used for better visualization: White indicates true positives, black indicates
true negatives, red indicates false positives, and green indicates false negatives.

in detecting small targets. The sixth set involves detection of
large buildings with significant interference factors. Although
BIT, Changeformer, FTN, and ICIF-Net performed well in
target detection, they output factors unrelated to the changing
areas, resulting in erroneous detection. In comparison, only our
detection results were most similar to the GT. The seventh set
comprises buildings with varying degrees of interference from
roads and forests. Most methods performed poorly in detecting
changes in edge regions, with undetected edge areas. Although
there is still a gap between our method and the results obtained
by GT in edge handling, compared to all previous methods, we
still outperformed all compared methods. In the eighth set of
samples, including densely populated residential areas, due to
the different acquisition times of the two-temporal images, the
target buildings in the samples have different colors. From the
processing results, networks such as IFNet, BIT, and ICIF-Net
lacked detection of small changes in targets. Our method not
only outperformed all compared methods in edge handling but
also performed well in detecting small targets.

Table IX presents the performance metrics evaluated for
all methods on the LEVIR-CD dataset. MVAFG achieved the
highest scores across all five metrics. Notably, in terms of the
F1 score, MVAFG outperformed the second-ranked ICIF-Net
by 0.64 points. Similarly, MVAFG exhibited superior perfor-
mance to ICIF-Net by 1.1 point in terms of IoU. Based on
a comprehensive evaluation utilizing subjective and objective
metrics, MVAFG demonstrated outstanding performance on
the LEVIR-CD dataset. MVAFG surpassed mainstream and

TABLE IX
INDICATOR RESULTS FOR EACH COMPARISON METHOD ON THE LEVIR-CD

DATASET

state-of-the-art methods in target recognition, edge handling,
and small target detection. However, MVAFG exhibited subopti-
mal performance in handling some complex samples, indicating
room for improvement in its robustness.

2) WHU-CD: Fig. 15 illustrates partial experimental results on
the WHU-CD dataset. We have selected the most representative
six sets of samples. The first set of samples involves detection
of large buildings, but due to shadow effects, SNUet, IFNet,
and Changeformer lack detection coherence and fail to detect
prominent small target buildings. Although BIT and FTN accu-
rately identify prominent areas, they erroneously output some
environmental interference factors as targets. In contrast, our
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Fig. 15. Illustrates the comparative experiments on the WHU-CD dataset. Different colors are utilized for enhanced visualization: white represents true positives,
black indicates true negatives, red signifies false positives, and green denotes false negatives.

detection results are closest to the GT. The second set of samples
also pertains to the detection of large buildings, where changes
in shadows caused by lighting result in partial occlusion of the
edges. Almost all methods exhibit incomplete detection in these
edge occlusion areas, whereas only the method fully detects the
changed areas, most closely resembling the GT. The third and
fourth sets both involve small target change areas, where the
influence of surrounding environments and backgrounds makes
it challenging for all previous methods to accurately detect the
target area changes. In comparison, our method achieves better
detection results. The fifth and sixth sets also pertain to the
detection of large buildings, but due to excessive background
interference, almost all methods exhibit varying degrees of
target omission areas. Only our method identifies the changed
areas more comprehensively. In the sixth set of samples, our
method still has small undetected areas in the edge detection part.
However, compared to all other methods, our method clearly has
fewer undetected areas and is closer to the GT.

According to Table X, MVAFG achieves the highest scores
in all four metrics. Specifically, MVAFG outperforms ICIF-
Net by 1.58 points in F1 and by 2.4 points in IoU. However,
MVAFG did not achieve the optimal results in some metrics,
indicating room for improvement in the network. Nonetheless,
it is noteworthy that when faced with challenging environmental
factors, MVAFG utilizes a three-branch structure combined with
CNN and transformer to extract comprehensive information
from multiple aspects, enhancing the feature information at each
stage. Additionally, the GCIM module enhances the positional
information of global context features, thereby improving the
localization of detected targets. However, there is still room
for improvement in MVAFG. It still encounters challenges in
handling edge features in samples in complex environments, as
shown in the sixth set of samples in Fig. 15, where there are still
some issues with false detections and omissions. Addressing this
limitation will be a focus of our future efforts.

