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Abstract—Urban functional zones (UFZ) identification with re-
mote sensing imagery (RSI) is attracting increasing attention in
urban planning and resource allocation in urban areas, etc. The
UFZ is a comprehensive unit comprising geographical, how to
effectively integrate the RSI and points of interest (POI) with
different physical and socioeconomic characteristics is important
and promising. However, there are two challenges for the UFZ iden-
tification. On one hand, the UFZ is closely related to buildings, and
most current methods lack an in-depth understanding of building
semantics. Therefore, an efficient integration of building footprint
(FT) data deserves further investigation. On the other hand, these
RSI, POI, and FT data are heterogeneous; how to effectively
leverage complementary information among these highly hetero-
geneous modalities to enhance the comprehensive understanding
of urban. To solve the above challenges, this article introduces an
end-to-end deep learning-based multisource dynamic fusion net-
work for UFZ identification on RSI, POI, and FT. In the proposed
method, an adaptive weight interactive fusion module is designed to
comprehensively integrate the complementary information among
the heterogeneous RSI, POI, and FT data sources. In addition, a
multiscale feature focus module is proposed to extract multiscale
image features and emphasize critical characteristics. This method
was applied to UFZ classification in Ningbo, Zhejiang Province,
China, and the experimental results demonstrate the competitive
performance.

Index Terms—Deep learning (DL), multimodal data fusion,
remote sensing imagery (RSI), social sensing data, urban functional
zone (UFZ).
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I. INTRODUCTION

URBAN functional zone (UFZ) is the basic unit of urban
planning, serving as geographical space for performing

urban functions and aggregating social resources. A fine-scale
and accurate classification of the UFZ using remote sensing
plays a crucial role in sustainable development, effective plan-
ning, and resource allocation in urban areas [1], [2]. The UFZ
is a comprehensive concept comprising geographical, social,
and economic attributes. Therefore, an effective integration of
multisource data, such as remote sensing and points of interest
(POI), with different physical and socioeconomic character-
istics is crucial but challenging for the classification of the
UFZ [3].

In existing studies, most of UFZ classification methods can
be concluded into two categories: single-modal-based methods
and multimodal-based methods.

A. Single-Modal-Based UFZ Classifying Methods

The high-resolution remote sensing imagery (RSI) is gen-
erally favored in the single-modal-based UFZ classification
methods due to the large scene geographical imaging [4], [5],
[6] and the precise identification of different land cover types in
dividing urban areas into distinct UFZ [7], [8], [9]. Currently,
existing methods for identifying UFZ using RSI can be broadly
categorized into two types: 1) scene-based methods and 2)
object-based methods. The scene-based methods primarily rely
on overall features and landscape information in RSI, making
them suitable for regions with significant variations in land
cover. Zhang and Du [10] utilized object features and categories
to generate low-level semantic information, employing the latent
Dirichlet allocation method to represent image scenes as distinct
UFZ. Huang et al. [11] introduced the bag of visual words model,
treating UFZ as a series of “visual words” and using the visual
features represented by these words to encode UFZ character-
istics. However, scene-based methods face challenges in rec-
ognizing small-scale features in complex urban environments.
In contrast, object-based methods can more precisely capture
specific land cover information, enabling accurate delineation
of UFZ. Zhou et al. [12] initially divided very high-resolution
remote sensing images into super objects corresponding to UFZ.
They employed a random point generation algorithm to generate
voting points and then applied a majority voting strategy to
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assign functional attributes to UFZ. Building upon Zhou’s work,
Du et al. [13] proposed a pixelwise prediction multiscale seman-
tic segmentation network by identifying and merging objects
with similar functions. However, these methods solely relying on
RSI generally generate suboptimal identification performance
[14]. This is attributed to several factors: 1) RSI can provide
spatial and spectral information but often struggles to offer direct
information about socioeconomic attributes; and 2) different
functional zones are often intertwined, making it challenging
for RSI to accurately differentiate these mixed land cover types
without social sensing data.

With the rapid development of multimedia information com-
munication technology, an increasing number of researchers are
utilizing social sensing big data for UFZ classification. Unlike
remote sensing data, social sensing data is generated in real time,
has a wide range of sources, and can more accurately reflect ur-
ban socioeconomic functions and human spatial activities [15],
[16]. Common social sensing data include mobile phone signal
data [17], [18], POI [19], [20], [21], taxi trajectory data [22], and
geotagged leveraging traffic interaction information extracted
from taxi GPS trajectory data, and proposed a geographically
convolutional neural network model with geographic semantic
embedding representation for UFZ classification at the road
segment level. Guilin et al. [25] proposed a UFZ classification
method based on mobile signaling data, utilizing the feature rela-
tionships associated with the characteristics of UFZ correspond-
ing to mobile user calling and movement behaviors. These social
sensing data are easily accessible, among which POI aligns
particularly well with urban land-use types [26], [27]. Therefore,
how to effectively utilize POI data for identifying UFZ has
become one of the research hotspots [28]. POI-based UFZ clas-
sification methods can be mainly categorized into three types:

1) Methods based on clustering analysis [29], this approach
aggregates POI of similar types into clusters, forming
distinct UFZ for each cluster.

2) Rule-based and weighted methods [30], this approach
devises a set of rules and weights to score different types of
POI, subsequently delineating UFZ based on these scores.
However, this method is constrained by the subjectivity of
expert scoring.

3) Methods based on deep learning (DL). With the con-
tinuous improvement of DL theory, particularly in their
outstanding feature extraction capabilities [31], [32], DL
techniques have found extensive applications in UFZ
classification tasks and they often outperform the first
two approaches. For instance, Lu et al. [33] transformed
discrete POI into hierarchical distance heatmaps, enabling
the application of convolutional neural network (CNNs) to
POI. Huang et al. [34] trained their model by maximizing
mutual information between POI–region–urban hierarchy,
facilitating unsupervised learning of urban region repre-
sentations.

