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Abstract—The identification of optimal landing sites is a critical
first step for successful missions to the Moon and other extraterres-
trial bodies, necessitating the integration of various environmental
factors over large spatial scales. At the lunar south pole, site
selection must balance engineering safety with areas of high sci-
entific interest, requiring extensive analysis of potential locations.
Although intelligent algorithms have been increasingly investigated
for this purpose, the application of deep learning techniques in
landing site selection remains unexplored. In this study, we em-
ploy one-dimensional convolutional neural networks (1D-CNNs)
to quantitatively assess potential landing sites for exploration and
lunar base construction, considering both scientific and engineer-
ing criteria. We also evaluate the influence of various factors on site
selection using Shapley additive explanations (SHAP) values. The
1D-CNN model demonstrates robust performance across training,
validation, and testing phases. Potential landing sites identified
comprise less than 1% of the total study area, with factors such as
visibility, volatile distribution, topography, and geological charac-
teristics playing crucial roles. By applying operational constraints,
we delineate sites suitable for direct landings and further refine this
subset for base construction based on stringent requirements for
resource utilization and energy sustainability. The combined use
of CNN and SHAP enables more effective potential site screening
and a deeper understanding of the factors influencing selection.
Our findings offer a valuable framework for future lunar south
pole expeditions, potentially minimizing manual survey efforts and
enhancing the precision of landing site selection.

Index Terms—1D-CNN, factor importance, international lunar
research station (ILRS), landing site selection, Lunar south pole,
water-ice.

I. INTRODUCTION

LUNAR exploration, initiated in the last century, has
made significant achievements that have enriched our
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understanding of the Moon’s origin, geological structure, and
evolutionary history [1], [2], [3]. Currently, lunar exploration
is entering an exciting new chapter, with multiple nations and
organizations planning an array of landing missions at the south
pole, alongside ambitions to establish a human lunar base.
Notable endeavors include China’s Chang’E-7 and Chang’E-8
missions, the International Lunar Research Station (ILRS) [4],
and the United States’ Artemis program [5]. The lunar south pole
features the Moon’s largest and most ancient impact basins, in-
cluding the South Pole-Aitken (SPA) basin. Extensive water-ice
deposits have been detected in this region by orbital probes [6],
particularly within the permanently shadowed, low-temperature
large craters [7]. This unique environment makes the lunar south
pole a key region for material and evolutionary studies, and the
site selection for lunar exploration in this region is an important
preceding endeavor.

Landing site selection is a process of identifying regions
of high scientific value that offer safe and viable conditions
to facilitate scientific advancements for imminent exploration
missions to the lunar south pole [8]. It is characterized by diverse
geological formations and material resources distributed across
the region [9]. Scientific missions, such as in-situ exploration
and sample return initiatives, require a coordinated approach to
effectively explore these diverse regions [10], [11]. The capabil-
ity for scientific discovery must therefore play a central role in
determining landing sites for specific missions [12]. Water-ice is
particularly valuable, as it is a source of drinking water and can
be decomposed into oxygen for life support and hydrogen for
fuel [13], making it a critical factor in site selection. Nonetheless,
water-ice-rich areas often present harsh solar conditions and
challenging surface environments [7], which complicate direct
landing efforts. Therefore, a principal challenge in landing site
selection research is how to choose safe landing sites in prox-
imity to priority water-ice reservoirs.

In recent years, site selection studies have been conducted for
the lunar south pole utilizing available datasets [14], with most
employing a multifactorial overlay approach. Lemelin et al. [15]
utilized a weighted score methodology to assess factors such as
hydrogen abundance, the proximity to permanently shadowed
regions (PSRs), and temperature to pinpoint areas conducive
to volatile detection. Additional slope constraints were then
applied to determine the optimal landing sites. Flahaut et al. [16]
focused on areas with temperature below 110 K, slope under
20°, and significant hydrogen signature (exceeding 100 ppm
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by weight). They also established criteria for solar and Earth
visibility, slope, and landing ellipse dimensions to aid in the
site selection for the Luna 25 and 27 missions. Further studies
have extended the multifactorial overlay analysis technique for
south pole landing site selection [17], [18], [19], considering a
wider range of factors such as geomorphological and geological
features [20]. These studies, by incorporating additional factors
in the analysis, can be used as references and comparisons for
landing site selection to improve landing site selection methods.
However, the substantial variation in environmental and geolog-
ical characteristics across different regions presents challenges
in applying uniform criteria to evaluate landing site suitability
over extensive geographic areas, especially in terms of scientific
interests. Consequently, the process of selecting landing sites for
lunar missions generally requires substantial resources.

The site selection methodology outlined previously involves
a synergistic analysis of multiple characteristics, highlighting
the pressing need for tools that can comprehensively evaluate
all pertinent factors and autonomously identify suitable landing
sites. Machine learning presents potential solutions and has been
tentatively applied in lunar landing site selection. Darlan et al.
[21] introduced a hierarchical clustering approach that utilizes
elevation data to categorize potential landing sites across the
lunar surface, and then applies uniform constraints to choose
the final sites. Liu et al. [22] developed a blind selection algo-
rithm that employs K-means clustering to determine a sliding
window threshold for landing suitability based on slope con-
straints. Furthermore, Cao [23] employed a variety of factors
as evidence layers to compute the a posteriori probability of
landing suitability for the entire Moon. These probabilities were
then used to train a random forest model to predict landing
suitability. However, a common weakness in these studies is that
their focus is on broad lunar regions, and the kilometer-scale
resolution of their analyses is inadequate for capturing areas
with rapidly changing surface conditions. In addition, the range
of factors they incorporate is not exhaustive. To date, intelligent
site selection tailored to the complex and finely detailed surface
environments of the lunar south pole remains unexplored.

