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Abstract—As a fundamental task in remote sensing earth ob-
servation, hyperspectral change detection (HCD) aims to identify
the changed pixels in bitemporal hyperspectral images. However,
the water-absorption effect, poor weather conditions, noise and
inconsistent illumination as well as lack of accurate ground truth
has made HCD particularly challenging. To tackle these challenges,
a novel Accumulated Band-wise Binary Distancing (ABBD) model
was proposed for unsupervised parameter-free HCD. Rather than
relying on the absolute pixel difference with thresholding in con-
ventional approaches, the binary distancing only indicated whether
a pixel was changed or not in a certain band, which could alleviate
the adverse effects of noise-induced inconsistency of measurement.
The band-wise binary distance map is then accumulated to form a
grayscale change map, on which the simple k-means was applied
for a final binary decision-making. Experiments on three publicly
available datasets have validated the superiority of our approach,
which has yielded comparable or slightly better results in com-
parison to a few state-of-the-art methods including several deep
learning models.

Index Terms—Accumulated band-wise binary distancing
(ABBD), hyperspectral image (HSI), parameter-free, unsupervised
change detection.

I. INTRODUCTION

BY COMBINING the pixel-wise 1-D spectral data and the
integrated spectroscopy as a standard 2-D image, hyper-

spectral images (HSI) can reveal a wealth of information for
characterizing the physical and chemical properties of the ob-
jects [1]. In comparison to multispectral images and color images
in Red-Green-Blue (RGB), HSI has two distinct advantages.
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The first is its high spectral resolution and a wide spectral range
that encompasses the visible, near-infrared, and even short-wave
infrared and ultraviolet ranges, enabling monitoring and inspec-
tion well beyond human vision. HSI can capture detailed spectral
information with a resolution at 10 nm or less, consisting of
hundreds of continuous spectral bands [2]. The second is the
rich spatial and spectral information contained in HSI, making
it highly effective in a wide range of detection, inspection,
classification and quality grading tasks [3], including change
detection and land mapping in remote sensing earth observation
[4].

As a subtask of pattern recognition, change detection is often
used to identify and quantify variations between images of
the same scene at different times or under different imaging
conditions [5]. With the rapidly increased availability of the HSI,
HCD has received significant attention, especially for detecting
small but important changes that appear to be spatially and/or
spectrally distinct in between. This is particularly useful in
geological surveys [6], disaster monitoring [7], urban planning
[8], and agricultural surveys [9].

Despite the rich spatial and spectral information, HSI often
suffers from highly redundant content and various aspects of
noise, due mainly to the sensor limitations and atmospheric ef-
fects during the data acquisition. In the last decades, many HCD
methods have been explored to tackle these issues, including
unsupervised and supervised ones, as detailed below.

For unsupervised HCD, image algebra-based classic ap-
proaches are popularly used, in which pixel-wise difference is
measured against a threshold to determine the changed pix-
els These include the change vector analysis (CVA) [10] and
spectral angle mapper (SAM) [11]. CVA detects the changes
by calculating the Euclidean distance between the bitemporal
pixels in the spectral domain, whilst SAM uses the angle be-
tween the two spectral vectors to determine their similarity.
The dynamic time warping (DTW) [12] was utilized to measure
the spectral similarity by computing the minimum cumulative
distance of corresponding pixels across all bands. Due to the
atmospheric effects, sensor noise and other factors, the same
object may show large variations, yet different objects may
share similar spectrums. Therefore, these HCD methods tend to
perform relatively poorly, as they rely simply on the pixel-based
difference.
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Rather than using the raw spectral data, image transformation-
based methods calculate the pixel difference in the transformed
(feature) domain in order to highlight the changed features
whilst reducing the dimension and redundancy of the data.
One typical method is the principal component analysis (PCA)
[13], which projects linearly the high-dimensional HSI data to
a low-dimensional space whilst preserving most of the energy
or information, though PCA is noise sensitive and computa-
tional expensive. In multivariate alteration detection (MAD)
[14], changed pixels were extracted by applying the canonical
correlation analysis to increase the variance of independently
transformed variables. In [15], iteratively reweighted (IR) MAD
was proposed by iterating the weights of different observations,
where larger weights were assigned to observations with fewer
changes, and vice versa. Although image transformation-based
methods may perform well in occasions, they suffer from poor
explain ability, due to failed preservation of the band-wise
correlations and spectral characteristics of the HSI and are often
computationally expensive.

Recently there are also other unsupervised HCD methods
proposed. In [16], a novel three-order Tucker decomposition and
reconstruction detector was proposed, which combines a singu-
lar value accumulation to determine the principal components
in the factor matrices, Tucker decomposition and reconstruc-
tion to eliminate the influence of various factors in the multi-
temporal dataset, and SAM to analyze spectral changes after
tensor processing in different domains. In [17], multitemporal
HCD was proposed, based on discrete representation of change
information, focusing on the represented change information
in each spectral band. The band-wise radiation information is
analyzed to generate a quantized discrete representation of the
change vector, followed by a tree representation to distinguish
between different types of changes. In [18], an automated image
analysis method was proposed that relies on the utilization
of difference images and histogram statistics for change de-
tection. This method distinguishes alterations based on both
positive and negative values within the difference image and
establishes location-specific thresholds by identifying minimum
points within the histogram. Despite reported success, most of
these methods rely on certain manual intervention, incorporating
excessive number of parameters, and lack of generality. In [19],
a spatial-contextual feature extraction method was proposed that
incorporated band selection to reduce spectral redundancy and
an iterative spatial-adaptive filter for noise reduction. The change
magnitude was evaluated using CVA and adaptive regions, fol-
lowed by a binary thresholding using the Otsu method.

