
IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024 8800311

Reconfigurable Integrated Photonic Unitary Neural
Networks With Phase Encoding Enabled

by In-Situ Training
Shengjie Tang , Cheng Chen , Qi Qin , and Xiaoping Liu , Member, IEEE

Abstract—Photonic neural networks are emerging as promising
computing platforms for artificial intelligence (AI). Particularly,
integrated photonic unitary neural networks (IPUNNs) are capable
of mitigating gradient vanishing/explosion problems when deeper
neural networks are constructed. Furthermore, their optical im-
plementations are also much simpler compared to non-unitary
counterparts. Meanwhile, real-valued datasets still dominate AI
research and the encoding strategy is critical for IPUNNs’ perfor-
mances. However, there are few studies to compare different encod-
ing strategies of IPUNNs to represent these real-valued datasets
and their impacts on IPUNNs’ performances. Here, in the scope
of encoding strategies for real-valued features, we first compare
different schemes, such as phase, amplitude and hybrid encod-
ing using numerical simulations, with benchmarks of decision
boundary and image recognition tasks. These encoding strategies
of IPUNNs are also compared to non-unitary real-valued neural
networks (RVNNs) with trainable biases for the same benchmarks.
The results suggest that phase encoding outperforms amplitude
and hybrid encoding, and exhibits comparable performances to
non-unitary RVNNs. To verify the numerical results, a 10×10
IPUNN chip is designed and fabricated. The phase encoding is
chosen to be implemented because of its superior performances
in numerical studies. We reconfigure the IPUNN chip to perform
decision boundary and image recognition tasks by on-chip in-situ
training. The experimental results match the simulations well. Our
work provides insights for implementing reconfigurable IPUNNs
in AI computing.

Index Terms—In-situ training, phase encoding, photonic unitary
neural network, reconfigurable.

I. INTRODUCTION

THE rapid development of artificial intelligence (AI) has
led to an exponential growth in demand for computing

Received 1 August 2024; revised 26 August 2024; accepted 29 August 2024.
Date of publication 3 September 2024; date of current version 13 Septem-
ber 2024. This work was supported in part by the Science and Technology
Commission of Shanghai Municipality under Grant 21DZ1101500, in part by
startup funding from ShanghaiTech University, in part by Guangdong Provincial
Quantum Science Strategic Initiative under Grant GDZX2306001 and Grant
GDZX2303001, and in part by startup funding from Shenzhen University and
Shenzhen City. (Corresponding authors: Qi Qin; Xiaoping Liu.)

Shengjie Tang, Cheng Chen, and Xiaoping Liu are with the School of Physical
Science and Technology, ShanghaiTech University, Shanghai 201210, China
(e-mail: tangshj@shanghaitech.edu.cn; chencheng@shanghaitech.edu.cn; liux
p1@shanghaitech.edu.cn).

Qi Qin is with the College of Physics and Optoelectronic Engineering, Shen-
zhen University, Shenzhen 518060, China, and with the State Key Laboratory
of Radio Frequency Heterogeneous Integration, Shenzhen University, Shenzhen
518060, China, and also with the Quantum Science Center of Guangdong-Hong
Kong-Macao Greater Bay Area (Guangdong), Shenzhen 518045, China (e-mail:
qi.qin@szu.edu.cn).

Digital Object Identifier 10.1109/JPHOT.2024.3453898

power in recent years [1]. Meanwhile, conventional electronic
computing platforms are approaching their physical limits [2],
which makes it challenging to continue to keep up with AI’s
ongoing development. This plight prompts researchers to seek
the next-generation high performance computing platforms for
AI. Optics has been widely recognized as a promising medium to
implement large-scale neural networks in AI due to its intrinsic
parallelism, low latency, large bandwidth and high energy effi-
ciency [3]. To overcome the shortcomings of bulk optical com-
ponents, the programmable integrated photonic neural network
using coherent light was proposed as a scalable and phase-stable
hardware solution [4]. The essential part of current widely used
architectures for coherent integrated photonic neural networks
is composed of specific arrays of Mach-Zehnder interferometers
(MZIs) with different mesh topologies [5], [6], [7]. These MZI
mesh-based architectures realized on photonic integrated cir-
cuits (PICs) can perform universal unitary transformations at the
speed of light, which have widespread applications in quantum
computations [8], [9], [10], [11] and neural networks [4], [12],
[13], [14], [15]. In the design of integrated photonic neural net-
works, the MZI mesh-based architectures have been successfully
used to construct real-valued neural networks (RVNNs) [4], [13],
[16], where all the weights are real-valued matrices, aligning
with the existing mainstream AI models primarily ground on
real-valued arithmetic. The photonic complex-valued neural
networks proposed by Zhang et al. have the weights comprising
non-unitary complex-valued matrices and improve the capa-
bility of photonic neural networks to achieve more complex
modeling [14]. When mapping an arbitrary real-valued and
complex-valued matrix to unitary photonic devices, they need
to be decomposed into a product of two unitary matrices and
a diagonal matrix according to singular value decomposition
(SVD) [5], [17], [18]. Correspondingly, the construction of an
arbitrary real-valued and complex-valued weight matrix requires
an additional unitary photonic mesh and an array of optical
attenuators/amplifiers compared to a pure unitary weight ma-
trix. Moreover, the coherent detection is inevitable in photonic
complex-valued neural networks to obtain complex-valued fea-
tures, which complicates the detection procedure and increases
the energy cost of detecting optical signals. As a result, ex-
ploiting unitary photonic meshes to construct neural networks
with all weights being unitary matrices, namely unitary neural
networks (UNNs), has lower hardware and operational complex-
ity compared to RVNNs and complex-valued neural networks.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see
https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-3272-2924
https://orcid.org/0009-0006-9334-9106
https://orcid.org/0009-0005-5068-8629
https://orcid.org/0000-0001-7955-2067
mailto:tangshj@shanghaitech.edu.cn
mailto:chencheng@shanghaitech.edu.cn
mailto:liuxp1@shanghaitech.edu.cn
mailto:liuxp1@shanghaitech.edu.cn
mailto:qi.qin@szu.edu.cn