Convolutional neural networks (CNNs), along with other
deep learning algorithms, are adept at automatically learning
features from complex data for higher level abstraction, often
outperforming traditional machine learning methods in predic-
tive accuracy [24], [25]. CNNs are capable of executing image
segmentation tasks through 2-D or 3-D convolutional processes.
In scenarios where the spatial relationships between data points
are insignificant or where there is a scarcity of training data,
1-D CNNs, which use only 1-D convolution (i.e., scalar mul-
tiplication and addition), offer advantages due to their stream-
lined structure and increased efficiency [26]. Consequently, 1-D
CNNs hold promise for processing site selection factors and
identifying potential landing areas (PLAs), yet their application
in landing site selection remains unexplored. Despite their good
performance, CNNs are often considered “black-box” models
because their multilayered hidden structures do not allow for
easy revealing the decision-making process [27]. To address
the interpretability issue, Shapley additive explanations (SHAP)

Fig. 1. Terrain and geological context of the study area. (a) Digital or-
thophoto map (DOM) captured by the Chang’E-2 mission’s CCD stereo camera.
(b) Comprehensive geological map [29] of the study area, superimposed on a
shaded relief map generated from lunar orbiter laser altimeter (LOLA) terrain.

offer a framework for deciphering the predictions of CNN
model. SHAP values provide insight into the contribution of each
feature to the prediction outcome by drawing on cooperative
game theory [28], thus offering a pathway to demystify the
decision-making process within CNNs.

Centering on the site selection for the lunar south pole, this
study aims to tackle the following research inquiries: 1) Can
quantitative site selection factors be utilized in conjunction with
a 1-D CNN to pinpoint potential landing sites at the lunar south
pole?, 2) How does each site selection criterion influence the
landing suitability predictions (sites) generated by the 1-D CNN
model?, and 3) What characteristics define the distribution of po-
tential landing sites for exploration and the construction of future
lunar bases? To address these questions, the study quantitatively
evaluated environmental factors and the distribution of regions
with high scientific value surrounding the lunar south pole. We
have developed a 1-D CNN model for landing site selection
that promises to streamline the traditional site selection process,
which relies on extensive surveys. In addition, we applied SHAP
values to ascertain the significance of each site selection factor,
thereby elucidating the CNN’s pattern in determining potential
landing sites. With the preliminary selection of landing sites
in hand, we proceeded to analyze the areas suitable for the
construction of future lunar bases.

II. STUDY AREA AND DATASETS

A. Study Area

The lunar south pole represents an optimal locale for future
ILRS development, characterized by minimal diurnal temper-
ature variations and persistent solar exposure. Within the ex-
pansive lunar south pole, areas such as the Cabeus crater, the
Shackleton-de Gerlache ridge, Leibniz β, and the Amundsen
crater are deemed high-priority for ILRS due to their unique
geological contexts and abundant water-ice deposits (see Fig. 1).
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TABLE I
DATASETS RELATED TO ENGINEERING SAFETY AND SCIENTIFIC BENEFITS

This study zeroes in on the identification of landing sites that
offer substantial scientific value and engineering safety within
these prioritized zones, which collectively span an area of 426.8
km × 330.5 km [see Fig. 1(b)]. From a scientific perspective,
the geological backdrop of this sector encompasses a temporal
range from the pre-Nectarian to Eratosthenian periods [29],
with Shackleton crater being a prominent feature within the
extensive SPA basin. The geological diversity here includes
craters, secondary crater clusters, basins, and plains [see il-
lustrated in Fig. 1(b)]. Sampling lunar regolith from varied
geological contexts and epochs is pivotal to understanding the
Moon’s thermal evolution. On the engineering front, the area
has undergone meteorite bombardment, geological uplifts, and
prolonged erosion, contributing to a topography marked by large
craters and their subsidiary formations. The elevation varies
from −10 000 to 14 051 m, with slopes as steep as 63°, based
on a 120-m baseline. This challenging landscape heightens the
risks associated with rover landing and navigation. Given the
compelling scientific prospects and the intricate topography of
the region, a sophisticated method for thorough site selection
analysis is imperative to aid forthcoming lunar exploration en-
deavors.

B. Lunar South Pole Spatial Dataset

To select a suitable landing site, we meticulously gathered a
range of spatial data encompassing the area of interest. This col-
lection included two categories of datasets related to engineering
safety and three related to scientific value (see Table I). For
engineering safety considerations, we acquired datasets related
to surface topography and visibility to other objects. Surface
topographic data encompassed digital elevation models, DOMs,
and slope information. These datasets were sourced from various
repositories, including LOLA accessible through the planetary
data system (PDS) (https://ode.rsl.wustl.edu) and the Chang’E-2
mission (https://moon.bao.ac.cn), with resolutions ranging from

5 to 120 m. In addition, visibility datasets were compiled,
offering insights into average visibility from lunar surface to
Earth and the Sun, along with the distribution of PSRs and
areas characterized by excellent solar illumination. The visibility
datasets were generated by time-averaged computational models
conducted hourly across a span of 18.6 years, as detailed in [7].

To assess the scientific potential, we collected data that de-
scribe geological features, thermal properties, and the distribu-
tion of water-ice and volatiles. We incorporated the comprehen-
sive geologic map published by the US Geological Survey [29],
which synthesizes lunar geological knowledge, categorizing
units by type and age. For thermal environment insights, we used
the Diviner lunar radiometer experiment to obtain average bolo-
metric brightness temperature maps for lunar summer and winter
conditions [30]. The presence of water-ice was determined using
the Moon Mineralogy Mapper (M3) instrument, which identifies
water-ice-bearing pixels (WIPs) through distinct near-infrared
absorption features in reflectance spectra [31]. We also examined
the thermal stability of solid carbon dioxide by analyzing the
averaged sublimation rates of CO2 over an 11-year period, as
measured by Diviner [32]. Areas exhibiting low sublimation
rates, known as cold traps (CTs), could harbor resources for fuel
and life support material production. Furthermore, we evaluated
the abundance of water equivalent hydrogen (WEH) within the
top meter of lunar regolith, using data from lunar exploration
neutron detector (LEND), providing WEH maps and incorpo-
rating findings from the literature [33], [34], [35].

