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Cross-Domain Land Cover Classification of Remote
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Zhouwei Zhang , and Xiaofei Mi

Abstract—The use of remote sensing images for land cover clas-
sification is an important and challenging pixel-level classification
task. However, the different distribution of the same land cover cat-
egories across different datasets, the accuracy of the classification
is significantly reduced when a classification model trained on one
dataset is used directly on another dataset. To address the issue,
numerous unsupervised domain adaptation (UDA) methods have
been proposed. However, the existing UDA methods focus mainly
on natural images and are not suited to remote sensing images
with large variations in spectral information and texture features.
Therefore, we develop a new full-level domain adaptation network
(FLDA-NET) applicable for cross-domain land cover classification
of remote sensing images. It aligns the source domain and target
domain through a two-stage process encompassing image-level,
feature-level, and output-level. In stage I, we align at image-level
by converting the source domain image to the target domain im-
age style. In stage II, at the feature-level we align the entropy
of the two domain features. At the output-level we do not use
simple global alignment, but category-level alignment. Further-
more, a self-training strategy based on superpixel segmentation
and softmax probability is proposed to further enhance the model’s
performance on the target domain. Extensive experiments on our
proposed FLDA-NET are performed on the Potsdam and Vaihin-
gen datasets and compared with other advanced UDA methods.
The outcome demonstrates that this approach greatly improves the
ability of cross-domain land cover classification in remote sensing
images.
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I. INTRODUCTION

W ITH the growth of remote sensing (RS) technology,
the quality and resolution of RS images have gradually

improved. At the same time, the difficulty of obtaining these
images has significantly decreased, making it easy for people
to acquire huge numbers of images with varying spectral char-
acteristics and resolutions. These images provide an important
information base for understanding the Earth system at vari-
ous scales. Land cover classification refers to the process of
classifying and identifying surface objects using RS images
and categorizing them into different land cover types. It has
important applications in forest resource monitoring, urban
planning, and climate change assessment [1], [2], [3]. Land
cover classification is an important and challenging pixel-level
classification task. On low and medium resolution images, tra-
ditional approaches use machine learning algorithms, such as
decision trees [4] and support vector machines [5] to achieve
land cover classification [6], [7], [8]. However, with the increase
in image resolution, traditional machine learning algorithms are
not applicable to high-resolution images and their classification
accuracy is often poor [9]. In recent years, with its powerful
feature extraction and classification capabilities, deep learning
technology has been increasingly applied in the field of RS
interpretation [10], [11], [12]. Many semantic segmentation
models are widely applied for land cover classification tasks,
such as the full convolutional network (FCN) [13], U-Net [14]
and SegNet [15] with encoder-decoder structure, and DeepLab
family of networks [16]. These models have achieved excellent
performance. However, in practical applications, there are some
problems that cause these models not to be better applied.

First, land cover classification using deep learning approaches
typically requires sufficient training samples [17]. This means
that huge numbers of pixel-level labels must be manually la-
beled, which is very expensive. Second, deep learning models
are particularly sensitive to changes in data distribution, which
requires that the training data (i.e., the source domain data) and
the test data (i.e., the target domain data) adhere to the hypothesis
of being independently and equivalently distributed. However,
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Fig. 1. Domain shift between RS images.

in practical applications, differences in imaging sensors, geo-
graphical location, spatial resolution, and light intensity lead to
a large gap in the appearance and structural features between
different RS images, resulting in the phenomenon of domain
shift. In Fig. 1, we demonstrate this situation. At this point, if
the land cover classification model that has been trained on the
source domain images is applied to directly another set of very
different target domain images, the model’s performance will
significantly decline. This is because different imaging sensors
and light intensities can result in the same land cover class having
completely different color information and texture features on
different data. Therefore, it is necessary to relabel new image
data each time we train the model, and cannot utilize the existing
label data to its full extent.

To overcome these limitations, unsupervised domain adapta-
tion (UDA) methods in computer vision have been developed to
address the problem of excessive data distribution differences.
UDA, a subset of transfer learning, seeks to reduce the data
distribution gap between the two domains when the tasks are the
same, leveraging labeled data from the source domain to improve
the model’s accuracy and generalization on the unlabeled target
domain [18], [19]. Recently, adversarial learning [20] has been
frequently employed in UDA tasks. Depending on the level and
manner of the adversarial loss action, domain adaptation meth-
ods based on adversarial learning are categorized into image-
level, feature-level, and output-level [21]. Image-level domain
adaptation methods mainly transform the image style into the
image style of the target domain on the basis of preserving the
semantic information [22], [23], [24], [25]. Feature-level domain
adaptation methods use adversarial learning to reduce the differ-
ences of data distributions from different domains in a common
feature space [23], [26], [27]. On the other hand, output-level
domain adaptation methods are similar to feature-level methods,
but they use adversarial training on the output prediction proba-
bility distributions to make the prediction probability of the two
domains close to the same [28], [29].

Although these UDA methods mentioned above already
showed some success in semantic segmentation tasks, they
are all performed on common natural images [23], [24], [28],
[30]. In contrast, RS images possess richer spectral and textural

information, and have special attributes that differ from natural
images [31]. Therefore, the above UDA methods may not be well
suitable to land cover classification. In recent years, some UDA
approaches have been suggested in the remote sensing field. [32],
[33], [34], [35]. However, most of these methods are based on
single-level or dual-level alignment. In addition, these methods
only consider whole image differences and ignore local category
differences when performing domain adaptation training. In
fact, when performing cross-domain land cover classification,
the difficulty of domain adaptation varies between different
land cover types due to factors such as imaging sensors and
resolution. Following an extended period of domain adaptation
training, some classes may have adapted, whereas others are
difficult to adapt. In this case, considering only the adaptation of
the whole image will result in negative migration of the already
adapted classes.

To solve the above limitations, we introduce a novel full-level
domain adaptation network (FLDA-NET) for the task of cross-
domain land cover classification in RS images. Specifically, we
divide into two stages to align the source and target domains. In
Stage I, we use the classical image translation network [22] to
align the source and target domains at the image-level, which
does not need to pair the images of the two domains while
maintaining a good transformation effect. Therefore, it greatly
reduces the difficulty of data collection and preprocessing, and
is very suitable for use on RS images. The Stage II minimizes
the data distribution disparities between the two domains by
means of adversarial learning. At the feature-level, we adjust
the entropy distributions of the features to approach consistency,
indirectly minimizing the entropy of the prediction results. At
the output-level, we align categories that are difficult to adapt
by weighting the adversarial loss, while preventing negative
migration of already aligned categories. Finally, we introduce
a new self-training strategy (SPST) based on superpixel seg-
mentation and softmax probability. It is used on our FLDA-
NET to generate high-confidence pseudolabels in the target
domain, and the segmentation model is fine-tuned using these
pseudo-labels to further enhance the model’s generalization. In
conclusion, the key contributions of this article can be outlined as
follows.