8800311 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

It is worth noting that UNNs are special instances of RVNNs
and complex-valued neural networks because unitary matrices
can be implemented in both real and complex domains. For
simplicity and clarity of the discussion, the RVNNs (real-valued
matrices) and complex-valued neural networks (complex-valued
matrices) in this paper are all indicated as non-unitary ones to
distinguish from UNNs (unitary matrices).

Recently, UNNs have garnered increased attention owing to
their adaptability for construction on PICs without the need for
gain and loss mechanisms [19], [20], [21], and their ability to
mitigate gradient vanishing/explosion problems in deep neural
networks [22], [23]. Despite this, one should also be aware
that when confronting highly complex tasks, the performance
of UNNs may be degraded to some extent owing to their smaller
parameter spaces. The utilization of promising avenues, such
as introducing optical biases for unitary photonic meshes [24]
and deploying hybrid integration with other efficient photonic
computing architectures [25], could alleviate this issue in pho-
tonic neural networks, which merits further exploration in future
research. Here, we will focus on the integrated photonic neural
networks that basically implement UNN models, i.e., integrated
photonic unitary neural networks (IPUNNs). Combining the
advantages of optics and UNNs makes IPUNNs a potential plat-
form for expediting deep learning computations. Currently, the
vast majority of datasets or features for deep learning are based
on real-valued representations. Real-valued features are often
encoded by the amplitude or power of optical signals in MZI
mesh-based architectures [4], [12], [13], [16], but systematic
analyses of various encoding strategies and their impacts on
IPUNNs’ performances are seldom explored. Despite the fact
that various encoding and detection methods have been investi-
gated for photonic complex-valued neural networks, the compar-
ative studies are specifically designed for complex-valued fea-
tures, while only magnitude encoding is adopted for real-valued
features [14]. Additionally, when handling images related tasks,
a common encoding technique known as the Fourier transform
is often utilized. Previous works typically utilize the portion
of low-frequency Fourier coefficients as complex-valued input
features when dealing with images to reduce the input dimension
of IPUNN chips [15], [19], [21], [26]. However, for complex im-
ages with numerous rapidly varying spatial features, taking only
small subsets of Fourier coefficients around the zero-frequency
component will lead to a nonnegligible performance degrada-
tion. Besides, the on-chip optical implementation of Fourier
transform requires using additional photonic devices [20], [27],
which is not conducive to large-scale integration in terms of
fabrication tolerance and footprints. Overall, an appropriate
encoding scheme is significant for fully exploiting the potential
of IPUNNs in AI acceleration.

In this work, numerical simulations are first conducted to
investigate the impact of different encoding schemes for real-
valued features on the performance of UNNs, using benchmarks
of decision boundary and image recognition tasks. Considering
that the majority of existing models in the AI field are primar-
ily based on real-valued computations, reference RVNNs with
trainable biases are also studied for comparisons. Simulation
results show that phase encoding outperforms amplitude and

hybrid encoding in UNN models, demonstrating comparable
performances to RVNNs with trainable biases. Furthermore, a
10× 10 IPUNN chip is designed and fabricated for experimental
verifications. On the basis of feature extraction and on-chip
in-situ training, we effectively reconfigure the IPUNN chip to
specific states capable of performing diverse machine learning
(ML) tasks. From the following results presented in this work,
we hope to provide a reference and insights for the application
and implementation of reconfigurable IPUNNs in AI computing.