TABLE X
INDICATOR RESULTS FOR EACH COMPARISON METHOD ON THE WHU-CD

DATASET

3) GZ-CD: The experimental results on the GZ-CD dataset
are depicted in Fig. 16. In the processing of the first set of sam-
ples, both BIT and Changeformer exhibit inferior capabilities in
identifying changes in large buildings compared to our method.
This is primarily because both of them utilize single CNN or
transformer architectures for feature extraction. Although FTN
also solely employs the Swin Transformer as the backbone net-
work for feature extraction, the sliding window and multiscale
processing of the Swin Transformer better attend to feature
information. FTN shows results similar to ours in the first set of
samples. Our method, employing a three-branch structure that
combines the strengths of CNN and transformer, can better focus
on richer feature information and effectively integrate semantic
information. This allows features of large-scale changing targets
to be assigned higher weights, ultimately resulting in our method
achieving results closest to the GT. The second and third sets both
involve the detection of large, dense buildings with complex
and dense changes, posing high detection difficulty. Almost
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Fig. 16. Illustrates the comparative experiments on the GZ-CD dataset. Different colors are used for better visualization: white represents true positives, black
represents true negatives, red signifies false positives, and green denotes false negatives.

all methods fail to detect completely changed targets. In the
third set of samples, although the SNUNet method detects the
general changed targets, it also exhibits numerous false detection
errors. In contrast, only our method achieves results closer to the
GT. In the fourth set of samples, due to differences in building
colors, almost all methods fail to correctly identify the changed
areas of the overall buildings. Although our method also fails
to completely identify the changed areas, in terms of detection
integrity, our detection results are closest to the GT. In the
fifth and sixth sets of samples, almost all methods suffer from
detection omission issues. However, comparatively, our method
exhibits a high degree of completeness in detecting regions of
change and is able to capture most of them relatively completely.
Despite some problems with incomplete edge detection, which
makes it difficult to accurately localize the edges of the target,
the closeness between our results and the GT results is still
the most significant. This not only proves the importance and
rationality of our proposed architecture in the current research
field, but further shows that our proposed architecture is the
current mainstream and state-of-the-art method.

In Table XI, MVAFG achieves the best results in all as-
pects, such as F1 and IoU. Combined subjective and objective
evaluations indicate that MVAFG outperforms mainstream and
state-of-the-art methods on the GZ-CD dataset. However, it
also reveals current issues with MVAFG, such as detecting
blurry edges (see Fig. 16, second set) and incomplete handling
of complex objects (see Fig. 16, fourth set). In the future,
we will continue to optimize the network’s feature extraction
and complex object localization capabilities to address these
issues. Overall, we present a comparative experiment from both
subjective and objective perspectives. Through experiments on
three datasets, we demonstrate the excellent performance of
MVAFG in handling adversarial environmental interference and
processing edge information, surpassing current mainstream and
state-of-the-art methods. However, we also identified shortcom-
ings of MVAFG, such as incomplete detection when handling

TABLE XI
INDICATOR RESULTS FOR EACH COMPARISON METHOD ON THE GZ-CD

DATASET

blurry edges and complex small targets. In the future, we will
focus on enhancing the ability to address these issues.

G. Parameter Analysis

Complexity and parameter and training inference time anal-
ysis: In Table XII, MVAFG outperforms all existing methods.
Although MVAFG has more parameters and floating-point op-
erations than the CNN-based FC-Siam-Conc, it outperforms
FC-Siam-Conc by a wide margin, compared with the hybrid
CNN-transformer structure, MVAFG has a slightly larger model
complexity and number of parameters due to its three-branch
structure, but its performance index is still significantly higher
than that of ICIF-Net, which suggests that there is still room
for optimization of MVAFG, and our next step will be to further
reduce the number of parameters in the model. Our next step will
be to further reduce the number of parameters in the model. Al-
though MVAFG’s performance metrics on the WHU-CD dataset
may slightly lag behind those of FTN, we have the advantage of
having a much smaller number of parameters and computational
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TABLE XII
COMPLEXITY AND PARAMETER NUMBER