1) A new full-level UDA method, FLDA-NET, is proposed
for the task of cross-domain land cover classification of
RS images, which uses adversarial learning to align the
data distributions of the two domains in two stages at the
image-level, feature-level, and output-level to achieve land
cover classification over unlabeled target domain.

2) A SPST strategy is proposed based on the superpixel-
based segmentation and softmax probability, by which
high-confidence predictions are selected as pseudolabels,
which will be used to continue the training of model after
the domain adaptation in order to enhance the model’s
performance within the target domain.

3) Compared with other state-of-the-art UDA methods, our
method is shown to perform more by performing experi-
ments on the Potsdam and Vaihingen datasets. The impact
of each level in our method is also discussed to ensure its
effectiveness.
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The rest of this article is organized as follows. Related work
is described in Section II. We outline our suggested approach
in Section III. Section IV presents the results and analysis of
the experiment. Section V conducts the discussion. Finally,
Section VI concludes this article.

II. RELATED WORK

A. Land Cover Classification

RS land cover classification aims to assign each image ele-
ment in an image to a predefined land cover class by analyzing
and identifying the spatial distribution features of different fea-
ture types in the image. For this purpose, traditional methods can
use spectral and textural features of individual image elements
for classification [36]. However, with the increasing spatial
resolution of RS images, land cover classification relies not only
on spectral features of pixels, but more on contextual information
and spatial relationships between land cover types [34].

Deep learning technology has shown impressive advantages
in land cover classification in RS images recently. Compared
with traditional land cover classification methods, deep learning
methods have more powerful feature learning capabilities and
can automatically extract features from images. FCN [13] is
the first network to address semantic segmentation tasks end-
to-end. Compared with traditional convolutional neural net-
work, FCN can take inputs of any size and produce pixel-level
prediction results of the same dimensions, which makes FCN
well suited for semantic segmentation tasks. The structure of
FCN consists of convolutional and upsampling layers, which
can efficiently learn the spatial information of an image and
generate pixel-level prediction results. Subsequently, more and
more deep learning networks have been proposed for semantic
segmentation tasks. Representative ones include U-Net [14]
and SegNet [15] with encoder-decoder structure, the DeepLab
family of networks [16], and so on. These networks have been
successfully used in land cover classification tasks with excellent
performance. However, these deep learning models need to mark
a lot of pixel-level labels for training, which is costly and takes
time. On the other hand, significant data distribution differences
between sets of RS images are due to differences in sensors,
geographical location, and resolution and light intensity. In this
case, the classification ability of a land cover classification model
trained on one set of data is significantly degraded when applied
directly to another different set of data. As a result, it is required
to relabel the data for each new dataset, which does not utilize
the existing labeled data to its full extent.

B. Generative Adversarial Network

Generative adversarial network (GAN) [20] has shown strong
capabilities in image generation and unsupervised learning.
Therefore, UDA methods based on adversarial learning have
been proposed to solve the issue of lack of labels in RS images.
Initially, they were mainly applied to scene classification of RS
images [37], [38] and later more and more researchers applied
them to semantic segmentation tasks [39], [40]. These studies
proved that adversarial learning based UDA has good results

in processing RS images with different domains. Therefore, we
make full use of its advantages and apply adversarial learning
to sensing images cross-domain land cover classification.

Specifically, GAN typically comprises a generator G and a
discriminator D, each representing a separate model. In the
adversarial learning process, G is responsible for generating
fake data distributions with the intention of generating data
that closely resembles real data, making it impossible for the
discriminator to accurately differentiate between real and fake
data. D is responsible for determining whether the entered data
is real data or generated fake data, and its goal is to discriminate
as accurately as possible between real data and fake data. A dy-
namic game relationship is formed betweenG andD. A dynamic
equilibrium point is reached through constant competition and
confrontation. Its formula is described as follows:

min
G

max
D

LGAN(G,D) = Ex∼Pdata [logD(x)]

+ Ex∼PG
[log(1−D(G(x)))] (1)

where Pdata represents real data and PG represents generated
fake data. In the adversarial learning process, the generator G
and the discriminator D have opposite optimization objectives.
Minimizing the loss LGAN(G,D) by optimizing the parameters
ofG and maximizing the lossLGAN(G,D) by optimizing the pa-
rameters of D. By alternately training G and D, they eventually
reach a balanced state.

C. Unsupervised Domain Adaptation

In order to remove the domain shift phenomenon and solve
the problem of the lack of labels in the target domain, many
GAN-based UDA methods have been developed for semantic
segmentation tasks and deliver impressive performance results.
Guo et al. [41] implemented feature-level domain transformation
from virtual to real images using recurrently consistent GANs,
introduced a dynamic perceptual network to enhance the quality
of image generation. Tsai et al. [28] presented an adversarial
domain adaptation approach for semantic segmentation that
utilizes multilevel adversarial learning in the output level to
improve the model’s performance in the target domain. Li
et al. [25], unlike the previous ones, proposed a new bidirec-
tional learning network for the semantic segmentation tasks.
The segmentation model and the image translation model can
be optimized for one another through the use of the bidirectional
learning technique. Vu et al. [30] presented a new entropy-based
UDA approach that aligns the entropy of semantic prediction re-
sults at the output-level to achieve domain adaptation. While the
aforementioned UDA methods have demonstrated encouraging
outcomes in natural image semantic segmentation, they cannot
be directly applicable to cross-domain land cover classification
tasks because they overlook the spectral information, texture
features, and spatial resolution properties of RS images.