II. NUMERICAL SIMULATION RESULTS

In this section, numerical simulations of several ML bench-
marks, decision boundaries for nonlinear datasets and image
recognition tasks, are performed to demonstrate the performance
of UNNs with different encoding schemes. With an Intel Xeon
CPU E5-2680 v4 @ 2.40GHz and a NVIDIA GPU GeForce
GTX 1080Ti, all numerical simulations are performed using
Python 3.8.10 and TensorFlow 2.11.0 running on a Linux
operating system. Based on the previously explored photonic
neural network framework [15], we investigate the architectures
apt for physical implementations, which comprise incoherent
detection based nonlinear activations and multilayer photonic
unitary networks. For the numerical simulation of UNNs, we
construct trainable unitary layers by multichannel mixing blocks
setup [28]. Each N ×N trainable unitary weight matrix is
decomposed into N + 1 cascaded building blocks where each
building block consists of a random (but fixed during training)
N ×N unitary matrix and N trainable and independent phase
parameters, which can be expressed as:

U(N) =
N∏

k=0

V(N+1−k)Θ(�θ(N+1−k)), (1)

where V(N+1−k) is the random N ×N unitary matrix of

the (N + 1− k)th building blocks, �θ(N+1−k) = (θ
(1)
(N+1−k),

θ
(2)
(N+1−k), . . ., θ

(N)
(N+1−k)) is the vector with N trainable and

independent phase parameters corresponding to the transfer
diagonal matrix Θ(�θ(N+1−k)) = diag[exp(j�θ(N+1−k))] in the

(N + 1− k)th building blocks.

A. Decision Boundaries of Nonlinear Datasets

We first simulate decision boundary tasks to intuitively
demonstrate the discrepancies in expressivity among various
encoding strategies. The benchmarks of decision boundaries
are two nonlinear datasets: the 2-classes Moon and 3-classes
Spiral used in [29]. The nonlinear datasets have two real-valued
features x1, x2 ∈ (0, 1). We randomly split the 1000 samples
in the Moon dataset into 600 training samples and 400 testing
samples. Whereas, the Spiral dataset are randomly divided into
900 training samples and 600 testing samples from 1500 samples
in total. As shown in Fig. 1(a), there are two layers of trainable
unitary weight matrices in the numerical simulation model for
decision boundary tasks.

The input vector [x1, x2] is first projected to a ten-dimensional
space by a zero-padding operation, an encoding layer and a

TANG et al.: RECONFIGURABLE INTEGRATED PHOTONIC UNITARY NEURAL NETWORKS WITH PHASE ENCODING ENABLED 8800311

Fig. 1. (a) The architecture diagram of the numerical model for decision
boundary tasks. Training accuracies of the (b) Moon and (c) Spiral datasets
during training for UNNs with various encoding schemes and the reference
RVNN. The optimum phase-product factor of phase encoding is 1.5π, while for
hybrid encoding, it is set to π, 1.5π and 2π for comparisons.

trainable 10× 10 unitary layer named as U
(1)
10 . The encod-

ing layer carries out different element-wise encoding schemes
for comparisons. This is followed by an activation function:
tanh |z|, which is applied on the complex output of the first
unitary layer to implement nonlinear activation and normalize
features to [0,1). Furthermore, these normalized features are then
encoded and fed to the second trainable 10× 10 unitary layer
named as U (2)

10 . The output of U (2)
10 is followed with a nonlinear

activation |z|2. Both |z| and |z|2 can be experimentally realized
by a simple incoherent detection. Ten-dimensional outputs are
dropped to two ports (for the Moon) or three ports (for the
Spiral) and a softmax function is applied to generate probability
distribution. For a given arbitrary normalized real-valued feature
x, amplitude encoding is represented as A0|x|, where A0 is a
positive constant. By loading features into the phase domain,
phase encoding is represented asA0e

j∗x∗pπ , wherepπ is a phase-
product factor used to extend coding to an appropriate phase
range. Hybrid encoding integrates the above two operations,
namely A0|x|ej∗x∗pπ . The value of A0 is considered as 1 for
every operation in this paper. A larger phase-product factor will
lead to a larger Euclidean distance among entangled samples
in the complex space, which could bring a higher classification
accuracy. However, if 2π is used as a phase-product factor for
phase encoding, the discrete points around 0 and 1 that are not
included in training and testing sets will tend to be predicted
as the same category incorrectly, since A0e

j∗0∗2π = A0e
j∗1∗2π ,

which could result in ambiguity and deteriorated generalization
performance. For these two nonlinear datasets, 1.5π is cho-
sen as a phase-product factor for phase encoding taking both
generalization and classification accuracies into account. For
comparisons, the phase-product factor of hybrid encoding is set
to π, 1.5π and 2π.