Several studies have indicated that each type of geospatial
data possesses unique advantages [21], [35], [36], and buildings
stand out as one of the most crucial elements influencing the
urban structure and city planning [37]. Building footprints (FT)
serve as a significant data source characterizing population

aggregation, energy consumption, and regional development
[38], [39], [40]. Accurate and timely information on FT is
essential data support for sustainable development and urban–
rural planning [41]. Historically, the geographical boundaries
of buildings in UFZ have been vague and discrete. FT data not
only provide precise location and shape information for clusters
of buildings but also assist in identifying structural features of
different buildings (such as height, purpose, and type). This aids
in associating UFZ with specific buildings or groups of build-
ings, enhancing spatial information. However, previous article
has primarily focused on scene recognition and classification,
paying comparatively less attention to the semantic aspects of
buildings in UFZ analysis [42]. In-depth investigations into the
three-dimensional (3-D) structure of urban areas remain limited.
Currently, there is few dedicated methods for UFZ identification
using FT exclusively. Instead, it is employed as supplementary
data combined with RSI to achieve favorable recognition results.
In mixed-functional zones, especially where buildings exhibit
significant physical differences, FT may play a crucial role in
distinguishing between structures [43].

B. Multimodal-Based UFZ Classifying Methods

The types of UFZ are closely related to human socioeconomic
activities, and these pieces of information are not provided
by remote sensing images solely. Therefore, more and more
researchers are considering incorporating social sensing data to
assist in identification. Integration methods of RSI and social
sensing data can be categorized into two types: 1) feature-level
fusion [44], this approach extracts features from different data
sources and integrates them into a common feature space; and
2) decision-level fusion [45], [46], each mode independently
generates a preliminary UFZ classification result, and the results
from different modes are then combined to form an final results.
Feature-level fusion methods are widely applied because they
consider the correlations and interaction effects between modal-
ities. For instance, Zhang et al. [14] extracted spatial relationship
features between different targets, synthesized very high spatial
resolution (VHSR) images, multilevel road networks, and POI
data, proposing a distance-weighted graph attention model. Guo
et al. [47] combined high spatial resolution (HSR) images with
POI data, embedded hierarchical group convolution modules,
and attention mechanisms in the network. They utilized a mask
layer for deep feature filtering of irregular UFZ, automatically
classifying UFZ blocks of different sizes and irregular shapes.
However, feature-level fusion methods tend to introduce redun-
dant information, while decision-level fusion, as each modality
independently produces decisions, is more suitable for handling
heterogeneous data sources. Yet, this method overlooks the
potential correlations between modalities. For example, Bai
et al. [19], based on VHSR images and POI data, separately
learned regional vector embeddings for geographical and socioe-
conomic attributes. They proposed an unsupervised multimodal
geographic representation learning framework. Bao et al. [48],
by combining remote sensing and POI data, introduced the deep
edge feature map into segmentation classification, enhancing the
recognition of building boundaries.



QIAO et al.: MULTISOURCE DYNAMIC FUSION NETWORK FOR UFZ IDENTIFICATION ON REMOTE SENSING, POI, AND BUILDING FT 10585

Fig. 1. Illustration of the study areas. (a) Geographic locations of study area. (b) Three representative study areas, the first is Haishu district, the second is Zhenhai
district, and the third is Jiangbei–Zhenhai–Yinzhou intersection area.

C. Challenges and Contributions

Based on the above analyses of UFZ classification, we put
forward the following two challenges to be solved:

Challenge 1. How to compensate for the lack of elevation
and building semantic information in UFZ classification: While
remote sensing images provide rich information, such as tex-
ture and spectral data, and POI offers insights into economic
activities, there is still a gap in exploring the 3-D structure and
boundary information of buildings. Previous articles have not
thoroughly explored the interrelation between UFZ and specific
buildings, and the representation of building semantics has been
somewhat limited. Consequently, the efficient integration of
building FT data deserves further investigation.

Challenge 2. How to effectively leverage complementary in-
formation among heterogeneous modalities: Due to the inherent
modality differences between RSI and social sensing data, where
remote sensing images provide spatial and spectral surface
data, building FTs and POI are based on location-based raster
vector data, and existing methods not only overlook modality
differences by directly integrating them but also fail to consider
the semantic distribution imbalance between remote sensing
data and social sensing data. This makes it challenging to fully
exploit complementary information among different modalities
by considering modality differences.

In this article, considering the aforementioned challenges,
we propose a novel end-to-end multimodal fusion network.
The main contributions of this article can be summarized as
follows.

1) To address the Challenge 1, we introduce a multisource dy-
namic fusion network (MSDFN) suitable for fine-grained
UFZ identifying. This network leverages object features
from remote sensing images, socioeconomic information
from POI, and elevation information from building FTs,
enabling a clearer identification of regional boundaries and
demonstrating effective recognition in complex terrains,
such as fragmented landscapes.

2) To overcome the Challenge 2, we develop an adaptive
weight interactive fusion module (AW-IFM) that dynam-
ically allocates weights based on the inherent characteris-
tics of each respective dataset. This module robustly and
efficiently interacts with feature information among dif-
ferent modalities, thereby narrowing modality differences.

The rest of this article is organized as follows. Section II
describes the study area and dataset. Section III introduces the
general workflow and key components of the proposed method.
Section IV provides the experimental results and analysis. Sec-
tions V presents the discussions. Finally, Section VI concludes
this article.