C. Quantitative Site Selection Factors

We identified and characterized 12 key factors that are critical
for site selection process (as shown in Fig. 2). For engineering
safety considerations, we focused on quantifying favorability for
exploration tasks using two terrain factors and three visibility
factors. Terrain characterization was conducted using DEMs
and slope data obtained from the LOLA, prioritizing areas

https://ode.rsl.wustl.edu
https://moon.bao.ac.cn
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Fig. 2. Factors reflecting the engineering safety and scientific benefits of the landing sites. (a) DEM (km) Min: −10 Max: 14.051. (b) Slope(°) Min: 0 Max 63.15.
(c) Sun visibility (%) Min: 0 Max: 80.98. (d) Earth visibility (%) Min: 0 Max: 100. (e) Distance to cold trap (km) Min: 0 Max: 40.681. (f) Distance to water-ice
bearing (m) Min: 0 Max: 111.942. (g) Distance to PSR (km) Min: 0 Max: 16.4. (h) Average summer temperature (K) Min: 34.87 Max: 210.82. (i) Average winter
temperature (K) Min: 27.48 Max: 204.60. (j) WEH (wt%) Min: 0 Max: 0.2. (k) Geodiversity Min: 0 Max: 1. (l) Cost to high sunlight point Min: 0 Max: 1.

with flatter topography. Visibility factors, also derived from
LOLA, included average visibility to the Sun and Earth, which
are indicative of solar power generation and communication
capabilities, respectively. These visibility factors, which are
expected to be higher at preferred landing sites, were used
directly as site selection factors. We further sought locations with
ample solar illumination and minimal durations of continuous
shadow, as described by [7]. Such sites are optimal for con-
structing multisite solar power systems capable of supporting
sustained energy supply for future lunar bases. Proximity to
these high-illumination areas increases a region’s suitability for
future missions. Therefore, we employed the distance cost tool
to calculate the minimum cost path to potential energy supply
locations, incorporating the normalized value as a site selection
factor.

The primary hazards associated with planetary exploration
include slope, energy availability, and communication capa-
bilities [36]. Assuming that available relay satellites can fur-
nish communication support, we focus solely on the combined
weight of terrain and energy costs as the travel cost for each
grid cell. Lunar vehicles equipped with batteries are capable of
traversing minor shadowed regions. However, hazardous terrain
is not permissible. Consequently, we assigned a higher weight

of 60% to terrain costs and 40% to energy costs. Thus, the cost
formula can be given by

total cost = 60%× terrain cost + 40%× energy cost (1)

where terrain and energy costs were scored on a scale from 1
to 10, following the reclassification of slope and average sun
visibility data. Grids with lower slopes and higher illumination
were assigned lower driving costs, reflecting their increased
suitability for landing and operations.

To evaluate the scientific merit of potential landing sites, we
quantified factors encompassing the storage of volatile sub-
stances, temperature conditions, and geological diversity. We
identified four factors to gauge volatile storage, two to assess
thermal conditions, and one to measure geological abundance.
Water-ice, being a critical volatile resource, was directly used
as a factor, WEH, to characterize the prospective storage of
water-ice. The proximity to features such as WIPs, PSRs, and
CTs is indicative of the possible accumulation of volatiles in
the vicinity. We employed Euclidean distances to measure the
proximity to these three features, generating corresponding fac-
tors for each. Temperature plays a pivotal role in the retention of
volatiles and imposes thermal management challenges on lunar
exploration instruments. Therefore, we incorporated average
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Fig. 3. Workflow of the CNN-based site selection method. (a) Data processing to extract site selection factors followed by the creation of a training dataset
through sampling. (b) Training of the CNN-based site selection model and the application of its generalization capabilities. (c) Analysis of site selection specific
to the lunar south pole region.

summer and winter temperatures as two separate factors to depict
the thermal environment. The geological diversity of a region
enhances its scientific value for soil sampling and geological
studies. Regions surrounded by geological units of varying ages
and types are likely to yield significant scientific insights. To
quantify geological abundance, we utilized the kernel density
tool, which provided a measure of the distribution of geological
units, subsequently used as a factor in our analysis.

III. METHODS

We developed a CNN-based methodology for identifying
prospective lunar landing sites, as illustrated in Fig. 3. This
method comprises three primary stages:

1) We processed the acquired spatial datasets to extract quan-
titative factors instrumental for site selection and gen-
erated training samples by sampling within demarcated
public areas earmarked for future landings;

2) Utilizing these samples, we trained the site selection model
and conducted predictions across the study area to pinpoint
potential landing sites. A subsequent model interpretation
phase was undertaken to understand the predictive factors
influencing site selection;

3) We then grouped the identified potential landing sites
and performed a statistical analysis on them. In addition,
we established a set of evaluation criteria to assess the
viability of constructing bases at these candidate locations.

Our approach harnesses the power of lunar big data analytics
to facilitate the mining and discovery of site selection insights.
The objective is to compile a database of feasible landing sites in
the lunar south pole region, utilizing intelligent methodologies
to support the spectrum of scientific research and commercial
exploration endeavors anticipated in the future.

A. CNN-Based Site Selection Method

We developed a 1-D CNN-based method to extract site
selection rules. The network comprises several layers: input

TABLE II
NETWORK ARCHITECTURE PARAMETERS OF THE 1-D CNN

layer, convolutional layers, pooling layers, fully connected (FC)
layers, and output layer. The input layer was designed to receive
and normalize the site selection factor data. The convolutional
layer employs a distinct set of weights to capture local features
and structural information by sliding over the feature vectors
produced by the preceding layer [37]. Rectified linear unit is
employed as the activation function, as recommended by [38],
for its effectiveness in addressing gradient vanishing. The max
pooling function segments the layer into distinct regions using
rectangular windows, selecting the highest values from these
windows to represent the output layer [39]. The FC layer re-
shapes the output of the final pooling layer into a 1-D feature
vector and fully connects it to the output layer [40]. The output
layer employed the Softmax activation function, which converts
the inputs into a normalized probability distribution that sums
to one [39].

In addressing the challenge of evaluating landing feasibility
amid varying factors, this study introduced a tailored 1-D CNN
framework, depicted in Fig. 3(b) and detailed in Table II. The
model consists of two sequential convolution stages, both utiliz-
ing 1×2 convolution kernels. It processes 12 factors from each
pixel to determine the landing feasibility (PLA or non-PLA). To
optimize the identification of potential lunar landing sites using
a CNN, we focused on minimizing the network’s loss function.
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Fig. 4. Methodology for delineating circular landing sites with diameter exceeding 260 m.

We used the gradient descent optimization algorithm to adjust
the network’s weights and biases iteratively, minimizing the loss
function and refining the model parameters. The cross-entropy
loss function can be expressed as [41]

loss = − 1

n

n∑

k=1

[yk ln tk + (1− yk) ln (1− tk)] (2)

where n is the number of PLA samples; t is the predicted value;
and y is the true value of the sample. Upon finalizing the CNN
model, we proceeded with landing site predictions using the
validation dataset. The training performance of the model was
quantitatively assessed using the confusion matrix.