We also consider the reference RVNN that has the same ar-
chitecture and configuration (topology and activation functions)
as the UNN model depicted in Fig. 1(a), with the exception of

TABLE I
PERFORMANCES OF THE UNNS WITH VARIOUS ENCODING SCHEMES AND THE

REFERENCE RVNN FOR DECISION BOUNDARY TASKS

Fig. 2. Simulated decision boundaries of the (a) 2-classes Moon dataset and
(b) 3-classes Spiral dataset for UNNs with different encoding schemes and
the reference RVNN. The blue and red in data points and regions respectively
represent the classes 0, 1 for the Moon dataset, whereas the blue, white and red
in data points and regions represent the classes 0, 1, 2 for the Spiral dataset,
respectively. Here, the phase-product factor of phase encoding and hybrid
encoding is 1.5π for visualization.

replacing each 10× 10 unitary weight matrix by a learnable
10× 10 real-valued weight matrix and a learnable 10× 1 real-
valued additive bias vector. Note that encoding layers for RVNNs
are equivalent to amplitude encoding for all tasks performed in
this paper. We use the standard categorical cross-entropy [30]
as the loss function (LF) for training. The Adaptive moment
estimation (Adam) gradient descent method [31] is used to
minimize the LF and update the trainable parameters for all
models. The learning rate for the Moon and Spiral dataset is set
to 0.005 and 0.008, respectively. Both the UNNs and RVNNs
are trained with a batch size of 60. The predicted category of
each sample is determined by the index where the maximum
output value occurs. Training convergence curves of all numer-
ical models are shown in Fig. 1(b) and Fig. 1(c) for the Moon
dataset and the Spiral dataset, respectively. Table I shows the
classification accuracies for the Moon and Spiral datasets after
various numerical models being trained. It can be seen that phase
encoding demonstrates significant superiority compared to other
encoding schemes for UNN models.

After the models are trained,x1 andx2 are uniformly sampled
from 0 to 1 with a step of 0.005 to produce total 40401 discrete
points. The 40401 discrete points are then fed into the trained
models corresponding to the maximum accuracy of training
sets to generate decision boundaries. The predicted decision
boundaries are shown in Fig. 2. The blue and red in data
points and regions respectively represent the classes 0, 1 for

8800311 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

Fig. 3. (a) The architecture diagram of the numerical model for image recog-
nition tasks. Testing accuracies of the (b) MNIST and (c) Fashion-MNIST for
UNNs with various encoding schemes and the reference RVNN. The optimum
phase-product factor of phase encoding is π, while for hybrid encoding, it is set
to π, 1.5π and 2π for comparisons.

the Moon dataset, whereas the blue, white and red in data points
and regions represent the classes 0, 1, 2 for the Spiral dataset,
respectively. These notation methods also apply to the following
in-situ training experiments.

As shown by the decision boundaries generated by trained
models, phase encoding provides nonlinear boundaries that are
capable of separating entangled samples almost perfectly. Even
with nonlinear activation functions, the decision boundaries
offered by amplitude encoding are almost straight. Hybrid en-
coding produces certain nonlinear boundaries compared with
amplitude encoding, but the overall performance is not improved
over pure phase encoding.

B. Image Recognition

To further verify the performances of aforementioned models
in more complex datasets, we also conduct simulations for image
recognition tasks. The MNIST (Modified National Institute of
Standards and Technology) handwritten digit dataset [32] and
the Fashion-MNIST dataset [33], each consisting of 60,000
training images and 10,000 testing images corresponding to ten
categories, are utilized as benchmarks. All 60,000 training im-
ages are used for training and the numerical model architecture
for image recognition tasks is shown in Fig. 3(a).

The simulation is performed with the following procedure.
Original 28× 28 grayscale images are resized to 8× 8 pixels
via down-sampling and then pixel values of down-sampled
images are divided by 255 to be normalized into the [0,1]
interval. The down-sampling operation is implemented with
“INTER_AREA” method in OpenCV [34]. Subsequently, each
down-sampled image is flattened into a 64× 1 vector, of which
the size is compatible with the commercial photonic computing
platform recently reported [35]. Similar to the method used in
[14], [36], [37], we also employ a fully connected network to
extract low-dimensional features. The fully connected network

TABLE II
PERFORMANCES OF THE UNNS WITH VARIOUS ENCODING SCHEMES AND THE

REFERENCE RVNN FOR IMAGE RECOGNITION TASKS

consists of two trainable 64× 64 unitary weight matrices, each
being followed by a tanh |z| activation function. Prior to exe-
cuting the matrix-vector multiplication by each unitary weight
matrix, all features are preprocessed through an encoding layer
to execute various encoding schemes for comparisons. All the
encoding layers execute the same operation when each model is
conducted. The outputs of the feature extractor [depicted by the
dashed red box in Fig. 3(a)] are then dropped to ten-dimensional
vectors as the latent embeddings. The latent embeddings are
encoded once again and fed to a 10× 10 UNN, emulating
our optically implemented IPUNN chip. Similar to the manner
used in decision boundary tasks, a nonlinear activation |z|2
followed by a softmax function is employed at the output and
the categorical cross-entropy loss is utilized during training.