II. STUDY AREAS AND DATASETS

A. Study Areas

In this article, we selected three typical areas within Ningbo
city in Zhejiang province, China, as the research area, with
geographical coordinates ranging from 28°51’ to 30°33’N and
120°55’ to 122°16’E [Fig. 1(a)]. Located on the southeast coast
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TABLE I
SPECIFICS OF RSI, POI, AND FT

of China, Ningbo serves as a crucial port city and one of the
economic centers of Zhejiang province. As of the end of 2022,
Ningbo covers a total area of 9816 square kilometers, with a
permanent population of 9.618 million and an urbanization rate
of 78.9%. The region exhibits a relatively diversified economic
structure, including well-developed sectors in agriculture, in-
dustry, and commerce.

For this article, we focused on three specific areas within
Ningbo [Fig. 1(b)]. The first study area is predominantly situated
in the Haishu district, representing the most urbanized region in
Ningbo with high-rise buildings, shopping centers, dining estab-
lishments, and cultural and entertainment facilities, making it a
crucial hub for urban life. The second study area is positioned in
the core zone of Zhenhai district, undergoing active urbanization
with a predominant industrial focus, featuring relatively dense
building types, and exhibiting significant differences among
various UFZ. The third study area is located at the intersec-
tion of Jiangbei district, Zhenhai district, and Yinzhou district,
characterized by a diverse and scattered distribution of urban
functions.

B. Datasets

This article utilized following three types of data: high-
resolution RSI, POI, and building FT data, and their specific
information is shown in Table I.

1) The RSI was captured by the Gaofen-2 satellite, consisting
of 1-m resolution panchromatic images and 4-m resolution
multispectral images with four bands. Through radiomet-
ric calibration, atmospheric correction, and orthorectifi-
cation, the panchromatic and multispectral images were
fused to generate a final 1-m resolution multispectral
image.

2) POI data were obtained from the Amap API and con-
tained information about specific geographical locations
or places, such as names, categories, geographic coor-
dinates, addresses, descriptions, etc. These data reveal
the types of activities conducted by people in specific
places and can complement socioeconomic information.

Due to the absence of clear classification standards, we
reclassified POI into 10 categories based on the “code for
classification of urban and rural land use and planning
standards of development land GB50137” issued by the
Ministry of Housing and Urban–Rural Development of
the People’s Republic of China. These categories include
public leisure, medical services, transportation facilities,
commerce, education and culture, residential accommoda-
tion, companies and enterprises, government land, scenic
spots, and parking lots.

3) FT data were sourced from Bigemap, including infor-
mation about the height, length, and area of the build-
ings. These physical properties can reflect the functional
attributes of an area and highlight differences between
various land-use types. All the RSI, POI, and FT data in
the three study areas are acquired in 2019.

C. UFZ Categories

Since there is no uniform rule of UFZ classification, similar
to the POI classification, we also refer to the Chinese national
standard “code for classification of urban and rural land use and
planning standards of development land GB50137” and define
13 types of UFZ, including area to be developed, commercial
zone, educational facility, residential neighborhood, mixed-use
residential and commercial zone, industrial zone, tourist attrac-
tion, public leisure area, government facility, medical facility,
green space, water body, and transportation infrastructure. Their
specific definitions are provided in Table II. It is worth noting
that Jiangbei–Zhenhai–Yinzhou intersection dataset lacks public
leisure area and government facility, resulting in only 11 types
of UFZ.

III. METHODOLOGY

In this section, we propose a multimodal fusion framework
tailored for the UFZ classification by integration of RSI, POI,
and FT data. The framework is intricately divided into four key
components: preprocessing, feature extraction, feature fusion,
and feature refinement and regression, as illustrated in Fig. 2. In
the proposed method, the RSI, POI, and FT are encoded into a
shared domain after preprocessing. Subsequently, we introduce
an AW-IFM to dynamically assign weights to the data based on
their inherent characteristics. The integration process is gradual,
involving FT and POI, with RSI serving as the primary focal
point. To enhance the feature representation capability across
multiple scales, we primarily design the channel–dilated–spatial
joint module (CDS-JM) and multiscale feature focus module
(MS-FFM). Finally, UFZ classification is executed through a
combination of convolutional and fully connected layers. It is
worth mentioning that, to address the issue of category im-
balance in UFZ classifying, our framework supplements the
conventional cross-entropy loss with the dice loss.

A. Data Preprocessing

This article employs a traditional patch-based approach, uni-
formly dividing each dataset into fixed-size blocks. Leveraging
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TABLE II
SPECIFIC DEFINITIONS OF EACH UFZ TYPE ON CHINESE NATIONAL STANDARD “CODE FOR CLASSIFICATION OF URBAN AND RURAL LAND USE AND PLANNING

STANDARDS OF DEVELOPMENT LAND GB50137”

Fig. 2. Overview of the proposed MSDFN.

an end-to-end network, the model requires only three prepro-
cessed data inputs to generate a classification result map, mak-
ing it convenient and easily implementable. In this article, we
consider each uniformly sized image as a basic unit for UFZ,
and the preprocessing procedures for the three types of data,
namely, RSI, building FT, and POI, are illustrated in Fig. 2.

For RSI data, after preprocessing, we directly extract both
their low-level and high-level features without the need for
additional processing. Regarding the FT data, we utilize ArcMap
10.8 to connect adjacent building FT blocks into connected
regions, followed by rasterization to generate output images.
We specifically select the physical attribute of height from FT
data, which can compensate for the limitations of extracting
features in 2-D and analyzing the floor-level patterns of building
structures in UFZ, given the significant variation in building
heights among different types. Concerning the POI data, we
first filter out invalid data, such as public toilets and kiosks,
categorize them as per Section II, and then rasterize the output
images. Finally, the three types of data are collectively input into
our MSDFN for UFZ mapping.