Fig. 17. Using images from the LEVIR-CD dataset as examples, this visualization demonstrates the generation and enhancement of feature maps through various
network modules. (a) Feature maps generated by the CNN, transformer, and CGFM branches for Image1. (b) Feature maps generated by the CNN, transformer,
and CGFM branches for Image2. (c) Feature maps enhanced by the GCIM module.(d) and (g) Enhanced feature maps obtained through the dual-branch fusion via
the DCA module. (f) Feature maps enhanced by the AFRM module. (i) Fusion feature maps produced by the SCF module. (j) Feature maps decoded by the CGFD
module. (e), (h), and (k) Feature maps obtained from pairwise fusion of features from the three branches.

load in MVAFG compared to FTN. Not only does MVAFG have
much fewer parameters and computational load than the pure
transformer-based Changeformer, but it also has much higher
performance metrics. However, there is still room for further
improvement of our method in terms of the number of param-
eters compared to methods such as BIT and ICIF-Net. We also
compare the inference time on the training set of one epoch on the
WHU-CD dataset, which is denoted by Tt(s) in Table XII. In gen-
eral, the MVAFG model performs well in inference time, which
ensures the accuracy of the model and the efficiency of model
training. In the future, we will continue to optimize the network
structure, reduce the number of parameters, and lower the time

complexity while maintaining the performance of MVAFG to
meet more specific needs and practical application scenarios.

H. Network Visualization

To better understand our model, we present visualized results
of several key stages of the MVAFG model on the LEVIR-
CD dataset, as shown in Fig. 17. Given a pair of bitemporal
images, multilevel feature maps are initially captured by the
CNN, transformer, and CGFE. These maps are then enhanced
by the GCIM and AFRM modules for an enriched feature
information representation. The CNN and transformer branches,
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operating in tandem, facilitate feature interaction via ensemble
cross-attention, guiding attention toward the regions of change
and mitigating the influence of irrelevant factors. The CGF
branch, through channel exchange and information interaction,
garners a richer bitemporal information set, endowing features,
which preexchange possess only unitemporal information, with
comprehensive spatial characteristics essential for refining the
change areas and precisely locating change objects existing in
the same temporal phase. The visualization results demonstrate
that the CGF branch significantly enhances the feature informa-
tion extracted by the CNN and transformer branches, refining the
areas of change. This underscores the rationale and effectiveness
of the proposed tribranch network structure.

V. CONCLUSION

This article introduces a three-branch network architecture
that combines CNN, transformer, and CGF branching to improve
the model’s capability in feature extraction and representation
learning. Among them, the CGF branch aims to direct the feature
extraction process to focus on task-relevant feature information,
thus improving the model performance. The three-branch net-
work structure combines the advantages of CNN in local feature
extraction, transformer in global context modeling, and a chan-
nel feature guidance branch in focusing on task-related feature
changes, which effectively improves the model’s performance
on complex tasks and demonstrates a high potential for practical
use.

However, the model also has some potential shortcomings. In
particular, the CNN and transformer branches employ pretrained
backbone networks, which increase the number of parameters
and computational burden of the model, leading to a relatively
bulky model, especially in resource-constrained scenarios. To
address this challenge, future research will focus on develop-
ing lightweight model architectures. Possible directions include
exploring new network compression techniques, more efficient
parameter sharing mechanisms, advanced model pruning and
quantization strategies, and so on. For example, replacing tra-
ditional convolutional operations with grouped convolution to
reduce the number of parameters and computational complexity,
or using lightweight network architectures such as MobileNet
or ShuffleNet as the feature extraction backbone network to
alleviate computational and storage requirements. In addition
to improvements in the model structure, future research should
also explore the usability of this CD model in heterogeneous
dual-temporal images, such as CD on dual-temporal synthetic
aperture radar and optical images.
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