The reference RVNN with the same weight matrix dimensions
and nonlinear activation functions as the UNNs has also been
trained. Wherein, each 64× 64 unitary weight matrix is replaced
by a learnable 64× 64 real-valued weight matrix added by
a learnable 64× 1 real-valued bias vector. Accordingly, the
10× 10 layer executes analogous changes with the correspond-
ing dimension. The Adam algorithm is used for training and the
learning rate is set to 0.0005 with a batch size of 600. In image
recognition tasks, the phase-product factor for phase encoding
is chosen as π rather than 2π to avoid ambiguity for pixel
values around 0 and 1 after being mapped to phase domain.
As to hybrid encoding, the phase-product factors of π, 1.5π
and 2π are studied for comparisons. Convergence plots on all
the 10,000 testing images of MNIST and Fashion-MNIST are
shown in Fig. 3(b) and (c), respectively. The final recognition
accuracies over the complete testing set are provided in the
Table II. The UNN with phase encoding outperforms amplitude
and hybrid encoding in achieving higher testing accuracy, which
shares comparable performances with the RVNNs for all the
benchmarks used in numerical simulations. It is important to
note that while most RVNNs implemented by MZI arrays based
on SVD do not include bias calculations, we also simulate
RVNNs containing trainable biases here. This allows for direct
and objective comparisons with conventional digital RVNNs and
optical RVNNs incorporating optical biases in the future. In fact,
bias is likewise crucial for the performance of neural networks.
Removing the adjustable bias vectors of RVNNs can result in
performance degradation at some level. Therefore, from this
perspective, IPUNNs with phase encoding may offer a certain

TANG et al.: RECONFIGURABLE INTEGRATED PHOTONIC UNITARY NEURAL NETWORKS WITH PHASE ENCODING ENABLED 8800311

Fig. 4. Schematic illustration of the designed IPUNN chip. Input coherent light is split into 13 branches through four-stage 1 × 2 MMI couplers with an equal
optical path, top ten of them are fed into the unitary network. IPMs are used for input preparations. Five cascaded MZI network units form the 10 × 10 unitary
transformation architecture and the 2nd to 4th network units are omitted in the figure. Each MZI network unit is constructed with two types of subunits, denoted
as unit A and unit B. Only the input and ten output grating couplers are displayed in the figure, while grating couplers of other unused ports are not depicted.

degree of advantages over RVNNs without optical biases in
regard to model performances.

III. DESIGN AND FABRICATION OF THE IPUNN CHIP

To experimentally verify the superior performance of UNNs
with the phase encoding scheme, we designed an IPUNN chip
which basically operates the reconfigurable 10 × 10 unitary
transformation, as schematically shown in Fig. 4. A coherent
laser is coupled into the IPUNN chip from the input grating
coupler using a fiber array (FA) and then split into 13 branches
with an equal optical path length by four-stage 1× 2 multimode
interference (MMI) couplers. The top 10 branches are used as
the input ports of the unitary transformation architecture. Input
preparation is realized by 10 input phase modulators (IPMs) by
encoding real-valued features into phase domain. The architec-
ture of our IPUNN chip obeys to the Clements method [6], but
with a difference that each conventional MZI building block is
replaced by a robust MZI building block to make the unitary
network more robust to combat fabrication imperfections [38],
[39]. As depicted by the dashed red box in Fig. 4, the robust MZI
building block consists of four tunable phase shifters and four
2× 2 MMI-based beam splitters. Five cascaded MZI network
units, each with 9 robust MZI building blocks, form a UNN
architecture with a full-capacity configuration, i.e., the number
of input modes is equal to the optical depth [22]. Each MZI
network unit comprises two types of subunits, unit A and unit
B, as depicted by the wider dashed white boxes in Fig. 4.
The IPUNN chip contains 45 robust MZI building blocks and
180 trainable phase shifters in total. Output optical signals are
coupled out from ten grating couplers through a FA.

The designed IPUNN chip was fabricated on a silicon-on-
insulator (SOI) platform with a 220nm thick top silicon layer
and 2 µm thick buried oxide. The silicon waveguide layer is
covered by a SiO2 upper-cladding. A layer of titanium (Ti) is
deposited on the SiO2 upper-cladding as resistive heaters to per-
form thermo-optical modulations. Each heater has an electrical
resistance about 460 Ω and is electrically connected to pads by
patterned aluminum metal wires. The fabricated IPUNN chip is
adhered and wire-bonded to a printed circuit board, allowing it

to be controlled by external multi-channel digital-to-analog con-
verters (DACs). The packaged IPUNN chip and the micrograph
of the fabricated IPUNN chip are shown in Fig. 5(b) and (c),
respectively. We characterize the modulation response of IPMs,
laying the groundwork for subsequent phase encoding opera-
tions in ML tasks. As an instance, the imparted phase dependent
on the applied voltage v of the 5th IPM at 1540 nm wavelength
is shown in Fig. 5(a) (measured at the 9th output port). We fit
the transmission data using one-term Fourier series model to
evaluate the voltage required to induce a phase change of 2π,
which is given by a0 + a1 cos(wv

2) + b1 sin(wv
2), where a0,

a1, b1 and w can be obtained through fitting. Then the voltage
of the corresponding modulator for 2π phase shift (V2π) can

be calculated by V2π =
√

2π
|w| . Here, V2π of the 5th IPM is

approximately 4.93V. Notably, despite an identical design for
all the heaters, V2π may vary slightly among them due to the
fabrication non-uniformity.