With the wide application of UDA methods in natural im-
age, more and more research work is focused on applying
UDA methods to RS images. Makkar et al. [42] introduced
a framework called ADDA, based on adversarial learning, to
address complex tasks such as hyperspectral image classification



MENG et al.: CROSS-DOMAIN LAND COVER CLASSIFICATION OF REMOTE SENSING IMAGES BASED ON FLDA 11437

Fig. 2. Our proposed overall architecture for FLDA-NET.

and large-scale semantic segmentation for RS images. Liu and
Wang [43] proposed a novel network SFnet-DA that embeds
domain adaptation into a selective self-attention mechanism
to improve the extraction of water bodies with drastic scale
changes. Zhang et al. [33] proposed a staged domain adapta-
tion approach to align the semantic prediction results through
GANs, both interdomain and intradomain. On the other hand,
the model introduced by [44] applies structured domain adap-
tation into synthetic image generation and road segmentation
in RS images by integrating feature pyramid networks into
GANs to minimize the differences between two domain images.
Yan et al. [45] jointly considered the information from both
domains and proposed a triplet adversarial domain adaptation
approach to discriminate at the output-level whether the two sets
of segmentation prediction results are from the same domain
or different domains. However, these UDA methods tend to
implement domain adaptation only for single or dual levels.
This is insufficient for RS images with complex structures
and large distributional differences. Ji et al. [46] implemented
full space domain adaptation for land cover classification of
multisource RS images based on a GAN that makes full use
of available vector maps. Peng et al. [47] implemented build-
ing extraction from high-resolution RS images using full-level
domain adaptation, using Wallis filter method to transform the
style of source domain images at the image-level, introducing
a discriminator to constrain the features at the feature-level,
and using a mean teacher model at the output-level to further
improve the model effect. But these full-level UDA methods
pursue global alignment and ignore local differences during
adversarial learning. This can lead to negative migration of
some already adapted categories when performing cross-domain

land cover classification. Therefore, our work overcomes the
above limitations and significantly improves the performance of
cross-domain land cover classification of RS images.

III. PROPOSED METHOD

We frequently come across such a scenario when classify-
ing land cover from RS images. An unlabeled target domain
dataset XT is needed for classification of land cover, while an-
other source domain dataset (XS , YS) has similar classification
scenarios with sample labels. However, due to differences in
sensors, geographical location, resolution and light intensity,
etc. between them, the model trained on the data from the
source domain cannot be directly used on the data from the
target domain, and thus the existing labeled data cannot be fully
utilized. For this reason, we translate the problem into a UDA
task. Our goal is to learn supervised semantic information from
the source domain and leverage this knowledge to construct a
robust land cover classification model capable of excelling in
the target.

Our proposed FLDA-NET is illustrated in Fig. 2. It is mainly
tailored to classify land cover across domains in RS images.
This framework consists of two stages. Stage I performs image-
level domain adaptation, which is described in Section III-A.
This stage mainly performs image style transfer, enabling the
generation of source domain images stylized to align with the
target domain’s visual characteristics. Stage II takes the stylized
source domain images in the target domain style, along with the
source domain labels and target domain images as input. Here,
adversarial learning is leveraged to ensure domain alignment at
both the feature and output levels, which is given in Section III-B.
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Meanwhile, in order to enhance the model accuracy in the target
domain after full-level domain adaptation, a self-training (ST)
approach is employed for fine-tuning the segmentation model,
as given in Section III-C.

A. Stage I: Image-Level Domain Adaptation

In Stage I, our goal is to achieve image-level domain adap-
tation to convert the image style of the source domain images
XS with label YS to the target domain XT , enabling them to
mimic the characteristics of the target domain image (sensor
type, spatial resolution, light intensity, etc.). Subsequently, by
using the segmentation model trained on the source domain
images transformed to the target domain style, we are able to
achieve superior target domain performance.

We have followed the network structure proposed in [22] to
implement an unpaired image translation network. The aim of
this article is to use this network to achieve style translation from
source domain images to target domain images, and to convert
the source domain training dataset to the target domain style.
We introduce a generator GS→T , which is utilized to align the
distributions of the two domain images, and the generated result
GS→T (xs) is used to deceive the discriminator. Conversely, the
discriminator DT outputs a binary value of 0 or 1 to determine
the domain of the input data, with a loss function according to
(2). During adversarial learning, the generatorGS→T is expected
to produce source domain images with a style that mimics the
target domain to deceive the discriminator DT , whereas the dis-
criminator DT is expected to increase its discriminative power
to distinguish the true target domain image xt from GS→T (xs).
The two are alternately trained to continuously improve the
generation and discrimination capabilities and eventually reach
a balanced state.

Ls→t
GAN(GS→T , DT , XT , XS) = Ext∼XT

[logDT (xt)]

+ Exs∼XS
[log(1−DT (GS→T (xs)))]. (2)

However, the style conversion of the image in the actual
process will not be able to be carried out as expected, this is
because in (2), although xs is successfully generated as the
styleGS→T (xs) of the target domain image, it cannot inherently
assure that GS→T (xs) can still preserve the original content or
structure of the sample xs. For this reason, we use the cyclic
consistency loss [22] to ensure that the original information
from the source domain image is preserved during the image
style conversion process, as shown in (3). In this process, we
introduce another generator GT→S that retranslates the stylized
source domain image in the target domain back to the source
domain’s style according to the same loss Lt→s

GAN, thus achieving
cyclic consistency, i.e., GT→S(GS→T (xs)) ≈ xs.

Lcyc(GS→T , GT→S , XS , XT )

= Exs∼XS
[‖ GT→S(GS→T (xs))− xs ‖1]

+ Ext∼XT
[‖ GS→T (GT→S(xt))− xt ‖1]. (3)

B. Stage II: Full-Level Domain Adaptation

Although we performed image-level domain adaptation in
Stage I to obtained a stylized source domain image resembling
the target domain’s characteristics, there is still a domain shift
phenomenon [28]. This is because single-level domain adapta-
tion solely at the image-level alone is not sufficient, feature-level
and output-level can provide stronger guidance. Here, we utilize
adversarial learning to achieve full-level domain adaptation by
inputting target domain stylized source domain image and labels,
along with target domain images. Our network encompasses a
segmentation network G and two discriminators Df and Do. G
consists of a feature extractor E and two classifiers C1 and C2,
and the specific structure is shown in Fig. 3. The feature extractor
E uses ResNet 101 as a backbone network, which consists
mainly of an input convolutional layer and 33 residual blocks.
The classifiers C1 and C2 adopt the atrous spatial pyramid
pooling structure, and the null rates of the pyramid pooling are 6,
12, 18, and 24, respectively. The discriminators Df and Do are
composed of four convolutional layers and a domain classifier.

1) Feature-Level Domain Adaptation: Information entropy
is a concept in information theory used to measure the uncer-
tainty or amount of information in a set of data. The higher
the information entropy, the more uncertain the information and
harder it is to predict. The lower the information entropy, the
more certain the information and easier it is to predict. Therefore,
a trained model will generate predictions with high entropy in
the target domain and low entropy in the source domain. To
address this discrepancy, we utilize adversarial learning to make
the feature entropy distributions of the two domains close to
each other, indirectly reducing the entropy of predictions in the
target domain, thus achieving feature-level domain adaptation.