In recent years, a few unsupervised deep learning networks
that do not rely on reference change maps have been pro-
posed. In [20], an unsupervised context-sensitive framework
based on deep CVA and suboptimal pretrained multilayered
CNN was proposed, where the extracted deep features enabled
to model the spatial relationships among neighboring pixels
and complex objects. In [21], an untrained framework with
randomly initialization and spatial-channel augmentation was
proposed, which used successive dilation-deformable feature
extraction blocks to extract multiscale spatial-spectral features
and a change-sensitive feature augmentation and comparison

module for feature fusion. In [22], an unsupervised framework
based on regular convolutions with fixed kernels as feature
extractors was proposed that extracted bitemporal features using
an untrained model and utilized deep change vector analysis
to distinguish changed pixels from unchanged ones. Although
it can help to reduce the dependence on labels, the detection
accuracy is less desirable. In [23], a progressive pseudolabel
framework was proposed that utilized the BCNN as the back-
bone and a multiscale preclassification module to generate initial
pseudolabels. Subsequently, these pseudolabels were selected
based on the uncertainty estimated by a Bayesian network.
Although unsupervised deep learning-based methods relying on
pseudolabels have the potential to eliminate the dependence on
the ground truth, the detection accuracy is entirely reliant on the
precision of the generated pseudolabels [24]. Supervised HCD
methods include conventional machine learning and DL-based
methods that train the networks using the labeled information
from the ground truth map. In [25], pseudotraining data was
generated using the Expectation Maximization strategy, along
with an optimized random forest for determining a binary change
map. In [26], band selection was applied first for dimension
reduction, followed by the sequential spectral change vector
analysis for feature extraction and the Support Vector Machine
and random forest to determine the binary change maps. As
a recent trend, deep learning (DL) has attracted significant
attention in HCD to extract highly efficient and representative
features in the spectral, spatial, and spectral-spatial domains
of the HSI. In [27], a recurrent convolutional neural network
(CNN) was proposed for HCD to extract the spectral-spatial-
temporal features jointly, by combining the merits of the CNN
and recurrent neural networks. In [28], an end-to-end 2-D CNN
framework was proposed, using a mixed affinity matrix with an
integrated subpixel representation for feature learning. In [29], a
pixel-level self-supervised hyperspectral spatial-spectral feature
understanding network was proposed for pixel-wise feature
representation instead of 2-D band-based processing, where a
powerful spatial-spectral attention module based on fully con-
volutional layers was employed to explore the spatial correlation
and discriminative spectral features. In [30], a three-directions
spectral-spatial CNN was proposed, which decomposes the
change tensor into spectral and two spatial components. Spectral
information is extracted and dimensionally reduced via 1-D
convolution, while spectral-spatial features from the two spatial
directions are obtained using 2-D convolution, encompassing
information from diverse directions. In [31], a multiscale diff-
changed feature fusion network was proposed that combined a
reduced inception module and a cross-layer attention module
to highlight the significant features at each scale. Furthermore,
LSTM was employed to mine the temporal correlation between
multitemporal images. In [32], a novel hierarchical attention
feature fusion network was proposed, leveraging multiscale
convolution fusion filters for exploring global semantic fea-
tures. This network integrated a position attention module, and
multiperspectives feature filter block with diverse kernel sizes,
alongside a combined loss function to balance feature impacts
during the backpropagation. In [33], a dual-branch transformer
autoencoder was designed, with shared weights in the middle
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layer of the dual-branch transformer, pulling features from
different data into the same space. Moreover, the transformer
autoencoder was also trained iteratively to align the domains.
In [34], an advanced DL-based approach was introduced, em-
ploying an eigenvalue extrema-based band selection strategy to
capture prominent attribute patterns in HSI, where pixel pair
attributes were represented in bitemporal HSIs using a 3-D ten-
sor with spectral-spatial sequence characteristics. It integrates a
fusion framework of CNN and transformer encoder to extract
high-order sequence semantic features, incorporating local con-
text information and global sequence dependencies through a
spatial-spectral attention mechanism. In [35], the fusion network
integrated global and local features from multisource RS data,
where CNNs and transformer were utilized for extracting the
high frequency and low frequency features, respectively. In
[36], a lightweight frequency-spectrum unfolding network was
presented for spectral super-resolution of RGB video data. A
CNN-based frequency-domain subnetwork was used to solve the
data subproblem, recovering spatial detail information from the
HSI, using a Transformer-based spectrum-domain subnetwork
to address the prior subproblem, for reconstructing the spectral
information of the HSI. Although supervised DL-based HCD
methods can achieve good performance as reported, they often
rely heavily on large training data and suffer from extremely high
computational costs. As a result, develop unsupervised HCD
remains of great importance [37].