IV. RECONFIGURE THE IPUNN CHIP TO PERFORM VARIOUS

ML TASKS BY ON-CHIP IN-SITU TRAINING

A. Procedure and Experimental Setup of In-Situ Training

In order to enable our IPUNN chip to be reconfigured and train
various ML tasks in real-time, we employ a forward propagation-
based method rather than the commonly used backpropagation
algorithm [40] in a conventional computer, in order to achieve
the gradient of each trainable parameter. The gradient g of the
LFL(u) evaluated at u0, i.e., gu0

, is calculated with a high-order
finite difference method based on Lagrange interpolation [41]:

gu = ∇uL(u), (2)

gu0
=

−L(u0 + 2h) + 8L(u0 + h)− 8L(u0 − h) + L(u0 − 2h)

12h

+O(h4), (3)

where h denotes a small perturbation of each trainable param-
eter, and O(h4) represents the truncation error with the order
of h4. Here, (3) indicates that the gradient of each trainable

8800311 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

Fig. 5. (a) Normalized transmission response for tuning the 5th IPM. The measurement is done by applying voltage to the IPM, while monitoring the output
intensity coupled out from the 9th grating coupler. Ordinal numbers here refer to the case counting from top to bottom. Measured data is then fitted with one-term
Fourier series model to evaluate the voltage required for a 2π phase shift. The micrograph of the 5th IPM is shown in the inset. (b) Photograph of the IPUNN chip
packaged with a printed circuit board. (c) Micrograph of the fabricated IPUNN chip, with the area covering all the photonic devices.

parameter can be evaluated during four forward propagation
operations by detectingL(u0 + 2h),L(u0 + h),L(u0 − h) and
L(u0 − 2h). During the actual experimental process, u0 corre-
sponds to the current voltage applied on a specific heater while
h is a deviation with respect to u0. The perturbation h must lead
to perceivable changes of L(u) above the system’s background
noise, and is set to 0.15 V for all tasks in the experiments, which
is determined by several trials. After the gradient gu0

is obtained,
the Adam algorithm is used to update modulation voltages. This
in-situ training method offers a viable way to train IPUNNs for
various ML tasks in real-time, taking full advantage of the optical
acceleration in forward propagation processes. The complete
in-situ training process is listed below:

1) Initialize all the trainable parameters, i.e., the modulation
voltages of all the phase shifters in the unitary transfor-
mation architecture.

2) In each iteration, encode the input features into phase
domain by applying corresponding voltages to IPMs.
Implement four consecutive forward propagations with
the perturbative parameters u0 + 2h, u0 + h, u0 − h and
u0 − 2h for each trainable phase shifter, measuring the
corresponding loss L(u0 + 2h), L(u0 + h), L(u0 − h)
and L(u0 − 2h).

3) Repeat step 2 to traverse samples in the batch of the current
iteration. Average the measured loss over the samples in
this batch for the four types of perturbations separately,

Fig. 6. A schematic of the experimental setup for on-chip in-situ training. The
orange and blue lines respectively represent optical and electrical paths. EDFA,
erbium-doped fiber amplifier; PC, polarization controller; PDs, photodetectors;
DAC, digital-to-analog converter; ADC, analog-to-digital converter.

and then calculate the gradient of the trainable parameter
for each phase shifter according to (3).

4) Update the modulation voltages of all the trainable phase
shifters with the Adam algorithm based on the calculated
gradients simultaneously.

5) Repeat steps 2 to 4 until the LF converges.
Note that the applied voltages on all trainable modulators

range from 0 V to V2π during training regardless of the phase-
product factor set for IPMs. The experimental setup for con-
ducting the proposed in-situ training method is shown in Fig. 6.
A coherent laser source at 1540 nm wavelength is amplified
to 24 dBm by an erbium-doped fiber amplifier (EDFA) to
improve signal-to-noise ratio of output signals. Using a po-
larization controller, the coupling of the light source to the

TANG et al.: RECONFIGURABLE INTEGRATED PHOTONIC UNITARY NEURAL NETWORKS WITH PHASE ENCODING ENABLED 8800311

IPUNN chip is optimized. The output optical signals coupled
out from the chip are detected with an array of ten amplified
photodetectors (PDs), of which the output voltage signals are
digitized using an analog-to-digital converter (ADC) mod-
ule (National Instruments PXIe-6358) controlled by a com-
puter. The modulation voltage required by each heater is syn-
chronously supplied by multiple DAC modules (National Instru-
ments PXIe-6739) which is also controlled by the same com-
puter. During the on-chip in-situ training process, the IPUNN
chip is thermally stabilized on a heat sink attached to a thermo-
electric cooler (TEC) in order to alleviate heat accumulation.