B. Feature Extraction

This article employs CNN to extract feature information
from multimodal data. CNN is capable of extracting various
features when processing RSI, including low-level features, such
as edges, textures, colors, and shapes, as well as high-level
semantic features, such as the overall structure of buildings,
relative positions, and hierarchical relationships, even capturing
local information in complex scenes [49], [50]. However, POI
and FT are both vector data, with a structure different from that
of RSI, making direct fusion challenging. To address this issue,
we perform previous data preprocessing and transform POI and
FT data into image format using ArcMap. Unlike other methods
that straightforwardly concatenate nonremote sensing data, we
consider the uniqueness of each data source, allowing CNN to
independently extract their feature information. Specifically, we



10588 IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, VOL. 17, 2024

Fig. 3. Architectural schematic diagram of AW-IFM.

extract the height information from the FT data. For POI data, we
employ a majority voting strategy, selecting the category with
the highest frequency within a region as the POI category for
that region. The calculation method is as follows:

Ti =

ni

Ni∑j
1

ni

Ni

(i = 1, 2, 3, . . . , j) (1)

where i represents the type of POI, j represents the total number
of POI categories, ni represents the number of the ith type of
POI in a specific region, Ni represents the total number of the
ith type of POI in the entire image, and Ti represents the ratio
of the frequency density of the ith type of POI to the frequency
density of all types of POI. When converting the processed POI
data features to raster format, the selected pixel size for each
study area is uniformly set to 80. It is worth noting that, due
to the varying resolutions of each RSI and the corresponding
differences in UFZ sizes, the output POI image is a raster image
with the same resolution as the RSI. The same principle applies
to FT data.

In the feature extraction module of Fig. 2, we employ an
encoder architecture similar to VGG16 [35], [51]. This encoder
structure is utilized for extracting features from the three mul-
tisource and multimodal data types: RSI, POI, and FT. The
architecture consists of four stages denoted as “Encode,” each
composed of a 3 × 3 convolutional layer and an ReLU layer.
Additionally, between the convolutional and ReLU layers in the
second and fourth stages, we include an additional max-pooling
layer with a pooling window size of 2 × 2 to facilitate the ex-
traction of spatial features. After extracting feature information
from the three data types, we will proceed to interactively fuse
them in the subsequent steps.

C. Feature Fusion

When utilizing FT data for the recognition of simple-
structured functional areas, such as scenic spots, urban green
spaces, open spaces, and transportation, there may be some data
redundancy introduced. However, in identifying areas composed
of significantly different building types, such as residential, com-
mercial, and industrial, enhancing the corresponding physical
features can improve recognition effectiveness [43]. Similarly,
although POI data can provide more detailed geographic entity

information in scenarios with high demands for urban activ-
ity diversity, in situations requiring consideration of building
structures and micro features, it is necessary to combine other
data sources to enhance accuracy. RSI serves as the bridge
between these two types of data. Therefore, inspired by nonlocal
attention [52], we introduce corresponding weights to these
data to facilitate the positive impact of effective features on
fusion and suppress the influence of irrelevant features on fusion
results. Our proposed adaptive weight interaction fusion module
is illustrated in Fig. 3.

Specifically, AW-IFM first combines the feature maps MR ∈
RH×W×C of RSI with the feature maps MF ∈ RH×W×C of
FT and MP ∈ RH×W×C of POI in pairs, where H, W, and C
denote the height, width, and channel of the feature maps. Then,
each combination undergoes an interaction through a shared
multilayer perceptron (MLP) layer, represented as follows:

FF , FR, FP = MLP(MF ,MR,MP ) (2)

where FF , FR, and FP represent the output of their respec-
tive feature maps. Taking RSI data as the main component
and FT and POI data as supplementary, we progressively fuse
them to obtain fusion results MRF ∈ RH×W×2C and MRP ∈
RH×W×2C . This approach ensures that each fusion step fully uti-
lizes the information from each data source, allowing the model
to better learn the multimodal features of the data. Subsequently,
adaptive weights are assigned to the two fusion results, relying
on the respective characteristics of the data for weight genera-
tion. Similarly, the three types of multisource and multimodal
data undergo an MLP layer, generating a single fusion feature
through a step-by-step fusion strategy. Unlike directly fusing
the three data sources, our approach considers the correlation
between the data, preserving not only the characteristics of the
source data but also reducing fusion complexity.

Next, for the fused feature map MRFP ∈ RH×W×4C , we
employ a 1 × 1 convolutional layer to learn the correlation
between the previously obtained MRF and MRP features. The
obtained correlation coefficients are then normalized using the
sigmoid function to generate weight matrices w ∈ [0, 1] and
w′ = 1− w ∈ [0, 1]. The values of w are applied to MRF ,
and those of w′ are applied to MRP . Subsequently, the final
output feature map is calculated through a weighted summation,
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Fig. 4. Channel–dilated–spatial joint module.

Fig. 5. Multiscale feature focus module (MS-FFM).

expressed as follows:
⎧⎨
⎩
Mi = MRF ⊗MRP

Mj = concat(w ⊗MRF , w
′ ⊗MRP )

Mk = concat(Mi,Mj)
(3)

where ⊗ denotes the Hadamard product, Mi ∈ RH×W×2C and
Mj ∈ RH×W×4C represent the intermediate fusion features re-
spectively, and Mk ∈ RH×W×6C signifies the final output of
the fusion feature result. Overlaying features from different
fusion strategies allows adaptation to diverse data and scenarios,
enhancing robustness. Subsequently, the obtained fusion feature
map is propagated to the next stage for further processing.