B. Landing Site Acquisition and Optimization

To ensure engineering feasibility at CNN-predicted landing
sites, fixed thresholds for factors related to engineering safety
were determined based on the 60-m resolution dataset: slopes
less than 12° and sun visibility greater than 35% and earth visibil-
ity great than 15%. Any PLAs failing to meet these requirements
were reclassified as non-PLAs. In addition, based on the slope
data at a 5 m resolution below 87.5°S and at a 20 m resolution
above 87.5°S, we further conservatively generated a mask to
identify hazardous zones characterized by slope steeper than
12°. This restriction meets the safety redundancy requirements
at the current level of rover design [42]. Exceeding this slope
may cause the rover to become unstable and increasing the risk
of mission failure. This operation excluded small hazardous
areas contained in the PLAs obtained in the above step. Refined
landing areas were then encoded within a 5 m resolution raster,
with safe locations assigned an attribute value of 1, while all
other regions were assigned a value of 0.

Due to the technical constraints in the aircraft’s flight control
during landing, it is necessary to have a sufficiently expansive
area surrounding the target landing zone. Based on the aerospace

engineering department’s evaluation, the minimum required
space should be a circular area with an approximate diameter
of 260 m. Thus, we designed a circular sliding window with a
diameter of 260 m to traverse the encoded raster (see Fig. 4).
At each position, we tallied the number of safe landing pixels
encapsulated by the window, moving the window by one raster
unit (5 m) at each step. The position with the highest count
was deemed suitable for being the landing point. To generate
the distribution of landing sites, we sampled these identified
landing point regions at a minimum separation of 120 m. Then
we spatially clustered and grouped the obtained landing sites
based on x and y coordinates for further statistical analysis of
attributes.

C. Factor Importance Assessment Based SHAP

To enhance the interpretability of the site selection model,
we conducted an analysis to elucidate the rationale behind its
predictive output. This was achieved by calculating SHAP values
[28], which quantify the influence of each feature on the model’s
predictions for individual samples. By aggregating SHAP values
across multiple samples, we can discern the collective impact
of features on model predictions, thereby yielding a global
interpretation of the site selection model. Assuming that the
mean of the target variable for all samples in the model is ybase,
the sample i is xi, and the feature j of the sample i is xij, which
has a SHAP value of φ(xi,j), the model’s predictive value for
sample xi can be given by [28]

yi = ybase + φ (xi,1) + φ (xi,2) + . . .+ φ (xi,k) (3)

where φ > 0 or φ < 0 indicates that the feature has a positive
or negative effect on the prediction of the target value. SHAP
values not only provide the magnitude of feature influence but
also the direction—whether a feature contributes positively or
negatively to each sample’s prediction.
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The overall importance of each feature to the model’s pre-
diction was determined by averaging the absolute SHAP values
across all samples. The importance of feature j can be as calcu-
lated by [24]

Ij =
1

N

N∑

i=1

|φ (xi,j)| (4)

where Ij is the importance of feature j for model prediction, pro-
viding a global interpretation of the CNN-based site, selection
model. The theoretical calculation of a feature’s SHAP value
can be given by [24]:

φj (f) =
∑

S⊆N\{j}

|S|!× (|N | − |S| − 1)!

|N |!

× [f (S ∪ {j})− f (S)] (5)

where N is the set of all features; S is the subset of features that
does not contain feature j; φj(f) is the SHAP value of feature j;
and f(S) is the predicted output of the model given the subset of
feature S.

Calculating SHAP values for a model can be computationally
demanding, particularly when dealing with numerous features or
incomplete feature subsets. To address this challenge, the SHAP
Python library offers efficient algorithms for approximating
SHAP values, which can return SHAP values as numpy arrays
and support visualization. This facilitated the identification of
factors that positively or negatively influence the model’s predic-
tions, thereby offering enhanced understanding of the model’s
mechanism.

D. Lunar Infrastructure Suitability Assessment

We assessed the suitability of potential lunar landing sites
identified by the CNN site selection model within our study
region. These sites are conducive for preliminary explorations,
where activities such as sample collection and analysis of ge-
ology and volatile materials can be performed with limited ex-
tended durations. Nevertheless, the mission design and process
for establishing a lunar research station is more complex. To
this end, we enhanced our evaluation of the CNN-predicted
landing sites by employing a set of infrastructure suitability
assessment criteria, as delineated in Table III. These criteria are
instrumental in the identification of candidate base construction
regions (CBCRs) and facilitate a thorough analysis of these
regions, enriching our understanding of their spatial distribution
patterns across the study area.

IV. RESULTS

A. Training Samples for the CNN Model

We conducted a comprehensive analysis of the potential
landing sites delineated in the proposed future lunar south pole
exploration missions and identified six areas, each with side
lengths ranging from 16 to 27 km, to serve as the foundation for
our training sample regions [see Fig. 3(a)]. Five of these areas
correspond to the 13 landing zones announced by the Artemis
program, while the remaining one was situated on the periphery

TABLE III
CRITERIA OF INFRASTRUCTURE SUITABILITY ASSESSMENT

TABLE IV
CRITERIA OF INFRASTRUCTURE SUITABILITY ASSESSMENT

of Amundsen Crater, a focal point for construction activities
within the ILRS initiative.

The geographic distribution of the six rectangular areas within
the study area was intentionally dispersed, and the environmen-
tal and geological characteristics of the different areas varied
considerably, especially in terms of their scientific value, such
as the variety of geological types and ages of formation or the po-
tential abundance of surrounding water-ice reserves. Therefore,
areas with different characteristics should have their own special
site selection considerations, and it is necessary to carry out a
detailed manual assessment within these six areas to evaluate
the distribution of geologic and water-ice targets as well as the
environmental and visibility conditions around the areas in order
to ascertain the most appropriate landing grids for PLA samples.
This helped the model to comprehensively mine and understand
the complex siting rules in different regions and improve the
robustness of our model. The layout of the training samples is
illustrated in Fig. 5. These samples encompassed a diverse array
of lunar surface unit types, thereby enhancing the model’s ability
to generalize across different terrains. Utilizing the selected PLA
and non-PLA samples, in conjunction with the compiled dataset
of study area factors, we developed the training dataset for the
CNN-based site selection model.