Similar to [30], we can obtain high-dimensional features
fs and ft from the feature extractor E. Self-information, as
a component of information entropy, serves to quantify the
information of individual events. Its self-information can be
defined as −logfs and −logft. Therefore, we can obtain self-
information-weighted pixel-level features Is =−fs · logfs and
It = −ft · logft. We introduce the feature discriminator Df ,
which takes Is and It as input to perform the domain classifi-
cation output. In the adversarial learning process, the entropy
distributions of fs and ft gradually converge, enabling G to
learn domain-invariant features and achieve feature-level do-
main adaptation. The loss calculation formula is as follows

Lf
adv(G,Df ) = −E[log(Df (Is))]− E[log(1−Df (It))]

(4)

2) Output-Level Domain Adaptation: As in [28], previous
output-level domain adaptation was to globally align the pre-
dictions rather than locally. There is a significant problem with
this approach. Because different categories have different do-
main shifts during domain adaptation, it is possible that certain
categories are easy to adapt and certain categories are difficult
to adapt. In the pursuit of global alignment, existing local align-
ment may be destroyed, resulting in negative migration of those
classes that are already aligned.
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Fig. 3. Structure of the different branches in Stage II. (a) Represents the feature extractor E. (b) Represents the classifiers C1 and C2. (c) Represents the
discriminators Df and Do.

Inspired by [29], at the output-level we use the cotraining al-
gorithm [48] for category-level alignment. In the source-domain
data stream, for a source-domain image xs ∈ XS , we input the
last two layers of the network obtained by the feature extractor
E to C1 and C2 to produce pixel-level predictions p(1)s and p

(2)
s ,

respectively. Then, introduce the output-level discriminator Do.
Use p(2)s as input to generate adversarial losses, learning domain
invariance. At the same time, p(2)s is used to calculate segmen-
tation losses with the source domain label ys ∈ YS , guiding the
supervised semantic information of the segmentation network
G. For segmentation loss, we jointly use soft cross-entropy and
dice losses, as shown in (5) and (6). The soft cross-entropy
loss employs cross-entropy with label smoothing to improve
the model’s generalization capability, whereas the Dice loss can
alleviate class imbalances to some extent.

LCE(xs) = −
H×W∑
i=1

C∑
c=1

y(i,c)s log(P (i,c)
s ). (5)

LDice(xs) = 1− 2 |Ys ∩ Ps|
|Ys|+ |Ps| . (6)

In the target domain data stream, we also input a target
domain image xt ∈ XT into the segmentation network G to
obtain predictions p(1)t and p

(2)
t of the two classifiers.However,

the target domain, in contrast to the source domain, lacks label
guidance for segmentation loss, and relying on the discriminator
alone to perform the global alignment will result in negative
migration of some already adapted categories. Therefore, we

generate a discrepancy map M(p
(1)
t , p

(2)
t ) from p

(1)
t and p

(2)
t ,

where M represents the cosine distance between the two pre-
dictions.Similarly, we input p(2)t into the discriminator Do to
obtain the adversarial loss map Ladv, and then perform an
element-by-element multiplication between M(p

(1)
t , p

(2)
t ) and

Ladv to obtain the weighted adversarial loss
∑H

i=1

∑W
i=1(1−

cos(p
(1)
i,j , p

(2)
i,j ))× Ladvi,j , where (i, j) denotes traversing all

pixels in the map. When M(p
(1)
t , p

(2)
t ) is large, it indicates

that the semantic information of the two prediction results is
inconsistent and the category is not yet better adapted between
the two domains, so a larger loss weight is assigned to encourage
the segmentation network G to deceive the discriminator Do.
When M(p

(1)
t , p

(2)
t ) is small, it indicates that the inconsistency

of the semantic information of the two prediction results is not a
serious problem and the category might have been adaptable, and
thus a smaller loss weight is assigned to ignore the adversarial
penalty of Do. With this weighting, our network can focus more
on the categories that are difficult to adapt at the output-level,
thus achieving category-level alignment. Finally, the adversarial
loss at the output-level is calculated as follows:

Lo
adv(G,Do) = −E[log(Do(G(XS)))]

− E[(λmM(P
(1)
t , P

(2)
t ) + ε)log(1−Do(G(XT )))] (7)

where λm is the weight that controls the category-level
adversarial loss. In order to stabilize the training process, we
include a decimal ε in the weights.
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In Stage II, we achieve full-level domain adaptation by jointly
minimizing all the above losses. That is, the supervised segmen-
tation loss for source domain, the feature-level adversarial loss
on both domains, and the output-level adversarial loss. Thus, our
Stage II objective function is as follows:

L = min[LCE + LDice + λ
f
advL

f
adv + λo

advL
o
adv] (8)

where λ
f
adv and λo

adv denote the weights for balancing against
losses.

C. Target Domain Self-Training

After full-level domain adaptation, our model FLDA-NET
demonstrates better predictive capabilities in the target domain.
The model’s performance exhibits significant improvements
compared to the baseline segmentation model. However, in the
absence of available labels for the target domain, this could lead
the segmentation model to tend to make overly confident predic-
tions on the source domain. When applied to the target domain,
this may result in poor prediction outcomes. ST is a semisu-
pervised learning method that focuses on using existing models
to make predictions on unlabeled data, using high-confidence
predictions as pseudolabels, and then using the pseudolabels
to continue training the model and improve its performance.
To achieve this, we suggest a new ST strategy (SPST) based
on superpixel segmentation and softmax probability to assign
pseudolabels. This approach achieves better performance on the
target domain by selecting high-confidence pseudolabels and
fine-tuning the segmentation model that is already adapted to
the domain.

Superpixel segmentation is an image segmentation technique
for grouping pixels with similar color, texture, or luminance
characteristics in an image [49]. Initially, we employ the Felzen-
szwalb superpixel segmentation algorithm [50] to generate a su-
perpixel segmentation result for the target domain image. Then,
we compare this result with the predicted results obtained for the
target domain to obtain category labels for each superpixel block
in each image. Taking a block as an example, we can obtain the
one that contains the most category labels within that pixel block.
Based on the object-oriented segmentation criterion, we believe
that the categories within a pixel block should be consistent.
Therefore, we consider this category as a high-confidence cate-
gory and the rest as low-confidence categories. The number of
low-confidence categories is then counted as the error value for
that pixel block. The statistics for each superpixel block within
an image by this method can obtain the error value of the whole
image as in (9). Finally, the error values for each image on the
target domain are sorted in ascending order, and we take the top
p% of images with smaller error values as the final samples that
can be used for self-training.