D. Feature Refinement and Feature Reconstruction

For the fused intermediate feature map, we introduce dilated
convolutions and attention mechanisms to enhance feature rep-
resentation capabilities in both spatial and channel dimensions,
to optimize network performance. In the fusion of map channels,

different channels contribute differently to UFZ classification.
To capture channel features accurately, we introduce a chan-
nel attention mechanism to allocate weights to each channel.
Furthermore, considering that UFZ is composed of land use in
multiple regions, we introduce a spatial attention mechanism in
its spatial dimension to adaptively adjust features, enhancing
sensitivity to the internal details of UFZ. Moreover, build-
ing upon the traditional convolutional block attention module
(CBAM) module [53], we introduce dilated convolutions and an
MS-FFM, enabling the model to better handle different scales of
geographic structures in UFZ, expanding the receptive field, fa-
cilitating the understanding of the overall structure and patterns
of land use, and retaining finer local features. This is crucial
for UFZ classification, as UFZ encompasses rich geographical
details typically, such as building outlines and road networks.

We categorize all the modules mentioned above into the
CDS-JM (Fig. 4) and the MS-FFM (Fig. 5). The explanation
of the CDS-JM is as follows. As shown in Fig. 4, for the
result feature map Mk obtained from feature fusion, we initially
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pass it through a channel attention module (CAM). The CAM
effectively weights different channels and highlights channel
information that is meaningful for the UFZ classification task.

After passing through the CAM, we employ an improved
dilated convolutional layer to enhance computational efficiency
and effectiveness. It is achieved by utilizing depthwise sepa-
rable convolution, which decomposes the standard convolution
into depthwise convolution and pointwise convolution. Initially,
the input feature MCH undergoes a 3 × 3 convolutional layer,
generating output that encompasses information from different
receptive fields of the input features. By employing depth-
wise separable convolution, the convolutional layer performs
downsampling, reducing the spatial dimensions of the feature
map while increasing the number of channels. Subsequently,
three depthwise separable convolutional layers are utilized, each
consisting of two sublayers. The first sublayer is a depthwise sep-
arable convolutional layer with a 3 × 3 convolutional kernel, and
dilation rates of 1, 2, and 3, implementing dilated convolutions
on the input feature. The second sublayer is a 1 × 1 convolutional
layer with eight convolutional kernels, responsible for channel
information fusion. This approach decomposes each depthwise
separable convolution into depthwise and pointwise convolu-
tions, effectively enhancing the computational efficiency of the
model. Following this, the output of the three depthwise separa-
ble convolutional layers is merged using a bilinear interpolation
upsampling layer, restoring the spatial dimensions of the feature
map to the original size. Finally, by concatenating the original
input feature MCH with the upsampled feature, we obtain the
module’s output MDI .

Following the dilated convolution, we subject MDI to the
spatial attention module. It makes the shape of feature map
transform to RH×W×8C , and this transformed feature map is
subsequently fed into the MS-FFM (Fig. 5).

Even within the same type of UFZ, there exists significant
variation in scale, and this difference is even more pronounced
among different types of UFZ. Considering this aspect, we
propose a novel MS-FFM designed to extract critical feature
information across various scales in an image, significantly
enhancing the network’s feature representation capabilities and
optimizing its perceptual and discriminative performance to-
ward UFZ. The module initiates by employing convolutional
kernels of sizes 1 × 1, 3 × 3, and 5 × 5 to extract features
at multiple scales. By synthesizing scale-specific features, we
obtain an extended representation. Global average pooling and
attention weighting are applied to capture global information and
fuse multiscale features, forming the preliminary output. Since
feature maps from the same level share some commonalities
and feature block weights need to be allocated, we introduce a
spatial excitation block (SEB) at the end of the module [54]. We
capture global information through global average pooling, then
introduce an activation function and attention weights through a
fully connected layer for spatial excitation. Moreover, we incor-
porate dropout regularization to enhance robustness, selectively
emphasizing crucial features of the module.

Eventually, the specific operations for feature reconstruction
of FR in Fig. 2 are illustrated as follows:

Mout = Conv(ReLU(GAP(Conv(ReLU(Conv(Min)))))) (4)

where GAP denotes global average pooling, and Min and Mout

represent the input and output of FR, respectively. After that,
all feature maps are transformed into 1-D feature vectors. These
vectors are then fed into a softmax function for UFZ recognition
and classification.

E. Loss Functions

Due to significant variations in regions at different urban-
ization stages, UFZ categories exhibit extreme imbalance. In
addition to utilizing the traditional cross-entropy loss function
Lce to constrain network training, we introduce a dice loss
function Ldice to enhance pixel-level classification accuracy. To
the best of our knowledge, there has been no prior research
applying the Ldice to UFZ classification in the current field.
Furthermore, to mitigate the risk of overfitting, we employ
L2-norm regularization on the network’s weight parameters. The
overall loss function for the network is given by

L = Lce + βL2 + λLdice (5)

where β is a constant with values of 0.001 and λ is the balancing
factor for the three losses, its value will be determined in the
hyperparameter analysis in Section V. By jointly utilizing these
losses, the entire segmentation network can learn complemen-
tary knowledge. The specific calculation formulas for Lce and
Ldice are as follows:

Lce = −
∑
i

C∑
k=1

yi,k log(pi,k) (6)

Ldice = 1− 2 |Ypr ∩ Yre|
|Ypr|+ |Yre| . (7)

In Lce, yi,k and pi,k represent the ground truth label and
predicted probability value for class k of the ith sample, re-
spectively, and C is the total number of categories in UFZ. In
Ldice, the predicted result Ypr and the true label Yre are both
probability distributions after the softmax operation, where each
value at a position indicates the model’s predicted probability
for the corresponding class. In the calculation of Ldice, these
probability distributions are treated as binary masks, considering
positions with probabilities greater than a certain threshold as
positive class and others as negative class. Then, elementwise
comparisons are performed on the binary masks, obtaining the
intersection by elementwise multiplication and the union by
elementwise addition.