The completed sample dataset comprises 23,180 data entries.
Each entry includes 12 factors and one label indicating whether
it is a PLA or a non-PLA. Table IV presents the statistical
breakdown: 2898 entries are PLA samples, making up 12.5%
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TABLE V
TRAINING AND VALIDATION PERFORMANCE OF THE CNN-BASED SITE SELECTION MODEL

Fig. 5. Distribution of datasets used to train the CNN model. (a) Peak near
Shackleton. (b) Nobile rim 1. (c) Nobile rim 2. (d) Connecting ridge extension.
(e) Mons Mouton Plateau. (f) Amundsen up.

of the dataset and spread across 71 blocks, while 20282 are
non-PLA samples, constituting 87.5% of the total, dispersed
over 120 blocks. We allocated 80% of this dataset for training
the CNN model and reserved the remaining 20% as a validation
set to assess the model’s performance. In addition, we conducted
an analysis to examine the factor value distributions for PLA and
non-PLA samples, which were graphically represented in Fig. 6,
which included histograms of the distributions and a purple line
depicting a meticulously fitted normal distribution to the data.

B. Model Training and Prediction

The sample dataset acquired from the preceding analysis
was utilized to train the CNN-based site selection model. The
model’s performance, as delineated by the confusion matrix
in Table V, demonstrated exceptional accuracy, with results
surpassing 99% for both training and validation datasets. The
consistent prediction accuracies across training and validation
sets underscore the model’s precision in identifying viable land-
ing sites. The acquired CNN model was then tested for its gen-
eralization and reliability capabilities in the study area, yielding
predictions of 0.9% for PLA areas and 99.1% for non-PLA
areas. Given the harsh surface conditions prevalent at the lunar
south pole, the lower predicted proportion of PLAs aligned with
expectations.

Subsequent to the predictions, high-resolution terrain data (at
5 m/20 m resolution) were employed to detect and exclude small
hazardous zones within the anticipated PLA regions, taking
into account the minimum size requirement for a landing site.

Consequently, we identified 16,423 potential landing sites after
refining the results. These sites were spaced at a minimum of
120 m apart, as depicted in Fig. 7. For organizational purposes,
the landing sites were classified into 22 categories based on
their geographical distribution, which is illustrated within the
yellow boxes in Fig. 7. The landing sites in the same cluster
only represent their geographic proximity. Notably, many sites
are situated on the peripheries of large impact craters [e.g., group
13 in Fig. 7(b)] and on the moderate slopes of towering mountain
ranges [such as group 5 in Fig. 7(d)], as well as on the subtle
inclines at the edges of plains (e.g., groups 12, 21, and 22). The
areas surrounding these landing sites are marked by a diverse
array of geomorphological features, and our predicted landing
sites coincide with most of the 13 high-value landing zones
announced by Artemis.

C. Factor Importance by SHAP Value

The relevance of 12 site selection factors in identifying PLAs
was quantified using SHAP values. The SHAP values provide
insights into the feature importance within our neural network
model. We computed the SHAP values for each feature across all
samples and visualized these in Fig. 8(a). This analysis revealed
the most influential features and quantifies their effects on model
predictions. The Y-axis of Fig. 8(a) represents the individual site
selection factors, arranged in order of their average impact on the
model’s output [as depicted in Fig. 8(b)]. The X-axis of Fig. 8(a)
represents the SHAP values, indicating the degree to which each
feature drives the model’s predictions. In this context, a SHAP
value less than 0 implies that the corresponding feature positively
influences the likelihood of a site being a potential landing area.
Each point on the plot corresponds to the SHAP value for a
particular sample and the overlapping scatter is dithered in the
y-axis direction, with the color of the point denoting the actual
feature value. This color-coding scheme allows us to discern the
impact of raw feature values on the model’s predictive behavior.

In terms of scientific value, for example, for the geodiversity,
samples with higher feature values (pink points, corresponding
to areas rich in surrounding geologic unit types) tend to have
SHAP values less than 0 and high absolute values, indicating
that high geologic value attributes in these areas are of high
importance to the model in predicting PLA results. Similarly,
the high WEH abundances and short distances to volatiles can be
seen to be of importance when the model makes PLA decisions.
Certainly, the engineering safety related factors also clearly
shows the impact of a single metric take on the model predic-
tions. Peculiarly, when winter temperature was moderate, the
model was more likely to produce PLA results. While summer
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Fig. 6. Histogram comparing factor value distributions for PLA and non-PLA samples. (a) DEM (km). (b) Slope (°). (c) Sun visibility (%). (d) Earth visibility
(%). (e) Distance to CT (km). (f) Distance to WIP (km). (g) Distance to PSR (km). (h) Average summer temperature (K). (i) Average winter temperature (K). (j)
WEH (wt%). (k) Geodiversity. (l) Cost to high sunlight point.

Fig. 7. Distribution of potential landing sites that are clustered into 22 groups.

temperature does not show this feature clearly, probably because
of its strong correlation with winter temperature. The above
analysis reveals that our model is consistent with the reported site
selection criteria considered in the actual task [43], indicating
that our model mined the correct site selection rules.

SHAP also offers a comprehensive approach to mapping
global feature importance. It considered the cumulative dataset
and computed the mean absolute SHAP value for each factor,
as illustrated in Fig. 8(b). Among the 12 evaluated factors, sun
visibility and distance to WIPs emerges as the most significant
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Fig. 8. SHAP value of each factor and the average impact of each feature on the model’s predictions. (a) SHAP value (impact on model output). (b) Mean (|SHAP
value|) (average impact on model output magnitude).

Fig. 9. Partial dependence plot of 12 factors. The horizontal coordinate shows the attribute value of the factors, and the vertical coordinate is the SHAP value of
the feature, where SHAP value less than 0 means that the model predicts the result as PLA.

contributor to identifying PLAs. Slope and distance to PSR rank
as the next most influential factors. Lesser contributing factors
include cost to high sunlight point and summer temperature.
These findings underscore the varying degrees of impact that
each factor has on the determination of potential lunar landing
sites. As shown in Fig. 8(a), scatters with SHAP values near

0 have a higher distribution density (maximum dithering in
the y-axis direction). These scatters have limited impact on
prediction.

We further quantified the relationship between the values of
different factors and their SHAP values (see Fig. 9). As well,
SHAP value of less than 0 means that the corresponding factor
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Fig. 10. Box plots illustrating factor distributions for the 22 landing site groups. (a) DEM (km). (b) Slope (°). (c) Sun visibility (%). (d) Earth visibility (%).
(e) Distance to CT (km). (f) Distance to WIP (km). (g) Distance to PSR (km). (h) Average summer temperature (K). (i) Average winter temperature (K). (j) WEH
(wt%). (k) Geodiversity. (l) Cost to high sunlight point.

positively influences a site as a PLA. Specifically, in Fig. 9(e), (f),
and (g), the regions closest to the volatiles have larger absolute
values of SHAP and are more inclined to be PLAs. For Fig. 9(f),
when the value of the attribute is larger, the absolute value of
SHAP is larger overall. Thus, the model is more inclined to
recognize areas with geodiversity greater than 0.04 as PLAs,
which indicates that, overall, the landing zone possesses a more
abundant geologic background. The above analysis shows the
correctness of the site selection process in this article from
the perspective of model interpretation by SHAP, matching site
selection requirements.