error =
S∑

i=1

Ni − max

⎛
⎝

C∑
j=1

si,j

⎞
⎠ (9)

where S denotes the total number of superpixel blocks of the
whole image, C denotes the number of categories, Ni denotes

Algorithm 1: Generation of Pseudo-Labels in SPST.
Input : The target image Xt, the target predicted
probability map Pt, the hyperparameters p and μ
Output : The pseudo-labels Ŷt

1: Obtain the result of superpixel segmentation:
St = Felzenszwalb(Xt)

2: Obtain the label map: Lt = argmax(Pt)
3: Obtain the error value of each image with (9): Xerror

4: Sort Xerror in ascending order and choose for the top
p% of elements as Dt = {xt, pt, lt}

5: for Di to Dt do
6: Initialise to get a pseudo-labels map with the same

dimensions as li and all pixel values of 255: ŷi Where
these pixels with a value of 255 will be ignored during
the training process

7: for j = 1 to C do
8: Pick predicted probability pj of class j from pi

according to li: pj = pi[where(li == j)]
9: Sort pj in ascending order and select the value of

1− μ as threshold Tj

10: Select the label mask: Mj = where(pj > Tj)
11: Generate the pseudo-labels of class j: ŷj = li[Mj ]
12: end
13: end
14: return Ŷt

the total number of pixels in block i, and si,j denotes the number
of pixels of category j in block i.

Although the error values of the prediction results of the
selected self-training samples is relatively low, there are still
some misclassified pixels in these samples, which may cause
the model to learn incorrect knowledge and gradually deviate.
To address this problem, we assess the confidence level of each
pixel using softmax probability and remove those pixels with
lower confidence in the pseudolabels to generate the reliable
pseudolabels. Specifically, for each category, we sort the softmax
probability values of its predictions in ascending order. μ is a
superparameter that defines the proportion of retained pixels (μ
is a percentage), and we choose the softmax probability value of
the category at 1− μ as the threshold for that category. Pixels
with softmax probability values greater than the threshold are
retained, and assign a value of 255 to pixels with less than
the threshold, which is ignored in subsequent training. This
method ensures that we remove the low-confidence pixels while
retaining a sufficient number of pixels. Algorithm 1 shows the
whole process.

IV. EXPERIMENTS AND ANALYSES

In this section, we first introduce the dataset used, the experi-
mental setup, and define the evaluation metrics employed. Then,
we compare with other advanced UDA methods to substantiate
the efficacy of our proposed approach. Finally, we delve into
ablation experiments to showcase the significance of each level
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TABLE I
PERCENTAGE OF PIXELS PER CATEGORY IN THE DATASET

in our approach. At the same time, we also discuss the effect of
hyperparameters on our method under different settings.

A. Datasets Description

1) Vaihingen Dataset: The Vaihingen Dataset (Vaihingen) is
a 2-D semantic segmentation dataset for the ISPRS Vaihingen
Challenge [51]. It collects an area of 1.38 km2 of Vaihingen city
and consists of 33 3-band IRRG (near-infrared, red, and green)
VHR aerial images with a GSD of 9 cm. The average size of each
image was approximately 2494 × 2064 [52]. Out of these, only
16 images are provided with semantic labels, consisting of six
classes: impervious surfaces (Imp surf), trees (Tree), buildings
(Building), cars (Car), low vegetation (Low veg), and clutter
(Clutter). We choose these 16 images as the training set, whereas
the remaining 17 images as the test set and crop them into 512 ×
512 blocks, resulting in 210 training images and 249 test images.

2) Potsdam Dataset: The Potsdam Dataset (Potsdam) is a
2-D semantic segmentation dataset for the ISPRS Potsdam
Challenge [53]. It collects an area of 3.42 km2 of Potsdam city
and consists of 38 4-band IRRGB (near-infrared, red, green, and
blue) VHR aerial images with a GSD of 5 cm. Each image has
a size of 6000 × 6000. Its only 24 images provide semantic
labels and it contains the same six classes as the Vaihingen
dataset. We selected these 24 images as the training set and
the remaining 14 images as the test set. Due to certain classes in
the aerial images having specific scale ranges [54], we resample
the Potsdam dataset to obtain the same spatial resolution as the
Vaihingen dataset. This ensures both datasets maintain consis-
tency in resolution. We select two combinations of bands [IR,
R, G] and [R, G, B] from the four bands and cropped them into
512 × 512 blocks, resulting in 813 training images and 482 test
images.

Table I displays the two datasets of training data in each cate-
gory number percentage of the total. Specifically, in the Potsdam
training dataset, the percentages of impervious surfaces, trees,
buildings, cars, low vegetation, and clutter are 28.2%, 15.4%,
26.1%, 1.7%, 24.6%, and 4.1%, respectively. In the Vaihingen
training dataset, they are 28.5%, 23.0%, 26.4%, 1.2%, 20.2%,
and 0.8%, respectively. The two datasets are characterized by
an imbalance of sample categories. For example, the cars and
clutter have significantly lower percentages in both datasets than
the other categories. Fig. 4 shows some sample examples for the
Potsdam and Vaihingen datasets.

B. Experimental Settings

1) Network Architecture: In Stage I, we follow the architec-
ture of CycleGAN [22] and use instance normalization instead of

Fig. 4. Sample images and labels for the Potsdam dataset and the Vaihingen
dataset. (a) Potsdam dataset consisting of [IR, R, G]. (b) Potsdam dataset
consisting of [R, G, B]. (c) Vaihingen dataset consisting of [IR, R, G].

batch normalization. In Stage II, we use DeepLab-V2 pretrained
on the ImageNet [55] dataset with ResNet 101 [56] as the
backbone network as the segmentation network, with pyramid-
pooled nulls of 6, 12, 18, and 24, respectively. The network
structure of the feature-level discriminator and the output-level
discriminator is similar to that of [57], consisting of four convo-
lutional layers and a domain classifier, each with convolutional
kernel size of 4 and stride size of 2. No batch normalization layer
is used. A LeakyReLU [58] activation function with parameter
0.2 is added after each convolutional layer except the last. The
specific structure is shown in Fig. 3.