IV. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Settings

All the network frameworks in the experiments are imple-
mented using TensorFlow 2.5.0 and are run on an Intel(R)
Core(TM) i9-10920X CPU with an NVIDIA GeForce RTX 3090
GPU. Since the proposed method is based on CNN patches,
each image in the dataset is cropped into blocks of the same
size for input into the network. Considering the varied sizes and
shapes of UFZ in different datasets, we employ a multicrop-
ping strategy. Specifically, for Haishu, Zhenhai, and Jiangbei–
Zhenhai–Yinzhou intersection area, we crop the images into 54
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patches of size 586 × 728, 81 patches of size 491 × 487, and
54 patches of size 672 × 838, respectively. Subsequently, we
randomly split the data from each patch image into a 4:1 ratio
for training and testing sets. Since this article uses an end-to-end
network, pretraining of model parameters is unnecessary. The
testing results are then restored to their original positions, and
the metrics are calculated by taking the average over the total
number. The number of epochs for all datasets is set to 100, and
training continues until the training loss converged. The learning
rate for this article is set to 0.001, utilizing the Adam optimizer,
with a combination of cross-entropy loss, regularization loss for
weight parameters, and class imbalance loss.

B. Evaluation Metrics and Compared Methods

To evaluate the classification results of UFZ, we utilize four
metrics: overall accuracy (OA), kappa coefficient (KAPPA),
average F1 score (Ave_F1), and mean intersection over union
(MIoU). These metrics quantify the model’s classification per-
formance comprehensively, considering its performance across
different categories and providing a comprehensive and objec-
tive evaluation. OA measures the OA of the model across all
categories, KAPPA assesses the consistency between the clas-
sification results and random classification, Ave_F1 averages
precision and recall for each category, and MIoU measures the
relationship between the intersection and union of predicted
results and true labels, reflecting the model’s performance at
the pixel level. Their specific formulas are as follows.

(1) OA: p0 =

n∑
i=1

xii

N
(8)

where xii denotes the element of the ith row and the jth column
in the confusion matrix, n is the number of classes, and N is the
total number of all the samples.

(2) KAPPA: K =
p0 − pe
1− pe

(9)

where pe =
∑n

i=1 (
∑n

j=1 xi,j

∑n
j=1 xj,i)/N

2, and xi,j de-
notes the element of ith row and jth column in the confusion
matrix.

(3) F1 score: F1i =
2piri
pi + ri

(10)

where pi and ri are the precision and recall score of class i,
respectively, and pi = xii/

∑n
j=1 xij , ri = xii/

∑n
j=1 xji. F1i

metric evaluates the classification performance for a specific
class i. While the Ave_F1 is the mean of all the F1 scores
across different categories, providing a comprehensive measure
of the overall classification results for all n classes

Ave_F1: F1 =
1

n

n∑
i=1

F1i. (11)

(4) MIoU: MIoU =
1

n

n∑
i=1

TPi

TPi + FPi + FNi
(12)

where n represents the total number of categories, TPi denotes
the true positive count for class i, FPi represents the false

positive count for class i, and FNi signifies the false negative
count for class i. MIoU calculates the MIoU for each category,
where IoU is utilized to assess the degree of overlap between
the pixel predictions of the model and the ground truth for each
class.

In order to assess the performance of our method, we select
following six representative segmentation methods based on DL
for comparative experiments.

1) Random forest (RF): It is an ensemble learning method
that constructs multiple decision trees and makes predic-
tions based on their collective voting, enabling classifica-
tion and regression analysis of data.

2) ResNet: It employs ResNet18 to extract features, establish-
ing “skip connections” between preceding and subsequent
layers, and accomplishing segmentation through stacked
convolution and pooling operations.

3) Fully convolutional network (FCN): It conducts pixel-
level classification on images, transforming traditional
fully connected layers in CNNs into convolutional layers.

4) Multimodal fusion network (MFN) [43]: This is a dual-
branch convolutional network that integrates features from
two modalities, introducing both channel attention and
spatial attention.

5) LANet [55]: It introduces a patch attention module based
on local attention to enhance the embedding of contextual
information and enriches the semantic information of low-
level features by embedding local focuses of high-level
features.

6) MDL–RS–CNNs [56]: This is a multimodal fusion net-
work performing type recognition through cross-modal
fusion.

7) UisNet [57]: It utilizes transformer-based modules to re-
ceive multimodal data, making it a fine-grained semantic
segmentation approach.

Noteworthy, all comparison methods mentioned above were
provided with data inputs as described in the original text.

C. Experimental Results

1) Experimental Results in Haishu Area: In this section, we
conduct a comprehensive comparison of six baseline methods
for UFZ classification on Haishu dataset (Fig. 6 and Table III).
This region is predominantly composed of commercial resi-
dences, encompassing a diverse range of UFZ categories. The
functional attribute categories of UFZ correspond to those in
Table II, comprising 13 distinct categories: area to be developed
(Are.), commercial zone (Com.), educational facility (Edu.),
residential neighborhood (Res.), mixed-use residential and com-
mercial zone (Mix.), industrial zone (Ind.), tourist attraction
(Tou.), public leisure area (Pub.), government facility (Gov.),
medical facility (Med.), green space (Gre.), water body (Wat.),
and transportation infrastructure (Tra.). As mentioned in Sec-
tion II, Haishu is positioned in the city center, characterized by
thriving commercial activities and the convergence of various
types of UFZ. Our analysis is as follows.

Firs, methods based on residual blocks or dense blocks (RF
and ResNet) exhibited the poorest performance due to their
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Fig. 6. Experimental results for different methods in Haishu area.