To tackle the identified challenges above, we proposed an
effective and robust yet computationally efficient method for
unsupervised parameter-free HCD. The major contributions are
summarized as follows.

1) We propose Accumulated Band-wise Binary Distancing
(ABBD), a novel unsupervised method for HCD. By
leveraging binary distancing to indicate if there is a band-
wise change between corresponding pixels, ABBD can
effectively mitigate the adverse effects of noise-induced
measurement inconsistency.

2) To adaptively determine the tolerance level when reaching
the binary distancing, a parameter-free solution is derived
in ABBD for robustness and ease of deployment whilst
maintaining a high accuracy.

3) By applying the k-means to the accumulated N grayscale
change map, the conventional thresholding is avoided for
robustness in binary decision-making. Experiments on
three publicly available datasets have validated its superior
efficacy and efficiency when compared to several state-of-
the-art unsupervised and even deep learning-based meth-
ods.

II. PROPOSED METHODOLOGY

A Conventional Pixel Differencing

In bitemporal HCD tasks, let T (1),(2) ∈ �W ∗H∗B represent
two HSIs captured at different times after spatial registration
and spectral correction, where W , H , and B denote the num-
bers of rows, columns, and spectral bands, respectively. Let
T

(1)
(i,j) = [x1, x2, . . . , xB ] andT (2)

(i,j) = [y1, y2, . . . , yB ] denote

a pair of spectral vectors at (i, j) in T (1) and T (2) (i ∈ [1,W ],
j ∈ [1, H]), where xb and yb (b ∈ [1, B]) represent the corre-
sponding intensity values at band b. The pixel-based band-wise
distance between T (1) and T (2) can be calculated by

T diff
(i,j) =

∣∣∣T (2)
(i,j) − T

(1)
(i,j)

∣∣∣ = [d1, d2, . . . , dB ] ,

d
(b)
(i,j) = |yb − xb| , b ∈ [1, B] (1)

where d(b)(i,j) is the difference of the corresponding pixel (i, j) at

band b on two spectral vectors T (1)
(i,j) and T

(2)
(i,j).

In unsupervised wisdom, changed pixels can be determined
based on the magnitude of T diff

(i,j) , the accumulated d
(b)
(i,j) or

the vector distance between T
(1)
(i,j) and T

(2)
(i,j) [38]. However,

due to the inconsistent illumination [39], varying environmental
and weather conditions and noise [40], d

(b)
(i,j) often appears

noise-sensitive, leading to quite unreliable results of HCD. In
particular, the noise caused significant changes in certain bands
may affect the overall decision-making even though the changes
are minor in the majority of the bands. Therefore, more effective
spectral matching is needed for more robust change detection in
HSI.

To tackle the aforementioned issues, we propose to consider
the band-wise matching in HCD and define M(i,j) ∈ �1∗B to
indicate whether the pixel pair at (i, j) are changed or not. Four
strategies are further proposed for improving the robustness of
HCD as follows. The flowchart of the proposed ABBD algorithm
is shown in Fig. 1.

B. Band-wise Binary Distancing

First, we apply a tolerance threshold ε to d
(b)
(i,j), and the pair

of pixels will be considered as changed at band b only if we
have d

(b)
(i,j) ≥ ε. This can help to determine a band-wise binary

change map M as follows:

M
(b)
(i,j) =

{
1 if d

(b)
(i,j) ≥ ε

0 Otherwise.
(2)

The strategy here has two advantages. First, the tolerance ap-
plied can filter the insignificant difference that is widely occurred
in natural HSI scenes. More importantly, binary distancing can
help to suppress the effect of noise caused by big changes in
certain bands for more robust decision-making for robustness.
By adopting band-wise binary distancing, the effect of abnormal
values caused by noise can be mitigated in comparison to the
absolute differences used in conventional approaches. This has
been further validated in the experiment section.

C. Determining the Overall Change Map

Based on M (b), as our second strategy, the overall change for
each pixel pair in T (1) and T (2) is decided by accumulating the
band-wise binary change map by

C(i,j) =

B∑
b=1

M
(b)
(i,j) , C(i,j) ∈ [0, B] (3)
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Fig. 1. Architecture of the proposed ABBD algorithm.

Fig. 2. Intermediate results of three datasets with ε equals to 300, 600, 900 on (a)–(c) River dataset; (d)–(e) Yancheng dataset; (g)–(i) Hermiston dataset, where
false alarms and missing pixels are marked in red and green, respectively.

where C is a grayscale image to indicate the overall degree of
changes in all the bands. Note the intensity of C is within [0, B],
where B is the number of bands.

As the M (b) is a binary indicator to show whether there is
a noticeable change at the corresponding pixel pairs, against a
predetermined threshold ε, the extracted overall change mapC is
also sensitive to ε. For the three original datasets, the extracted
change maps under different values of ε are shown in Fig. 2,
where the values of ε are set to 300, 600, and 900, respectively.