2) Training Details: In this article, our proposed approach
was developed using the PyTorch framework [59], which pro-
vides an efficient programming interface written in Python, and
the experiments were performed on a workstation equipped with
an RTX 3090 GPU. The segmentation network is trained using
an SGD optimizer [60], whose initial learning rate is set to 2.5×
10−4, momentum is 0.9, weight decay is 5 × 10−4, and learning
rate decreases linearly with training times. For the two discrim-
inators, we employed the Adam optimizer with beta parameters
set to 0.9 and 0.99. The same learning rate tuning strategy as for
the segmentation network is used, the learning rate is set to 1 ×
10−4. The batchsize is set to 2 and the hyperparameters λ

f
adv and

λo
adv are set to 0.001 and 0.01, respectively. In Stage I training,

CycleGAN is used to style transform the source domain images,
and Stage II uses the style transformed source domain images
and labels, as well as the target domain images, as inputs for
50 000 training iterations. In the ST phase, the learning rate
is set to 6 × 10−4 and the segmentation model underwent 20
epochs of fine-tuning. Notably, only the target domain data was
used to optimize the network parameters during this phase. The
hyperparameters p is set to 80 and μ to 0.75. To ensure fairness,
the same experimental conditions and settings were used for the
other UDA methods compared.

C. Evaluation Metrics

To quantitatively evaluate the model’s performance, we em-
ploy overall accuracy (OA), mean F1 score (mF1), mean in-
tersection over union (mIoU), and Kappa coefficient (Kappa)
as assessment measures. The formulae for each metric and
intermediate variable are shown below.

1) Overall Accuracy (OA): OA represents the proportion of
samples showing correct classification in all categories and is a
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comprehensive assessment of the models’ overall classification
performance, calculated as follows:

OA =
1

C

C∑
c=1

TPc + TNc

TPc + TNc + FPc + FNc
. (10)

In all formulas, TP indicates how many categories that the
model correctly predicted to be positive, TN indicates how many
categories that the model correctly predicted to be negative, FP
indicates how many negative categories that the model incor-
rectly predicted to be positive, FN indicates how many positive
categories that the model incorrectly predicted to be negative,
and C signals the total number of categories in the dataset.

2) Mean F1 Score (mF1): The F1 score combines precision
and recall and its mean is calculated as follows:

mF1 =
1

C

C∑
c=1

2× precision × recall
precision + recall

(11)

precision =
TPc

TPc + FPc
(12)

recall =
TPc

TPc + FNc
. (13)

3) Mean IoU (mIoU): IoU is utilized to gauge the degree of
similarity between predicted results and true value labels, and
its mean is calculated as follows:

mIoU =
1

C

C∑
c=1

TPc

TPc + FPc + FNc
. (14)

4) Kappa Coefficient (Kappa): The kappa coefficient is a
metric derived from the confusion matrix to assess the consis-
tency between the predicted results and the true labels, taking
into account chance. It can solve the problem of inaccurate
scoring due to sample imbalance, and its calculation formula
is as follows:

Kappa =
(OA)− Pe

1− Pe
(15)

Pe =

∑C
i=1(Ni,j ×

∑C
j=1 Ni,j)

N ×N
(16)

where N indicates the total pixel count, higher values of the
above metrics indicate better model performance.

D. Hyperparameters Sensitivity Analysis

To investigate the impact of different hyperparameters on the
overall segmentation performance of the model, we conducted
extensive experiments in the scenario of Potsdam (RGB) →
Vaihingen (IRRG). We analyzed the sensitivity of the adversarial
loss weights λ

f
adv and λo

adv, as well as hyperparameters p and μ
in ST.

1) Effect Of Weighting Against Loss: The hyperparameters
λ
f
adv and λo

adv represent the weights of the feature-level adver-
sarial loss and the output-level adversarial loss, respectively.
To verify the effect of their different settings on the model,
hyperparameter tuning experiments are performed based on five
parameter sets. Table II shows their effects on the mF1 and

TABLE II
EFFECT OF HYPERPARAMETERS λ

f
ADV AND λoADV ON MODEL PERFORMANCE

FROM POTSDAM TO VAIHINGEN SCENARIOS

IoU of the model. It is evident that the best performance of the
model can be obtained by setting λ

f
adv to 0.001 and λo

adv to 0.01.
The mF1 and IoU can reach 68.6% and 53.4%, respectively.
The performance of our model decreases significantly when a
larger weight is given to the feature-level adversarial loss. It is
proven that output-level domain adaptation can better align the
source and target domains compared with the feature-level. The
model also shows some performance degradation when both
weights are increased at the same time, which may be caused by
giving the adversarial loss greater clout. Significant decreases in
mF1 and mIoU also occurred when the weights were too little,
indicating the significance of adversarial loss to the model.

2) Sensitivity Analysis Of ST Parameters: The hyperparam-
eters p and μ need to be adjusted during the ST process.
Fig. 5 shows the effect of various values of p on the model’s
performance in terms of mF1 and mIoU metrics. The greatest
results for the model is obtained when p is set to 0.8, where
mF1 and mIoU can reach 73.1% and 58.9%, respectively. If
p is either too small or too large, leads to a decline in the
model’s effectiveness. This is because if p is taken very small, the
pseudolabels generated for the ST process that can be utilized
will be very small and may not be sufficient to train. On the
contrary, if p is taken very large, the pseudolabels will contain
too many incorrect labels, which will cause the performance of
the model to deteriorate.

We also need to perform a sensitivity analysis on the hy-
perparameter μ. If μ is too small, the pseudolabels will retain
all the high-confidence pixels, but there may not be enough
pixels to train the data in the target domain. Conversely, if μ
is too large, the pseudolabels will retain too many wrong pixels.
This will mislead the segmentation network during training and
cause the model to perform poorly. Therefore, we discuss the
hyperparameter μ in Fig. 6. Observing the figure, the prediction
confidence decreases very slowly as the pixel ratio increases
from 45% to 75%. However, when the pixel ratio increases from
75% to 95%, the prediction confidence decreases rapidly. Based
on these analyses, we set the parameter μ to 0.75 to balance
between the quantity and quality of pseudolabeled pixels.

To further investigate the sensitivity of the hyperparameter
μ, we choose different values of μ to produce pseudolabels
for model training, The outcomes of the experiments are given
in Table III. The best performance of the model is obtained
when we take μ as 75%, and mF1 and mIoU can reach 73.1%
and 58.9%. If μ is taken too small or too large, the model’s
performance decreases, which confirms our analysis above.
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Fig. 5. Sensitivity analysis of the hyperparameter p in SPST. (a) Effect of p on mF1. (b) Effect of p on mIoU.

Fig. 6. Relationship between prediction confidence and pixel ratio.