TABLE III
QUANTITATIVE EVALUATION RESULTS IN HAISHU AREA (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

simple and shallow feature extraction capabilities. FCN demon-
strated similar performance but achieved reasonably satisfac-
tory classification results in slightly more complex research
scenarios. The context exploration based on attention (LANet)
obtained better performance by adaptively allocating weights
to feature maps in both spatial and channel dimensions. How-
ever, this method has certain limitations in modeling the global
relationships of multimodal data. To address this issue, MDL–
RS–CNNs proposed a cross-modal fusion module conducive
to intermodality information transfer, demonstrating competi-
tive improvement. UisNet effectively improves performance by
utilizing transformer modules. Among all baseline methods,
MFN exhibited the best performance, as it simultaneously ad-
dressed attention context exploration and multimodal fusion
relationships, utilizing mean square error as supervision to

enhance intraclass consistency and interclass discriminability.
The proposed MSDFN method leverages adaptive weights for
more stable and robust feature fusion. Through the visualization
of results, our method achieves more accurate visual effects
compared to other methods, with many misclassified areas in
other methods.

2) Experimental Results in Zhenhai Area: In the early stages
of urbanization, Zhenhai is characterized by UFZ-dominated
enterprises and factories, with surrounding farmland. Although
the distribution of UFZ in Zhenhai differs significantly from
Haishu, our experiments yielded similar results, with an overall
classification accuracy slightly higher than that of Haishu. This
is especially evident in types related to POI, such as commercial
areas, residential areas, educational zones, medical facility areas,
etc. It is evident that our method makes more comprehensive use
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Fig. 7. Experimental results for different methods in Zhenhai area.

TABLE IV
QUANTITATIVE EVALUATION RESULTS IN ZHENHAI AREA (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

of POI. As Fig. 7 shows, our method exhibits the clearest bound-
aries for UFZ; moreover, the amount of confusing noise points
is the least. Compared to the suboptimal MFN method, MSDFN
outperforms it in terms of OA, KAPPA, Ave_F1, and MIoU by
3.55%, 4.17%, 3.47%, and 10.77%, respectively. The significant
improvement in MIoU indicates that MSDFN achieves clearer
boundaries for the buildings in this region, demonstrating a bet-
ter understanding of semantics and segmentation effectiveness.
Simultaneously, for challenging small targets like tourists, our
method can also accurately identify, as shown in Table IV , while
other methods perform poorly.

3) Experimental Results in Jiangbei–Zhenhai–Yinzhou In-
tersection Area: The Jiangbei–Zhenhai–Yinzhou intersection
area is situated at the meeting point of multiple urban districts,
surrounded by water bodies and green spaces. Various types of
UFZ are scattered, reflecting a stage of urban development. In
contrast to other methods that struggle with identifying blurred
and numerous misrecognition areas in this dataset, our approach
demonstrates outstanding performance in maintaining intraclass
consistency while significantly reducing fragmented areas, its
quantitative evaluation results are shown in Table V. This is
particularly notable in the case of detailed regions and small
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TABLE V
QUANTITATIVE EVALUATION RESULTS IN JIANGBEI–ZHENHAI–YINZHOU INTERSECTION AREA (THE BEST RESULTS ARE HIGHLIGHTED IN BOLD)

Fig. 8. Experimental results for different methods in Jiangbei–Zhenhai–Yinzhou intersection area.

targets in Fig. 8. Furthermore, the enlarged results of partial
regions of the Jiangbei–Zhenhai–Yinzhou intersection dataset
in Fig. 8 are shown in Fig. 9. In these enlarged results, it
is evident that our method performs best in filling fragmented
segmentation areas while preserving the original road features.

V. DISCUSSION

A. Performance of RSI, POI, and FT

To demonstrate the effectiveness of supplementing RSI with
POI and FT data, we conduct overall classification experiments
for each data source in Haishu, Zhenhai, and Jiangbei–Zhenhai–
Yinzhou intersection area. The quantitative results are presented

in Table VI. Given that the fusion module requires multiple
data sources for integration, to ensure the fairness of the ex-
periments, we do not employ any fusion or attention modules
on any datasets. The remaining aspects were consistent with the
proposed network framework.

From Table VI, it can be observed that RSI plays a decisive
role in UFZ recognition. However, regardless of the study area,
the UFZ classification results obtained by jointly using RSI, FT,
and POI data sources far exceed the results obtained by using any
single or combination of two data sources alone. This strongly
indicates the helpfulness of POI and FT data in improving
classification outcomes. Regarding FT data, we initially focus
on the top 10 building categories (since areas, such as trans-
portation, water bodies, and green spaces, do not have building
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Fig. 9. Comparison of enlarged results of partial regions in the Jiangbei–Zhenhai–Yinzhou intersection dataset among different comparison methods.

Fig. 10. Comparison experiments of different fusion methods in each study area.

FTs and consequently cannot be identified as corresponding
UFZ). Without the assistance of RSI, overall FT data exhibit
better recognition performance for residential and industrial
areas but are less sensitive to commercial areas, schools, and
other regions. The recognition accuracy in some areas is even
below 20%, possibly due to the high fragmentation level of these
regions. However, when RSI data are combined with FT data,
the recognition performance significantly improves. The OA for
Haishu, Zhenhai, and Jiangbei–Zhenhai–Yinzhou intersection
area increases by 4.57%, 6.68%, and 5.69%, respectively. This
suggests that FT data actively enhances UFZ recognition capa-
bilities in the presence of buildings.

Similarly, POI data demonstrate favorable recognition
outcomes in POI-dense areas, such as commercial districts,
industrial zones, and hospitals, but exhibits poorer recognition
performance in other regions. With the assistance of POI,
the recognition accuracy of RSI in Haishu, Zhenhai, and
Jiangbei–Zhenhai–Yinzhou intersection area improves by
9.56%, 9.55%, and 4.19%, respectively. The inclusion of POI
facilitates the classification of UFZ associated with human
economic and social activities.