As seen in Fig. 2, the change maps C are very sensitive to
ε. Setting the fixed threshold too low can result in a higher
number of false alarms as it incorrectly classifies pixels with
subtle difference as changed ones. With an increasing ε, more
false alarm pixels are suppressed, yet real changed pixel may
also be filtered off if the corresponding difference is not high
enough, leading to more missing pixels in the resulting binary
image.

D. Adaptively Thresholding in Binary Distancing for
Parameter-free Implementation

Due to the inherent challenge of determining the optimal ε
for each dataset, we propose as the third strategy an iterative
process to retrieve the best change map as follows. Herein, we
automatically determine a new parameter N to bypass the fixed
ε as follows:

N =
V ∗Q1

Q1 +Q2 +Q3
(4)

whereV is the coefficient used to ensure that the threshold aligns
with the original data, which is set to 10 000 in this experiment
as it helps to produce the best results. Q1, Q2, and Q3 are the
first, second, and third quartile of T diff, respectively.

Note the statistics here will reflect the distribution characteris-
tics of pixel-wise difference in all spectral bands that statistical
analysis based adaptive thresholding is employed for optimal
decision-making, which helps to achieve a parameter-free imple-
mentation rather than relying on certain unadjusted parameters.

Subsequently, the final change map Cacc can be determined as
the mean of the accumulated band-wise binary distancing results
below, where C(n) denotes the change map with the parameter
ε set to n, n ∈ [1, N ].

Cacc =
1

N

N∑
n = 1

C(n). (5)

The extracted final grayscale change maps of three datasets
are shown in Fig. 3, where the changed pixels are clearly distin-
guishable when comparing to the GT maps. This has verified the
value of the third strategy for bypassing the threshold ε and reach
a parameter-free solution. In addition, the consistent results in
Fig. 3 have validated the efficacy of the introduced strategy.

E. Applying K-Means for Binary Decision-making

Rather than to apply the thresholding to the refined change
map Cacc, the fourth strategy is to apply the k-means clustering
method [41] to determine the final binary change map (Ω) for
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Fig. 3. Extracted change maps for the (a) River; (c) Yancheng; and (e) Hermiston datasets in comparison to the GTs in (b), (d), and (f).

Fig. 4. Pseudocolored images of the three HSI datasets, including the River dataset captured on (a) May 3, 2013 and (b) Dec. 31, 2013, the Yancheng dataset
captured on (c) May 3, 2006 and (d) April 23, 2007, and the Hermiston dataset captured on (e) May 1, 2004 and (f) May 8, 2007, respectively.

robustness as follows.

Ω = kmeans (Cacc, k) (6)

where k = 2 for binary classification to classify the change map
Cacc into the changed foreground and the unchanged background
accordingly before evaluation.

III. EXPERIMENTS AND RESULTS

A. Dataset Description

All three datasets used in our experiment were acquired by
the Hyperion sensor mounted onboard the Earth Observing-1
(EO-1) satellite, which offers up to 242 spectral bands ranging
from 0.4–2.5 μm, with a spatial resolution of 10 m and a spectral
resolution of 30 nm [42]. All the images are spatially aligned in
pairs along with the noise removal, as seen in Fig. 4.

As shown in Fig. 4(a) and (b), the River dataset contains
463 × 241 spatial pixels and 198 spectral bands, where the
major changes are the substance in the river and the structure
of the riverbank. The Yancheng dataset shown in Fig. 4(c) and
(d) has 420 × 140 spatial pixels and 154 spectral bands after
noise removal, where the major change is the land cover on the
wetlands. For the Hermiston dataset given in Fig. 4(e) and (f),
it has 307 × 241 pixels in 154 spectral bands, where the major
changes are crop growth situation and the water content of crops
being affected by irrigation conditions in the farmland.

B. Quantitative Assessment

As change detection is a binary classification task, the overall
accuracy (OA), average accuracy (AA), and the Kappa coeffi-
cient (KP ) were used for quantitative performance assessment.
OA is the percentage of correctly classified pixels, which is
defined by

OA =
TP + TN

TP + TN + FP + FN
(7)

where TP , TN , FP , and FN denote the correctly detected
changed pixels, correctly detected unchanged pixels, incorrectly
detected changed pixels, and incorrectly detected unchanged
pixels, respectively.
KP is to measure the interrater reliability that represents the

degree of similarity between the change map and the ground
truth defined as follows:

KP =
OA− PRE

1− PRE
(8)

PRE =
(TP + FP ) (TP+FN) + (FN+TN) (FP+TN)

(TP + TN + FP + FN)2
.

(9)

AA is the average classification accuracy of the two classes,
defined by

AA =

(
TP

TP + FP
+

TN

TN + FN

)
/2. (10)
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Precision (Pre) describes how many of the changed pixels
detected by the method are accurate, defined by

Pre =
TP

TP + FP
. (11)

Recall (Re) represents how many of the actual changed pixels
have been correctly detected.