TABLE III
EFFECT OF HYPERPARAMETER µ ON MODEL PERFORMANCE FROM POTSDAM

TO VAIHINGEN SCENARIOS

E. Results and Analysis

In this section, we conduct three domain adaptation exper-
iments using the Potsdam and Vaihingen datasets: Potsdam
(IRRG) → Vaihingen (IRRG), Potsdam (RGB) → Vaihingen
(IRRG), and Vaihingen (IRRG) → Potsdam (RGB). Among
them, the first experiment has the same band combination
between the two data, and the reasons for the domain shift
mainly include the differences in geographical locations, spatial
resolution and light intensity, and is mainly aimed at the problem
of cross-domain land cover classification in different regions.
The latter two experiments have a larger domain shift due to

TABLE IV
DIFFERENT DOMAIN ADAPTATION LEVELS USED IN THE COMPARISON METHOD

the different bands between the data, which also include differ-
ences in the imaging sensors. To confirm our proposed method,
we compare it against current state-of-the-art UDA methods.
These include the baseline models Deeplab-V2, CycleGAN,
MinEnt, AdvEnt, CyCADA, AdaptSegNet, BDL, and CLAN.
Table IV summarizes the different level combinations of each
UDA method.

1) Potsdam (IRRG) → Vaihingen (IRRG): In this scenario,
we perform experiments from the source domain Potsdam
(IRRG) to the target domain Vaihingen (IRRG). All comparison
methods utilize Deeplab-V2 for the segmentation network, and
since CycleGAN is an image style transformation network, we
directly use Deeplab-V2 for training on the source domain data
after stylization of the target domain.

Table V shows the experimental results for this scenario.
The OA, mF1, mIoU, and Kappa of the baseline method are
63.0%, 56.2%, 40.8%, and 50.3%, respectively. Compared with
the results of Deeplab-V2, a baseline model trained exclusively
using source domain data, all domain adaptation methods were
significantly improved. This result suggests that UDA methods
can reduce domain bias between different domains to some
extent and improve model performance, reflecting the impor-
tance of domain adaptation. Notably, our model FLDA-NET
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TABLE V
EVALUATION RESULTS (%) FOR ALL METHODS FROM POTSDAM(IRRG) TO VAIHINGEN(IRRG) SCENARIOS

Fig. 7. Representative results for all methods from Potsdam (IRRG) to Vaihingen (IRRG) scenarios. White, green, blue, yellow, cyan, and red represent Imp surf,
Tree, Building, Car, Low veg, and Clutter, respectively. Clutter is not involved in training.

outperforms other UDA methods in all four evaluation met-
rics, and our best model FLDA-NET+SPST can achieve OA,
mF1, mIoU, and Kappa of 80.5%, 77.4%, 63.8%, and 74.1%,
respectively. Compared with the baseline model, it improves by
17.5%, 21.2%, 23%, and 23.8%, respectively. Compared with
the best performing BDL, our model improves OA, mF1, mIoU,
and Kappa by 10.9%, 11.2%, 13.6%, and 14.7%, respectively.
From a single category perspective, our approach adjusts the
adaptation degree to different categories and achieves the highest
F1 and IoU. Each category has increased by 10.9%, 5.5%,
12.3%, 8.5%, and 16.3% compared with the second place in F1.
In terms of IoU, the improvements compared with the second
place are 14.8%, 7.1%, 17.6%, 9.1%, and 17.2%, respectively.

Fig. 7 shows representative results of our method and various
UDA methods in the Potsdam (IRRG) to Vaihingen (IRRG)
scenarios. In the illustration, white, green, blue, yellow, cyan,
and red regions represent impervious surfaces, trees, buildings,
cars, low vegetation, and clutter, respectively. Among them,
the results of the baseline model Deeplab-V2 show significant
differences compared with the labels. After applying the UDA
method, the segmentation performance has been improved to
varying degrees. Our method FLDA-NET gives the best visual
results, with the presence of fewer missed and wrong segments
and higher completeness.

2) Potsdam (RGB)→Vaihingen (IRRG): In this scenario, we
perform experiments from the source domain Potsdam (RGB)
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TABLE VI
EVALUATION RESULTS (%) FOR ALL METHODS FROM POTSDAM(RGB) TO VAIHINGEN(IRRG) SCENARIOS

Fig. 8. Representative results for all methods from Potsdam (RGB) to Vaihingen (IRRG) scenarios. White, green, blue, yellow, cyan, and red represent Imp surf,
Tree, Building, Car, Low veg, and Clutter, respectively. Clutter is not involved in training.

to the target domain Vaihingen (IRRG). The specific experi-
mental results are detailed in Table VI, where the OA, mF1,
mIoU, and Kappa of the baseline method can only reach 45.0%,
39.2%, 25.7%, and 27.1%, respectively. Our best model FLDA-
NET+SPST can achieve OA, mF1, mIoU and Kappa of 75.1%,
73.1%, 58.9% and 67.0%, respectively. Compared with the
baseline model, it improves by 30.1%, 33.9%, 33.2% and 39.9%,
respectively. However, compared with the fully supervised train-
ing, there is still a certain gap between our method and it. This is
due to the large domain difference between the datasets in terms
of imaging sensors, geographical locations, spatial resolutions,
etc. Our model surpasses all other UDA methods in achieving

the highest scores for all evaluation metrics. Compared with
CLAN, which has the highest performance, our model improves
by 10.6%, 11.6%, 13.7%, and 14.1% for OA, mF1, mIoU,
and Kappa, respectively. Also, our model achieves the highest
F1 and IoU in each category. These advantages indicate that
our approach performs well in the cross-domain land cover
classification from Potsdam (RGB) to Vaihingen (IRRG).

Fig. 8 displays representative results of our method along-
side other UDA methods for this scene. The baseline model
Deeplab-V2 suffers from a severe domain shift problem and
produces poor results due to the fact that this scenario has a
larger domain shift compared to the previous one. This is shown
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TABLE VII
EVALUATION RESULTS (%) FOR ALL METHODS FROM VAIHINGEN(IRRG) TO POTSDAM(RGB) SCENARIOS

by the many noisy points in the figure, together with large areas
of misprediction. After domain adaptation, this problem was
largely mitigated. However, some single-level UDA methods
still have quite a lot of noisy segmentation, such as CycleGAN
and AdvEnt. Compared to them, our method obtains better
prediction results. Especially, the categories of building and car
have more complete and smooth edge parts.