Upon combining the three modal data sources, the recognition
performance in each study area sees further improvement. In

comparison to using only RSI data, the OA in Haishu, Zhenhai,
and Jiangbei–Zhenhai–Yinzhou intersection area increases by
11.61%, 14.71%, and 8.54%, respectively. Kappa improves by
13.16%, 18.39%, and 10.04%, Ave_F1 increases by 11.73%,
15.16%, and 8.58%, and MIoU elevates by 18.07%, 25.32%,
and 16.27%. This indicates that the introduction of multimodal
data actively promotes UFZ recognition.

B. Ablation Study

1) Hyperparameters: We evaluate the hyperparameters of
our method, primarily the parameter λ in the loss function (5).
λ serves as a factor to balance the cross-entropy loss, weight
decay loss, and dice loss. The results for λ in Jiangbei–Zhenhai–
Yinzhou intersection area are presented in Table VII. From the
table results, we ultimately choose λ = 1 as the parameter value
for MSDFN, as it yields the highest values for OA and MIoU in
the experiments, with respective values of 0.9075 and 0.6185.

2) Performance of AW-IFM, CDS-JM, and MS-FFM: MS-
DFN consists of three key components: AW-IFM, CDS-JM,
and MS-FFM. To assess the necessity and effectiveness of
these modules, we conduct ablation experiments on various
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TABLE VI
QUANTITATIVE COMPARATIVE EXPERIMENTS WITH DIFFERENT SOURCE DATA OF RSI WITH POI AND FT

TABLE VII
EVALUATION OF THE EFFECTIVENESS OF THE HYPERPARAMETERS IN (5)

datasets to evaluate their impact on classification accuracy. The
experimental results are presented in Table VIII.

1) AW-IFM: As shown in Table VIII, the removal of AW-IFM
results in a decrease in various metrics, demonstrating the
effectiveness of the proposed AW-IFM in fusing remote
sensing and social perception data. Furthermore, building
upon the results in Table VIII, we investigate the impact
of different fusion methods on recognition results. We
conduct experiments using elementwise addition (Add),
concatenation (Concat), adaptive fusion (Adp), and our
dynamic fusion method which is based on data character-
istics. The results are illustrated in Fig. 10. For adaptive
fusion, each data source is assigned a randomly initialized
weight parameter, and the sum of these three weight

parameters equals 1. The network is trained through feed-
back to automatically adjust the weights until achieving
the optimal output results.
From Fig. 9, it can be observed that, regardless of the
dataset, the elementwise addition method performs poorly
due to its simple and rough fusion strategy. The concate-
nation method is similar to addition but with slight im-
provements in various metrics. Unexpectedly, the adaptive
fusion yields the poorest predictive results. We suspect
that the adaptive method requires more computational
resources, and our comparative experiment is only con-
ducted for 100 epochs, which might not have allowed this
network model to fully converge. This is further supported
by the fact that the optimal test results mostly emerged
close to the 100th epoch in the experiment. Conversely, our
data-driven fusion method demonstrates the best overall
performance, with the MIoU metric reaching the high-
est values for each dataset. In the third dataset, the OA
also surpasses the other three fusion methods, reaching
91.25%. This indicates that our fusion method exhibits
optimal recognition performance in scenarios with diverse
UFZ types. In the other two study areas, our method shows
OA results similar to the elementwise addition and con-
catenation methods. Therefore, we chose the data-driven
method to implement feature fusion.

2) CDS-JM: CDS-JM serves as a crucial backbone module
in the network. As evident from Table VIII, the removal
of CDS-JM led to a significant decrease in the network’s
performance.
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TABLE VIII
ABLATION STUDY TO ANALYZE THE PERFORMANCE OF AW-IFM, CDS-JM, AND MS-FFM

3) MS-FFM: MS-FFM integrates multiscale features, global
information, attention mechanisms, and enhances mod-
ule performance through residual connections and SEB.
This enables the model to have greater expressiveness
and better adaptability to complex tasks. The ablation
experiments in Table VIII also validate this point. Addi-
tionally, MS-FFM demonstrates outstanding performance
in complex urban areas. In the diverse Haishu dataset, the
removal of the MS-FFM module resulted in a decrease
of 1.48% and 4.30%. The impact is more pronounced in
Jiangbei–Zhenhai–Yinzhou intersection area, with reduc-
tions of 6.38% and 6.76%, respectively. This indicates the
importance of considering multiscale modeling, particu-
larly in areas with significant urbanization.

C. Issues and Prospects

While our multimodal fusion network has achieved fine-
grained delineation of UFZ across the entire map, certain lim-
itations persist. For instance, the model relies on a substantial
amount of accurately annotated training samples, primarily gen-
erates through manual labeling. Future efforts should focus on
devising innovative algorithms to reduce the workload associates
with data preprocessing. Additionally, the study areas cover in
this article are relatively small in scale, and as of now, there is
no UFZ recognition modeling for large-scale scenes, such as in
Zhejiang Province. Addressing this gap will be a key focus of
future article.

VI. CONCLUSION

The effective utilization of RSI and social sensing data is
crucial for accurately identifying UFZ. This article proposes
an adaptive weighted integration fusion module designed to
condense complementary information and eliminate redundant
information based on the inherent characteristics of multisource
data. Additionally, the inclusion of building FT data supplements
missing semantic information related to buildings.

Experimental results on datasets from three regions in Ningbo
demonstrate that the proposed method exhibits excellent identi-
fication performance across UFZ with different distribution pat-
terns. Under the dominance of RSI, the inclusion of FT and POI
significantly supplements missing feature information, particu-
larly in socioeconomic and building-related areas. Comparative
experiments show that the proposed MSDFN outperforms other
UFZ identification methods. Ablation study further confirms the
effectiveness of the proposed modules.
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