Re =
TP

TP + FN
. (12)

F1 score (F1) defines a balanced index that can be considered
as harmonic mean of Pre and Re.

F1 = 2∗Pre ∗ Re
Pre + Re

. (13)

C. Results and Analysis

To evaluate the efficacy of the proposed ABBD, we compare
it with some classic unsupervised HCD methods, including
image algebraic-based ones such as absolute distance (AD)
[43], CVA [10] and SAM [11], image transform-based, e.g.,
PCA-KM [13], IR-MAD [15], and DTW-KM [12], and hybrid
methods, e.g., Patch tensor-based HCD (PTCD) [44], Spectral
angle weighted local AD (SALA) [45], and three-order Tucker
decomposition and reconstruction detector (TDRD) [16]. A brief
of these selected approaches is given as follows.

1) AD [43]: The absolute difference between spectral values
is accumulated as the change map, followed by k-means
binary classification.

2) CVA [10]: The Euclidean distance between two spectral
pixels is used to decide the change map, followed by k-
means binary classification.

3) SAM [11]: The angle between the two spectral vectors is
employed to determine the change map.

4) PCA-KM [13]: With PCA to reduce the data dimension
and redundancy, followed by k-means clustering for binary
classification of changed pixels.

5) IR-MAD [15]: By extracting altered objects via canonical
correlation analysis to amplify the variance of indepen-
dently transformed variables, it iterates the weights of
distinct observations, assigning larger weights to those
with fewer changes and vice versa.

6) DTW-KM [12]: It gauges the similarity between two
spectral vectors by calculating the minimum cumulative
distance of corresponding pixels across all spectral bands.

7) PTCD [44]: Unsupervised tensor-based method, it utilizes
tensor decomposition and reconstruction to mitigate the
impact of various factors in bitemporal images, incorpo-
rating a patch-based approach to leverage spatial structural
information by considering nonoverlapping local similar-
ities.

8) SALA [45]: Spectral angle weighted local AD is used to
reconstruct a discriminative feature for robustness.

9) TDRD [16]: After addressing the impact of diverse factors
via Tucker decomposition and reconstruction, it employs
the singular value accumulation to identify key compo-
nents in factor matrices and utilizes spectral angle anal-
ysis to assess spectral changes across different domains,

TABLE I
COMPARISONS BETWEEN ABBD AND VARIOUS UNSUPERVISED METHODS ON

THE RIVER DATASET

thereby capturing both the spectral and spatial informa-
tion.

For quantitative assessments, the OA, AA, and KP on the
three datasets are compared in Table I, which have clearly
shown the superiority of ABBD in all three metrics. The highest
results averaged on all datasets have validated the superiority
of ABBD, thanks to the binary distancing the parameter-free
implementation. Detailed analysis and visual comparison of the
detected change maps for each dataset are detailed below. In the
change maps shown in Figs. 4–6, white and black areas denote
the correctly detected changed and unchanged pixels, whilst the
false alarms and missing pixels are marked in red and green,
respectively.

1) Results on the River Dataset: For the River dataset, Table I
presents the indices describing the binary classification accuracy
of all unsupervised methods. ABBD has produced the highest
OA andKP values within the group, although theAA is slightly
lower than the highest one derived from PCA-KM. As seen in the
detected change maps in Fig. 5, ABBD has missed some small
objects to the bottom-right side of the image than the PCA-KM,
though the latter seems to have more false detection.

In addition, algebraic-based methods have the worse results,
which has been significantly improved by the transformation-
based approaches, especially for detection of large changed
areas, mainly due to their inclusion of global spatial informa-
tion. However, image-transformation based approaches fail to
perform well in detecting the subtle sporadic changing pixels,
leading to a high false alarm rate. For ABBD, it demonstrates a
well-balanced detection of the changed and unchanged regions.
Even without the spatial information, ABBD still outperforms
all others in terms of OA and KP , the achieved KP at 0.7928
surpassing the next one by 0.0602.

2) Results on the Yancheng Dataset: For the Yancheng
dataset, the extracted change maps are compared in Fig. 6 and
the quantitative assessment results are shown in Table II. As
seen, all algebra-based methods, including CVA, AD, SAM, and
DTW-KM, yield poor outcomes with many missing detected
pixels, leading to low values of OA (less than 88%) and KP
(less than 0.71). In contrast, PTCD achieved the highest KP
among unsupervised methods, as the spatial information used
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Fig. 5. Extracted change maps on the River dataset from different methods of (b) AD; (c) CVA; (d) SAM; (e) PCA; (f) IR-MAD; (h) DTW-KM; (i) PTCD;
(j) TDRD; (k) SALA and (l) our ABBD in comparison to the pseudocolor image of the difference between (a) bitemporal images and (g) the ground-truth map,
where the false alarms and missing pixels are labeled in red and green, respectively.