D. Analysis of the Landing Site Groups

The analysis of the 22 landing site groups assumes that
sites within each group, due to their proximity, share similar
characteristics (but were not always in the same geomorphic
unit, such as groups 19 and 21, respectively, in proximity to
Sverdrup and Amundsen craters). To elaborate on this, the factor
distributions for these groups were meticulously represented via
box plots in Fig. 10. We compiled data on the factors pertaining
to 16,423 landing sites, where the attributes of each site are
estimated using the values at the coordinates of its geometric
center. In the box plots, the central blue boxes encompass 50%
of the median data for each group. The box’s whiskers extend to
cover approximately the next 25% of the data points at the higher

and lower ends of the range. The extremities are denoted by black
horizontal lines, representing the maximum and minimum factor
values of the group. Data points that fall outside the range of the
whiskers are outliers and are marked with red cross symbols. The
median value for each group is indicated by a red line located at
the center of each box.

E. Assessment of the Candidate Lunar Base Locations

In our study, we refined the process of selecting sites for a
lunar base by incorporating criteria tailored to the construction
feasibility of potential landing zones previously identified by
CNN. The initial phase involved scrutinizing the 22 groups
of landing sites to pinpoint potential CBCRs. Adequate solar
irradiation is the basis for the continued operation of a lunar base.
Thus, we began by examining the average illuminance across
the sites within each group. The site with best sun visibility in
each group was designated as a primary CBCR. In addition,
economically viable sites situated at a reasonable distance from
sites with excellent solar illumination were also regarded as
potential candidates. Table VI listed the 31 preliminary CBCRs
from the 22 landing site groups.

Subsequent to the preliminary selection, we conducted a
comprehensive assessment of the base construction potential
of the identified candidate sites based on several key criteria
outlined in Table III. These criteria prioritized the availability of
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TABLE VI
SUITABILITY ASSESSMENT FOR LUNAR BASE CONSTRUCTION ACROSS 22 GROUPED REGIONS

water resources, the capability to sustain energy requirements
for lunar base operations, the prospects for base expansion,
and the opportunity for further geoscientific exploration. We
employed geographic information system (GIS) software as a
visualization and distance-measurement tool, which aided us
in manually mapping out secure routes from the CBCRs to
substantial volatiles reserves, as well as in making preliminary
calculations of the distances involved. The outcomes from this
suitability evaluation for the initial 31 sites were delineated
in Table VI. It is important to clarify that the high storage
probability of volatiles in Table VI refers to the fact that this
CBCR is located in an area where WEH is abundant and there
are large CTs nearby with aggregated WIPs inside, which does
not represent the exact content of volatile substances.

The analysis of potential volatiles storage, as depicted in
Fig. 11, indicates that strong volatiles potential is present around
the CBCRs below 86°S latitude. These sites are rich in WEH and
the majority of WIPs are predominantly found in large impact
craters within this region. In addition, Cabeus, Amundsen, and
Leibniz (above 86°S) also boast significant WEH quantities and
are situated in close proximity to extensive CTs. The majority of
CBCRs are connected by secure routes to substantial volatiles,
facilitating short-distance resource extraction. Visibility factors
as presented in Table VI suggest that most sites can maintain
solar illumination for over half the lunar day and afford nice
visibility of Earth. Some of the CBCRs could offer near-constant
solar exposure (the purple circles in Fig. 11). In particular, these
CBCRs are generally found near geological boundaries and are
encircled by diverse geological units. Conducting geological
exploration within these sites could yield additional scientific
insights.

F. Lunar Base Site Selection Analysis

Detailed regional analysis of CBCRs reveals significant in-
sights into the terrain and potential resources of the core regions.
The 3-D topography of four notable regions, Cabeus, Leibniz
β, Shackleton, and Amundsen, is displayed in Fig. 12, with

vertical dimensions exaggerated by a factor of 1.5 to enhance the
topographical clarity. Each of these regions possesses distinct
scientific interest and is encircled by various sites previously
identified as viable for station construction. Within these
findings, the potential site for a lunar research station is further
scrutinized.

As depicted in Fig. 12(a), the Cabeus cater, a vast impact
crater, hosts extensive CTs, with a higher concentration of WIPs
on its interior’s left side. The nearest CBCRs are designated as
G1-1 and G1-2. G1-2 resides atop an elevated hill, encircled by
challenging terrain, making access difficult. The paths from G8,
G2-2, and G2-2 to Cabeus’s volatile sites are considerably long.
G2-2, situated on the extended Malapert Massif, lies 20 km away
from a high sunlight point atop its summit. However, the vicinity
is characterized by sparse volatile resources, such as water-ice.
G2-1 is located closer to Haworth. Therefore, G1-1 emerge as the
most advantageous locations for direct exploration of Cabeus’s
interior and for in-situ resource utilization (ISRU) activities, due
to the proximity to water-ice and accessible terrain.

The Leibniz β region is characterized by its highland terrain,
with the eastern portion bordering the Nobile crater. This crater
boasts extensive CTs and numerous water-ice deposits, as visu-
alized in Fig. 12(b). Within Leibniz β, all three CBCRs benefit
from outstanding solar illumination, attributed to high sunlight
points nearby. The primary challenge faced by these sites is
the topographic barrier exceeding 15° [see Fig. 11(d)], which
impedes direct access to adjacent water-ice-rich areas. Nonethe-
less, our analysis suggests that near site G5-3, a navigable path to
Nobile’s internal water-ice zone could be established if the slope
constraint is moderated to 20°. This adaptation would necessitate
the future innovation of lunar rovers capable of traversing rugged
terrain.