3) Vaihingen (IRRG) → Potsdam (RGB): In order to verify
the credibility of our methods, we conducted another experiment
from the source domain Vaihingen (IRRG) to the target do-
main Potsdam (RGB). Similarly, all comparison methods utilize
Deeplab-V2 for the segmentation network. Table VII describes
the results of the performance comparison between our method
and other UDA methods. The results clearly illustrate that the
performance of the baseline model Deeplab-V2 is very poor. OA,
mF1, mIoU, and Kappa can only reach 32.1%, 32.3%, 20.8%,
and 10.0%, respectively. Our method also excels with the highest
OA, mF1, mIoU, and Kappa of 65.4%, 64.7%, 49.8%, and
53.9%, respectively. Compared with the baseline model, it im-
proves by 33.3%, 32.4%, 29.0%, and 43.9%, respectively. Even
compared with the second ranked BDL, our method improves by
15.6%, 14.7%, 14.0%, and 20.7% on the four evaluation metrics,
respectively. Meanwhile, on most of the categories, our method
achieves the highest scores for both F1 and IoU. However, our
method is slightly lower than BDL in the tree category, due to the
strong similarity between the tree and low vegetation categories,
which can easily be confused when performing cross-domain
land cover classification. However, our method can achieve
41.7% and 26.3% F1 and IoU for low vegetation. However, BDL
can only achieve 8.8% and 4.6%, which proves that the method
does not effectively discriminate between these two categories,
but only classifies most of them into the tree category. On the
other hand, our method can reconcile these two categories to
some extent.

Fig. 9 shows representative results of our method and various
UDA methods in the Vaihingen (IRRG) to Potsdam (RGB)
scenarios. As can be observed that not only the baseline model
but also the other methods show a lot of noise segmentation

and wrong segmentation. This is because, compared with the
previous scenario, the Vaihingen dataset as the source domain
has fewer training samples and provides less guidance in terms
of segmentation loss, resulting in some single-level or dual-level
methods not being able to align the source domain and the target
domain well. However, our approach successfully attenuates
the domain difference between the two datasets and shows
good segmentation results. This is further evidence that our
approach can still achieve the goal of cross-domain land cover
classification with fewer samples.

V. DISCUSSION

Due to the relative complexity of our model approach, it is
necessary to more thoroughly assess and analyze the effective-
ness of each level in our model. We conducted extensive exper-
iments in the Potsdam (RGB) → Vaihingen (IRRG) scenarios.
Simultaneously, we also conducted a complexity analysis of
different UDA methods, comprehensively comparing the rela-
tionship between evaluation results and computational efficiency
of different methods.

A. Each Level of Effectiveness

In our proposed method, the cross-domain land cover classifi-
cation is accomplished by aligning the source and target domains
at the image, feature, and output levels. To demonstrate the effi-
cacy of each level, we conducted extensive ablation experiments.
Table VIII shows the evaluation results of mF1 and mIoU across
different levels. Where, no adaptation represents the baseline
model, which trains the segmentation network using only the
source domain data. Stage I (IL) represents Stage I image-level
domain adaptation. Stage II (FL) and Stage II (OL) represent
Stage II feature-level and output-level domain adaptation, re-
spectively. SPST represents our proposed self-training strategy.
The table shows that the model performs poorly when we do not
use the UDA method. When we use only image-level domain
adaptation, there is some enhancement in contrast to the base-
line model. When we use the output-level domain adaptation,
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Fig. 9. Representative results for all methods from Vaihingen (IRRG) to Potsdam (RGB) scenarios. White, green, blue, yellow, cyan, and red represent Imp surf,
Tree, Building, Car, Low veg, and Clutter, respectively. Clutter is not involved in training.

TABLE VIII
IMPACT OF DIFFERENT LEVEL COMBINATIONS FROM POTSDAM TO VAIHINGEN SCENARIOS

we observe that the model performance increases significantly.
Both mF1 and mIoU are improved by 22.9% compared with
image-level domain adaptation. Thus, it may be concluded that
output-level domain adaptation proves to be more effective in
aligning the source and target domains.

By comparing Stage I (IL) + Stage II (OL) and Stage II(OL),
we can see that dual-level alignment achieves better results
compared with single-level alignment. By further increasing
the feature-level alignment, our full-level domain adaptation
approach achieves the best performance with mF1 and mIoU
of 68.6% and 53.4%, respectively. Compared with Stage I (IL)
+ Stage II (OL), there is a 1.5% improvement in both mF1
and mIoU. Finally, by adding the SPST self-training strategy
and fine-tuning the already domain-adapted segmentation model
through the utilization of high-confidence pseudolabels in the
target domain, the model shows better segmentation on the target
domain, and the mF1 and IoU can reach 73.1% and 58.9%,
respectively.

B. Complexity Analysis

We performed a complexity analysis of different UDA meth-
ods in the Potsdam (RGB) → Vaihingen (IRRG) scenario and
comprehensively compared the relationship between evaluation
results and computational efficiency of different methods. All
experiments were performed on a single NVIDIA RTX 3090
GPU. Table IX provides the computational complexity, number
of parameters, training time, and mF1 evaluation results for each
method. It can be seen that MinEnt has the lowest computational
complexity, number of model parameters, and training time
for the model due to the fact that it only uses a segmentation
network and does not introduce a discriminator compared with
the other methods. However, its scores for mF1 is also the
lowest, proving that adversarial learning has good results for
cross-domain land cover classification. The other methods have
increased computational complexity, number of model parame-
ters, and training time due to the introduction of discriminators
using adversarial learning. Our method FLDA-NET, employing
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TABLE IX
COMPLEXITY ANALYSIS OF DIFFERENT METHODS

a two-stage training mode and introducing two discriminators,
thus imposes higher requirements on computational complexity,
number of model parameters, and training time compared with
other methods. However, our method achieves the highest mF1
at the cost of sacrificing complexity. In addition, our method
FLDA-NET+SPST further enhances model performance with-
out increasing the computational complexity and the number of
model parameters, achieving the highest mF1 of 73.1%.

VI. CONCLUSION

We introduce a full-level domain adaptation approach called
FLDA-NET to solve the challenge of cross-domain land cover
classification in RS images. The method enhances the perfor-
mance of cross-domain land cover classification by aligning the
distribution of source and target domain data at the image-level,
feature-level, and output-level in two stages. To improve the
classifier’s discriminative capabilities for each land cover cate-
gory in the target domain, we present a ST method called SPST.
This method is based on superpixel segmentation and softmax
probability to assign pseudolabels. These pseudolabels are then
utilized to enhance the classification performance through ap-
plying them to the proposed FLDA-NET. We conducted two-
way experiments on the Potsdam and Vaihingen datasets, and
experiment results show that the method outperforms currently
available UDA methods. We also conducted a series of ablation
experiments to validate the efficacy of each level in our proposed
method.

However, our proposed method is relatively complex and re-
quires multiple stages, as well as numerous hyperparameters. In
our future research, we plan to develop an end-to-end approach
to enhance the performance of cross-domain land cover classifi-
cation for RS images. In addition, we will explore strategies for
automating the selection of hyperparameter weights to further
increase the model algorithm’s automation level.
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