Fig. 6. Extracted change maps on the Yancheng dataset from different methods of (b) AD; (c) CVA; (d) SAM; (e) PCA; (f) IR-MAD; (h) DTW-KM; (i) PTCD;
(j) TDRD; (k) SALA; and (l) our ABBD in comparison to the pseudocolor image of the difference between (a) bitemporal images and (g) the ground-truth map,
where the false alarms and missing pixels are labeled in red and green, respectively.

has improved the detection of intermediate regions. However,
some nonchanging pixels situated in the middle of the visual
map are misclassified, leading to an increased false alarm. This
drawback prevents the accurate separation of the boundaries of
each changing area, which could potentially affect the precision
of the results.

Similar to other methods, ABBD has the second highest
values of OA and KP , lower than PTCD by 0.0129 in KP , but

the missing pixels in the middle part are the least. The values of
AA and Re are the highest among all benchmarks. Overall, these
again highlight the efficacy of ABBD.

3) Results on the Hermiston Dataset: For the Hermiston
dataset, the visualized results are shown and compared in Fig. 7
and the quantitative assessment results are shown in Table III.
The four algebraic-based methods still perform the worst, es-
pecially the SAM. Among image-transform based methods,
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Fig. 7. Extracted change maps on the Hermiston dataset from different methods of (b) AD; (c) CVA; (d) SAM; (e) PCA; (f) IR-MAD; (h) DTW-KM; (i) PTCD;
(j) TDRD; (k) SALA; and (l) our ABBD in comparison to the pseudocolor image of the difference between (a) bitemporal images and (g) the ground-truth map,
where the false alarms and missing pixels are labeled in red and green, respectively.

TABLE II
COMPARISONS BETWEEN ABBD AND VARIOUS UNSUPERVISED METHODS ON

THE YANCHENG DATASET

TABLE III
COMPARISONS BETWEEN ABBD AND VARIOUS UNSUPERVISED METHODS ON

THE HERMISTON DATASET

PCA detected a considerable number of missing pixels, whereas
IR-MAD had more false alarms.

Three advanced unsupervised algorithms, PTCD, TDRD, and
SALA, have shown significantly superior performance on this
dataset compared to image-algebra and image-transform based
methods. Notably, the SALA outperformed all others except
ABBD with an OA of 96.0115% and a KP value of 0.8842. For
our ABBD, it was the best among all compared methods, with
an OA of 97.4874%, a KP of 0.9281 and the AA of 96.4372%,
all the highest, to confirm again the superiority of our ABBD in
HCD.

4) Further Discussions of the Quantitative Results: Overall,
the quantitative assessment results across three datasets shed
light on the strengths and weaknesses of various unsupervised
methods for HCD. One notable observation is that isolated
pixels pose a significant challenge for image-transformation and
tensor-based methods. Relying heavily on spatial features, it
makes these approaches less effective in dealing with isolated
pixels that exhibit changes, leading to high false alarms when the
neighboring pixels were considered. Consequently, the detection
accuracy of PCA-KM and IR-MAD is not as high as that of
image-algebraic methods on datasets with a substantial number
of isolated changing pixels.

On the contrary, the relatively poorer results of ABBD on the
Yancheng dataset is primarily due to the following reasons: 1) as
seen from the GT map, the changed areas in the Yancheng dataset
are all connected large blocks, rather than loosely distributed in
the other two images, the accurate classification of unchanged
pixels within the blocks and the pixels along the edges of the
blocks poses a challenge for this dataset; 2) and as shown in the
pseudocolor image of the difference image, many dark areas in
the blocks mean that there are subtle changes marked as changes,
where the edges of each block in the upper right corner are
marked as unchanged even they appear very bright. These are
the challenges of the dataset itself that presents to the detection
accuracy of unsupervised algorithms. From the comparison of
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TABLE IV
COMPUTATIONAL COMPLEXITY OF OUR ABBD AND THE CLASSIC UNSUPERVISED HCD METHODS

visual maps, like other image algebra-based methods, the ABBD
method generates a significant number of false positives in the
top right corner. This is because these methods do not consider
spatial features, resulting in less effective handling of edge
regions compared to methods based on image transformations,
such as PCA-KM and PTCD methods. However, compared to
image algebra-based methods, ABBD handles subtle changes in
pixels within connected blocks quite well, accurately detecting
subtle changes. It is evident that ABBD’s missing pixel count is
much lower than other unsupervised algorithms’. This is why
ABBD’s detection accuracy is significantly better than other
algebraic-based methods, although it is slightly inferior to image
transformation-based methods.

As for other advanced methods, e.g., PTCD, TDRD, and
SALA, they significantly outperform conventional unsupervised
algorithms on the Yancheng and Hermiston datasets though the
robustness is relatively poor. Moreover, their performance on the
River dataset is notably deficient, falling below the performance
of all benchmark tests.

As an unsupervised method based on image algebra with-
out considering the spatial information, ABBD has produced
significantly improved results in quantitative assessment across
all three datasets. This is mainly due to the proposed binary
distancing and parameter-free decision-making to mitigate the
measurement inconsistency in handling both subtle and obvious
spectral changes. The hightest averaged OA, KP , and AA have
fully validated its efficacy in HCD, especially when processing
datasets with a large number of isolated changing pixels.