In contrast, Shackleton crater, as illustrated in Fig. 12(c),
is delineated by its precipitous sidewalls, rendering it unsuit-
able for vehicular exploration. Alternative investigation meth-
ods, such as aerial fly-in to conduct reconnaissance, must be
employed. The candidate sites we have identified are strategi-
cally placed in the surrounding regions to exploit this unique
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Fig. 11. Visualized distribution of volatile substances and CBCRs. The map background is a WEH abundance map overlaid on a rendering of LOLA terrain, with
WIPs (yellow point) and CTs (blue polygon) qualitatively illustrating good water ice storage. Orange and purple circles represent CBCSs, where purple circles
have excellent illumination conditions.

Fig. 12. Mapping of CBCRs in four regions overlaid on 3-D terrain represen-
tations. (a) Cabeus. (b) Leibniz β. (c) Shackleton. (d) Amundsen.

topology. Sites G14 (1-3) and G15, in particular, are favored
by their proximity to high sunlight points, which ensures an
abundant energy supply. It can be suggested that these sites
are optimally positioned for the extraction of volatiles from
the larger CTs in the vicinity, including those within Sverdrup,
Henson, and de Gerlache craters.

The Amundsen crater, a significant impact feature with a
level floor, is captured in Fig. 12(d). Despite its flat interior,
the crater does not receive adequate solar radiation (> 50%) to
sustain long-term base operations. Consequently, the sites we
recommend within this region are situated along its periphery.
Both G11-2 and G21 offer access routes into the crater. For
G11-1, no route is available, but there is easy access to carry
out surveys of the adjacent Faustini area. Compared to G11-2,
G21 benefits from a superior energy profile and proximity to the
crater’s interior. To mitigate transportation challenges, establish-
ing an energy relay station on the flat base of Amundsen, would
be beneficial to support operations emanating from G11-2 as a
lunar base.

V. DISCUSSION

A. Prediction of Potential Landing Areas

Our research demonstrates that 1-D CNN can effectively
extract complex features from site selection factors. This
approach provides an automated, data-driven method to evaluate
potential landing sites based on quantitative factors, enhanc-
ing the efficiency of mission planning process. The parameter
sharing scheme of 1-D CNN can reduce the number of model
parameters, decrease the risk of overfitting, and improve the
model’s generalization ability [40]. However, it is crucial to
carefully curate and validate the effectiveness of the model in
predicting potential landing sites.
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The vast expanse of the lunar south pole poses various chal-
lenges for site selection, including extreme environmental condi-
tions, complex geological and resources distribution. 1-D CNN
offers unique advantages compared to other methods. Empirical
methods such as weighted superposition and threshold screening
are the most convenient choices, with the setting of weights
and threshold parameters being crucial [44], [45]. Such unified
rules are applicable to partial regions and cannot be effectively
applied to the whole region with complex features in the lunar
south pole. Weighted overlay can obtain landing sites with better
overall performance, but the performance of each indicator
cannot be guaranteed and may lead to the omission of some
areas. The threshold screening method essentially identifies the
concatenation of regions that satisfy the limitations of multiple
factors. However, if many metrics are involved, finding areas
that satisfy all conditions may be challenging. Typically, the
problem of abstract site selection was projected into the space of
heuristic algorithms using a multiobjective function [46], [47],
and the solutions are highly related to the function design and
the generated initial solution selection [48]. The definition of the
initial solution could greatly affect the final solutions and thus
the site selection results.

1-D CNN can automatically learn patterns and rules, al-
lowing for adjustments and optimizations based on different
datasets and site selection objectives [49], [50], thus breaking
free from fixed parameters choice and obtaining good adaptation
and generalization capabilities. The mining of site selection
rules for a large-scale region can be achieved with high-quality
training samples labeled by finite manual surveys, supporting
a comprehensive and efficient screening of potential landing
sites. Overall, our 1-D CNN approach complements existing
methods for determining landing sites with outstanding robust-
ness and reliability in large-scale landing site screening. We
believe that under different mission scenarios and site selection
requirements, the appropriate method should be selected to meet
circumstances.

In terms of specific implementation, our approach follows
a logical process from training to validation and then testing.
The training and validation of the 1-D CNN model are based
on manually sampled extensive datasets, both demonstrating
exceptionally high accuracy. Detailed manual surveys revealed
significant geological and environmental variations across these
six regions, each with unique considerations regarding scientific
value. During the testing phase, we applied the 1-D CNN model
to a large lunar region to evaluate its generalization capability
and reliability, as well as assess the feasibility of predicted PLAs.
Specifically, we used box plots to analyze 12 site selection
factors, demonstrating high feasibility of PLAs. SHAP analy-
sis confirmed the correctness and reliability of the prediction
process, highlighting the model’s strong generalizability across
different datasets.

From the site selection results, our predicted landing areas
show high scientific potential in terms of volatiles storage and
geological richness. Specific space missions have considered
additional features beyond the 12 factors we employed, such as
restriction of ground launch systems, crew landing and return
modules, and specific geological background requirements of

the landing area. Therefore, the landing points chosen for the
specific space missions represent subsets of our predicted land-
ing sites. In conclusion, our study provides valuable insights for
the large-scale screening of landing sites.

B. Site Selection Factors and Strategic Considerations

The SHAP analysis of the model indicated that the factors
considered in our site selection analysis align with that in other
space missions, with volatiles being the primary scientific tar-
gets. The key factors influencing the selection of landing sites
are visibility, volatile deposition, slope, and geologic richness,
which are also consistent with those in related studies [16], [51].
The presence of volatile substances such as water ice around
the region is mainly indicated by the distance to WIPs, PSRs,
CTs, and WEH abundance in an integrated manner. However,
the storage was only assessed qualitatively, and the storage depth
and content of volatile substances were not mentioned, which
requires more accurate remote sensing products.

The selected five engineering safety factors are all key drivers
in identifying the PLAs, particularly sun visibility and slope,
among them the sun visibility has the largest SHAP that indicates
the most significant impact. Subject to the strict constraints on
slope, areas with very high sun visibility have a very stable
supply of energy, and therefore it is more reasonable to choose
these areas as landing sites. For example, if the landing site meets
the requirements of all factors [see the scatters with SHAP less
than 0 in Fig. 8(a)], sun visibility tends to be prioritized as a
factor with a larger SHAP than other factors, particularly the
scatters with absolute SHAP values for sun visibility greater
than 0.15. This prioritization is intended to ensure that landing
sites with sufficient energy supply are selected. The seven factors
associated with scientific benefits are also all very significant for
identifying the PLAs, with distance from WIP showing a larger
SHAP value.