B. Reconfigure the IPUNN Chip to Perform Decision
Boundary Tasks

For all samples, we extract the learned ten-dimensional vec-
tors generated from the output of the tanh |z| activation in the
numerical model shown in Fig. 1(a) and the activated real-valued
features are then linearly mapped into phase domain by impart-
ing corresponding phase shifts on the ten IPMs:

V (i) =

√
mi

φmax

2π
V

(i)
2π , (4)

where mi represents the extracted features in the ith dimension,
φmax represents the phase-product factor and is set to 1.5π for
decision boundary tasks.V (i)

2π is the modulation voltage required
to achieve a 2π phase shift for the ith IPM and V (i) is the
encoding voltage of the ith IPM for the real-valued feature mi.

We utilize all the training and testing samples employed in the
simulation of decision boundary tasks with a batch size of 30
for on-chip in-situ training. As mentioned in (3), gradient calcu-
lation during in-situ training depends on the loss values, which
are closely related to the output voltage signals acquired by the
ADC. Consequently, output signals necessitate an appropriate
magnitude. Here, the output voltage signals proportional to the
output optical intensities are multiplied by a common constant to
be scaled to a level where the summation of ten-channel signals
is around 10V. Based on this scaling level, learning rates of
0.005 and 0.008 are chosen for the Moon and Spiral datasets,
respectively. As far as the inference stages are concerned, only
the top two (Moon) or three (Spiral) output ports are used for
predictions. Nevertheless, output signals from all ten channels,
rather than only the top two (Moon) or three (Spiral) output ports,
are used for LF calculation during training stages, allowing opti-
cal power to gradually concentrate to the top two (Moon) or three
(Spiral) output ports along with the evolution of the modulation
voltages. The LF is calculated as the cross-entropy between
the softmax of scaled ten-channel output signals (acquired by
the ADC) and the ten-dimensional one-hot encoding vectors of
true labels. In actual experiments, we find that training only the
90 phase shifters (the first two of each robust building block),
namely keeping phase shifters of the additional MZIs designed
for combating fabrication imperfections passive, is sufficient to
effectively reconfigure the IPUNN chip to perform target tasks.
This experimental observation is consistent with the theoretical
finding in [39].

The on-chip in-situ training convergence processes of deci-
sion boundary tasks for the Moon and the Spiral datasets are
illustrated in Fig. 7(a) and (b), respectively. The LF of the
Moon (Spiral) dataset decreases from 1.08 (1.24) to 0.01 (0.17)
with a maximum training accuracy of 100% (99%) and the
corresponding testing accuracy is 100% (98.67%). The region of
x1, x2 ∈ [0, 1] is discretized in a step of 0.025 to evenly generate
1681 new samples that are unseen during training to infer
decision boundaries. With the input of these unseen samples,
the softmax probabilities are calculated for the top two (Moon)
or three (Spiral) output ports based on the scaled output voltage
signals of corresponding output ports. As an illustrative example
for the Moon (Spiral) dataset, the softmax probability distribu-
tion of the second (first) output port, calculated based on the
scaled output voltage signals in the top two (three) output ports,
is shown under three different epochs in Fig. 7(c) [Fig. 7(d)].
The blue region with low probabilities in Fig. 7(c) [Fig. 7(d)]
suggests that the output optical power at the second (first) port is
suppressed, while the red region with high probabilities implies
a concentration of optical power for the input of corresponding
samples. Classification results are determined by taking the port
with the maximum optical power. The final decision boundaries
obtained by in-situ training are shown in the inset of Fig. 7(a)
and (b), matching the simulation results well.

C. Reconfigure the IPUNN Chip to Perform Image
Recognition Tasks

We further experimentally validate the performance of UNNs
with phase encoding scheme using MNIST and Fashion-MNIST
datasets. In our experiments, both of these two datasets use the
same configuration in all aspects. Latent embeddings learned by
a two-layer unitary fully connected network, as we have already
demonstrated in Fig. 3(a), are employed as input features of our
IPUNN chip. By applying corresponding modulation voltages
to IPMs, these feature embeddings are encoded into the phase
domain in accordance to (4), where the phase-product factor
φmax is equal to π. As a proof of concept, 500 instances are
randomly drawn from the 60,000 training images to implement
in-situ training while 300 instances randomly selected from
the 10,000 testing images are used to test the trained IPUNN
for both two datasets. Similar to decision boundary tasks, the
output optical signals are converted to voltage signals by an
array of ten PDs and then converted to digital signals via ADCs
in real-time. Subsequently, all acquired output voltage signals
are scaled to a level with the summation of ten channels reaching
around 10V. The cross-entropy between the softmax of the scaled
output voltage signals and ten-dimensional one-hot encoding
vectors of true labels is calculated as the LF. We train the same
90 phase shifters as in the decision boundary tasks using the
Adam algorithm to minimize the LF with a learning rate of
0.01 and a batch size of 25 for image recognition tasks. The
recognition result is also determined by the output port with
the maximum optical power. Experimental results of the image
recognition tasks are shown in Fig. 8, where the convergence
processes of the MNIST and Fashion-MNIST are plotted in
Fig. 8(a) and (c), illustrating an experimental testing accuracy