As shown in Figs. 5–7(b) and (c), image algebra-based meth-
ods such as AD and CVA that use the absolute difference to
measure the degrees of changes tend to produce a much higher
level of false alarms than ABBD. This is mainly owing to the pro-
posed binary distancing, which has successfully mitigated the
adverse effect of noise-induced inconsistency of measurement
and resulted in a significant reduction of false alarms. Along
with the k-means based binary classification on the cumulated
band-wise binary change map, more accurate and robust HCD
has been achieved on all the three datasets.

IV. DISCUSSION

To comprehensively validate the effectiveness of our proposed
method, we conduct a series of experiments covering com-
putational complexity, threshold adaptive iteration, classifier

selection, and comparison with results obtained from advanced
DL-based algorithms.

A. Computational Complexity Analysis

Herein, we analyze the computational complexity of all unsu-
pervised methods briefly in Table IV, where L denotes the total
number of pixels (L = W∗H), p is the number of the principal
components for dimension reduction, S is the patch size, and N
represents the number of iterations.

In general, algebraic operations are much simpler than image-
transformation based ones. AD, CVA SAM, and SALA have the
least computational complexity because they rely on the pixel-
wise difference between the spectral vectors. Due to the need
for sequence alignment in the spectral domain, DTW-KM has a
much higher computational complexity.

For the image-transformation based methods, such as PCA
and IR-MAD, their computational complexity is much larger
than the algebraic operations, due to the need to calculate the
difference or correlation in the transformed domain. PTCD
involves the segmentation of the HSI into different patches
before applying feature extraction on the constructed tensor.
TDRD requires a three-order Tucker decomposition of the high-
dimensional HSI, followed by feature extraction from the core
tensor or mode matrices. In addition, it needs to reconstruct
the detected change regions from the feature space back to the
original image space. Consequently, these two methods are most
complex within the group. For ABBD, it has the same lowest
computational complexity as the image-algebraic methods when
ε is set to a fixed value (N = 1). With the increasing of iterations,
the computational cost of ABBD will grow linearly. We have
also compared the computation times of all algorithms on River
dataset, which are summarized in Table II. All algorithms were
executed based on MATLAB on an NVIDIA RTX A2000,
and their parameters were set according to the specifications
provided in the original paper. To ensure experimental fairness,
the computation time reported only includes the runtime of the
algorithms and excludes data loading time. From the comparison
result, it can be observed that methods based on algebraic
operations generally require significantly less time compared
to those based on image transformations. For ABBD, it also
has similar runtime compared to other algebraic-based methods
when ε is set to a fixed value (N = 1). However, as N increases,
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Fig. 8. Variation comparison under different values ε: KP on the (a) River; (c) Yancheng; and (e) Hermiston dataset; and OA comparison on the (b) River;
(d) Yancheng; and (f) Hermiston.

the runtime will grow linearly. How to reduce the number of
loops based on the determined N will be further investigated.

In addition, the number of control parameters in these ap-
proaches is analyzed for comparison. Image algebra-based
methods, including AD, CVA, SAM, and SALA, inherently
extract and compare spectral differences, obviating the need
for control parameters. On the contrary, image transformation-
based methods exhibit varying sensitivities to the parameter
settings. Specifically, PCA-KM’s detection outcomes depend
on the number of principal components used, while IR-MAD
is impacted by three key parameters: 1) the maximum number
of iterations; 2) thresholds; and 3) the penalty terms. PTCD’s
detection accuracy hinges on factors such as the window size
and interblock stride, while TDRD’s performance is affected by
the rate parameter between bi-temporal images. Thanks for the
capability embedded within the ABBD that can automatically
determine the associated parameters. This has enabled ABBD
as a parameter-free solution for extra robustness and ease of
deployment whilst producing high accuracy results of HCD.

B. Effect of Binary K-Means versus Thresholding

Based on the accumulated change map, there are two ways to
make the final binary decision in HCD, i.e., k-means clustering
and thresholding, while maintaining the parameter ε spanning
within [1, 2000] to explore the full range of the variations. The
corresponding results on the three datasets are given in Fig. 8,
where OTSU was used to determine the optimal threshold for
the accumulated change map at each ε. As seen, all the KP and
OA curves exhibited an initial ascent followed by a decline as ε
increases. This is due to the fact that a larger ε will put a higher
threshold to detect changed pixels. In other words, it will result

TABLE V
RESULTS OF USING A FIXED TOLERANCE THRESHOLD

in more missing detection hence the declined KP towards zero
along with a stabilized OA.

It is worth highlighting that k-means consistently outper-
formed OTSU thresholding in both theKP andOA. The optimal
ε for k-means turned out to be considerably smaller than that
for OTSU. This finding underscores the efficiency advantage
of k-means clustering over OTSU thresholding while delivering
superior results of HCD. Hence, in the ultimate selection of
the binary classifier, we opted for the k-means clustering. In
addition, quantitative assessment is summarized in Table V.
As seen, the maximum KP achieved by thresholding with
a fixed ε falls short of the k-means binary classification, as
seen in Table III, indicating the efficacy of k-means versus
thresholding.