Specifically, there is a correlation between the cost to high
sunlight point and the average illuminance rate, therefore the
cost factor is less important. Geological diversity signifies the
range of geological formation processes represented within an
area, with a notable concentration of indicator values in con-
tiguous regions [see Fig. 10(k)], hence the low contribution. Our
predicted landing site features relatively moderate temperature
conditions [see Fig. 8(a)], and temperature’s minor influence
is due to the dependence on solar irradiance, which correlates
with sun visibility conditions. It should be noted that for the
factors in Fig. 8(b) that have a low mean SHAP value are of low
importance from a global perspective. However, these factors
may be important to consider for localized area predictions
[as shown in Fig. 8(a)], such as the WEH abundance, which
contribute more for sites with larger WEH values (the purple
scatters) and tends to promote PLAs output for these sites.

For site selection results, the predicted landing sites are dis-
tributed around the high-value regions [16], [51] of the lunar
south pole, largely overlapping with most of the 13 high-value
landing zones identified by Artemis. Specifically, landing sites
are concentrated along the edges of large impact craters and
plateau regions. Examples include the Leibnitz β plateau, as
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well as areas near craters such as Scott, Amundsen, Shackleton,
and de Gerlache (see Fig. 7). It is reasonable to believe that
these sites will be prime candidates for future exploration mis-
sions. For lunar base construction site selection, we have chosen
high-altitude base sites with optimal sun visibility. This strategic
decision enables extensive traverses and sampling of various ge-
ological units surrounding the region. For above critical landing
sites with excellent solar illumination and water-ice reserves,
appropriate protection and equitable resource allocation are
indispensable among different countries and agencies.

Our studies on the geological value of the Moon are discussed
only in terms of qualitative geologic richness, and we have
chosen areas rich in geologic units as landing sites because they
are likely to preserve more evidence of geologic evolution, while
we have made little mention of the specific evolutionary history
and geology of the Moon. Actually, many sites could benefit
from a variety of additional geological and mineralogy studies
[52], promising to provide rich scientific finding. A specific
assessment of the scientific potential of this level will require
a great deal of future expert work.

C. Prospects for Future Site Selection

The contribution of this study is to propose an end-to-end
lunar south pole landing site selection framework based on 1-D
CNN. This method takes designed quantitative factors as input,
directly outputs results, and has the potential for extension to
other site selection objectives. The scientific goals of lunar south
pole exploration are diverse, with the presence of water ice
being a primary consideration for landing site selection and
establishing research stations [53]. Therefore, our method is
primarily tailored for water ice detection (including qualitative
assessment of geological richness through kernel density) and
is well-suited for this purpose. As technological advances and
mission requirements are subject to change, lander design and
mission objectives may also evolve. Therefore, site selection
research needs to keep pace with the latest technological de-
velopments and mission requirements, making corresponding
optimizations.

Under different site selection requirements, varying resolu-
tions or sources of data is needed. Our proposed 1-D CNN site
selection framework exhibits good adaptability in this regard.
We have used data from multiple sources, which has demon-
strated that 1-D CNN has the ability to be applied to a wide
range of datasets. Through data preprocessing and quantitative
evaluation (including methods such as Euclidean distance, cost
distance and kernel density estimation), multisource spatial data
are transformed into factor dataset with uniform resolution.
By utilizing convolutional operations and pooling layers, 1-D
CNN can effectively learn features of different data types and
make predictions. Thus, our site selection framework can be
conveniently extended to a wider range of data types. In the
future, increasing the diversity of data for different site selection
objectives into the site selection framework, will aid in broad
screening of landing sites. For example, integrating geologic
factors and performing model training to facilitate exploration
of geologic targets can help identify optimal landing sites.

From an operational perspective, the datasets utilized in this
study have a resolution ranging from 5 m to 1 km, carefully
chosen to strike an optimal balance between computational
efficiency and result accuracy by segmenting the study area into
60 m grid squares, where landing feasibility is assessed based on
12 factors within each grid. The resolution of some datasets (e.g.,
WEH abundance) is not high enough, so future improvements
of our analyses will be required using finer datasets (especially
those relevant to scientific value). In addition, this study em-
ployed the Euclidean distance to quantify the distribution of
targets for the convenience of rovers or spacecraft to directly
access and explore water-ice. We did not consider the actual
accessibility of these target areas. While earlier studies (e.g.,
[54]) have investigated the accessibility of large CTs, which
is crucial for ensuring water resources. Moreover, we do not
consider the dimensions of the target areas in our selection pro-
cess, except for setting a minimum size threshold—only PSRs or
CTs larger than 0.4 km2 are considered. In practice, larger areas
with concentrated water ice are likely to hold greater appeal to
mission planners. Such preferences should be incorporated into
actual landing site selection efforts.

VI. CONCLUSION

We established quantitative factors to evaluate the feasibility
of landing and the scientific value of areas near the lunar south
pole. To predict potential landing sites on a large scale, we de-
veloped a high-performance CNN model. SHAP was employed
to interpret the site selection model. Our results indicated that
the suitable landing areas within the study region comprised less
than 1% of the total area. By applying fundamental constraints,
we finally identified 22 sets of landing sites across various
regions meeting the necessary landing criteria. These sites con-
formed to a minimum size requirement of a circle with a diameter
of 260 m, exhibited smooth topography, favorable illumination
conditions, and temperatures that were neither excessively cold
nor hot. Such areas are conducive to volatile material studies
and geological sampling in future dynamic exploration mis-
sions, such as rovers or flybys, offering additional geoscientific
insights. The SHAP-based analysis showed that sun visibility
and slope were the primary factors for landing site selection
among those related to engineering safety. From a scientific
perspective, the presence of water-ice, proximity to CTs, PSRs,
and the diversity of geological units were key considerations.
This prioritization ensures that the chosen landing sites are not
only safe for landing but also of high scientific interest.

The predicted landing sites are dispersed across a broad geo-
graphic area, exhibiting significant variations in environmental
indicators and scientific value. To enhance the utility of our
findings, we conducted a feasibility assessment for lunar base
construction at each candidate landing site cluster, focusing on
vital criteria such as ISRU potential, solar energy availability,
and the prospects for base expansion. Given the variety of
mission designs for exploring the lunar south pole, no uniform
approach exists for in situ analysis and sampling. Consequently,
mission planners should select landing sites based on the specific
requirements of each mission. Our comprehensive database
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of proposed landing sites serves as a foundational resource
from which mission-specific locations can be further refined
and chosen to align with distinct exploration objectives and
requirements.
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