C. Effect of the Adaptively Determined Optimal N

From (4), ABBD can automatically derive the optimal values
of N as 1055, 1319, and 978 for the three datasets of the River,
Yancheng, and Hermiston, respectively. In addition, to further
validate the efficacy of the automatically determined parameter
N, we compare the detection results from this N with those
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Fig. 9. Results of the OA and KP versus an increasing N.

TABLE VI
RESULTS UNDER MANUALLY AND AUTOMATICALLY DETERMINED VALUES OF

N

manually determined optimal values of N according to the best
detection accuracy, as shown in Fig. 9. Note that the manually
determined values of N are 1999, 1296, and 1053, in comparison
to the automatically derived values of 1055, 1319, and 978
from the three datasets of River, Yancheng and Hermiston,
respectively. The OA and KP yielded on the three datasets,
using both the manually and automatically determined N, and
are compared in Table VI. Although the N values can be much
different, the produced OA and KP are very close to each
other, which has validated the efficacy of the adaptive solution
in determining the N.

Interestingly, the comparison of results revealed that the
OA and KP values attained at the optimal N values were
slightly improved when compared to the adaptively determined
N, although the differences were relatively small. This outcome
further validates the efficacy of our ABBD in determining the
appropriate N values for the iterative process and achieve truly
parameter-free unsupervised HCD that is applicable to different
datasets.

TABLE VII
COMPARING ABBD WITH SUPERVISED DEEP LEARNING METHODS

D. Compare With Supervised DL-Based Algorithms

For extended performance assessment, we compare ABBD
with several supervised deep learning (DL) based models, in-
cluding 2-D CNN [46], 3-D CNN [47], CSANet [48], and
CBANet [5]. We conducted the training using two distinct
subsets, i.e., 5% and 10% of the labeled pixels, respectively,
while using the remaining for testing. The training samples were
randomly selected each time, and the averaged OA and KP in
three runs were used for comparison, as shown in Table VII.

For the River dataset, with a training ratio of 5%, ABBD
outperformed all DL models in both OA and KP . When in-
creasing the training ratio to 10%, ABBD was beaten by CBANet
and CSANet, though it has comparable or even slightly better
results than 3-D CNN and 2-D CNN, especially in KP . For the
Yancheng dataset, irrespective of using 5% or 10% of pixels for
training, all DL-based models surpass ABBD and other unsuper-
vised methods by a large margin. This was due to the removal
of a large number of noisy bands from the dataset, resulting
in weakened representation of the handcrafted features hence
the low detection accuracy of the unsupervised algorithms [49].
For the Hermiston dataset, ABBD outperforms all DL-based
methods in both OA and KP when the training ratio is up to
10%.

ABBD has shown much worse results on the Yancheng dataset
than the River and Hermiston, which can be explained as follows.
In both the River and Hermiston datasets, the changed areas
include a complex landscape of interconnected regions and nu-
merous isolated pixels. Addressing the distinctions among these
isolated pixels in the spectral domain is the strength of ABBD.
Thanks to the proposed binary distancing and adaptive solution,
ABBD outperforms those that solely rely on spatial character-
istics and neglect the pixel-level spectral features, such as 2-D
CNN, 3-D CNN, and CSANet, as they focus on image-level
operations to exploit the spatial correlation [50]. Therefore, they
show remarkable detection accuracy when handling changed
pixels within connected regions on both datasets, but not the
isolated small regions. This also explains why these models
exhibited clear advantages of better results when applied to
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the Yancheng dataset, which contained a substantial number of
interconnected areas of changes. On the contrary, CBANet’s
proficiency in addressing isolated pixels of changes becomes
more pronounced as it leverages 1×1 convolutional layers to
consider pixel-level spectral features, which amplifies with an
increasing training ratio. As changed regions can be of various
sizes, this has shown the value and importance of both spectral
and spatial features in HCD when applying different approaches
including DL.

V. CONCLUSION

In this article, we have proposed a novel method, ABBD
for unsupervised parameter-free hyperspectral change detection.
The proposed four strategies have helped to significantly im-
prove the efficiency and robustness of ABBD in HCD. First,
band-wise binary distancing can successfully mitigate the mea-
surement inconsistency. Second, it is found that the k-means used
for binary decision-making has surpassed thresholding using
OTSU. Third, the adaptive solution is found particularly useful in
automatically determining the parameter N for achieving a fully
parameter-free approach in HCD. With these strategies, ABBD
has outperformed a number of state-of-the-art approaches in-
cluding several deep learning models when the training ratio is
relatively low.

While promising, there remains space for further improve-
ment. First, the detection accuracy can be further improved
by incorporating spatial-spectral information, spatial-contextual
information [19], and ways of sample enhancement [51], though
at an increased computational cost. Second, advanced clus-
tering algorithms, e.g., matrix factorization-based and graph
learning-based incomplete multiview clustering methods [52]
can be applied to replace k-means to handle more complex
cluster distributions. Finally, testing on a more diverse set of HSI
datasets, including cross-sensor and cross-domain examples,
would be beneficial to validate the generalizability of ABBD.
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