8800311 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

Fig. 7. Experimental results of in-situ training for decision boundary tasks. Convergence processes of the (a) Moon and (b) Spiral with training loss and accuracy
are shown. The [x1, x2] region is discretized at an interval of 0.025 to evenly generate 1681 new samples that are unseen during training to infer decision boundaries.
With the input of these unseen samples, the softmax probabilities are calculated for the top two (Moon) or three (Spiral) output ports based on the scaled output
voltage signals of corresponding output ports. (c) The softmax probability distribution of the second output port under epoch 0, epoch 15 and epoch 199 for the
Moon dataset. (d) The softmax probability distribution of the first output port under epoch 0, epoch 15 and epoch 203 for the Spiral dataset. Final predicted decision
boundaries shown in the inset of (a) and (b) match the simulation results well.

of 97% and 86.33% after the LF is converged, respectively. The
corresponding confusion matrices for the 300 randomly selected
testing images are depicted in Fig. 8(b) and (d), respectively.

We analyze the optical intensity distribution coupled out from
the ten grating couplers for the testing set after the in-situ training
is completed. Thirty test samples are selected for demonstration,
with each category comprising three typical instances, whose
original images are shown in the Fig. 8(e) and (f) for MNIST
and Fashion-MNIST, respectively. The number located at the
bottom left corner of each original image obeys to the notation
rule of image number-true labels, e.g., the nineteenth image
with the label 8 is notated as 19-8. In Fig. 8(g) and (h), the
intensity distribution of the ten output ports with the input of
abovementioned 30 testing images from MNIST and Fahion-
MNIST is displayed, respectively. It clearly demonstrates that
the well-trained IPUNN chip efficiently guides the optical signal

to the desired output channel for majority of the testing samples,
resulting in the highest energy in the corresponding channel.
Moreover, the energy in other non-target channels is suppressed
to relatively low levels.

V. DISCUSSIONS

It is well known that implementing an N ×N universal
unitary matrix optically requires N(N − 1)/2 MZI building
blocks [5], [6]. To further realize an m× n non-unitary matrix
M , it conventionally requires three cascaded parts according to
the SVD [17], which is a factorization as M = UΣV †, where U
is an m×m unitary matrix; Σ represents an m× n rectangular
diagonal matrix; and V † is the Hermitian transpose of the n× n
unitary matrixV . Consequently, the expressivity of RVNNs may
inherently encompass that of UNNs in general, but at the cost

TANG et al.: RECONFIGURABLE INTEGRATED PHOTONIC UNITARY NEURAL NETWORKS WITH PHASE ENCODING ENABLED 8800311

Fig. 8. Experimental results of in-situ training for image recognition tasks, using 500 training images and 300 testing images that are randomly selected from each
dataset. Convergence processes of the (a) MNIST and (c) Fashion-MNIST with training loss and testing accuracy are shown. The confusion matrices of the 300
randomly selected testing images from the (b) MNIST and (d) Fashion-MNIST, with a recognition accuracy of 97% and 86.33% being obtained by in-situ training,
respectively. Original images of 30 typical testing samples (three per category) in the (e) MNIST and (f) Fashion-MNIST dataset are used for demonstrating output
intensity distribution. The output intensity distribution after training is shown in (g) for the testing samples displayed in (e), and in (h) for the testing samples
displayed in (f). Pct. denotes percentage. Labels (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) correspond to digits (0, 1, 2, 3, 4, 5, 6, 7, 8, and 9) and fashion products (t-shirts,
trousers, pullovers, dresses, coats, sandals, shirts, sneakers, bags, and boots) for MNIST and Fashion-MNIST, respectively. The number in (e) and (f) located at the
bottom left corner of each original image obeys to the notation rule of image number-true labels.

of more complex hardware implementations. For concreteness,
when m = n = N , it takes N(N − 1) MZI building blocks and
N optical attenuators/amplifiers implementing Σ to build an
N ×N arbitrary real-valued matrix, which could beget more
serious performance degradation due to increasing impreci-
sions [42] compared to constructing a pureN ×N unitary mesh.
In order to reduce the number of required MZIs for RVNNs,
Tian et al. proposed a pseudo-real architecture employing the
real part of a unitary mesh to represent the target real-valued
matrix [43]. However, it demands strict requirements for the
inputs to be purely amplitude-modulated, which is challengeable
in coherent networks. The 2× 2 MMI mixers at the output
end of the pseudo-real architecture may introduce additional
imprecisions caused by fabrication errors. Wu et al. utilized
incoherent MZI networks to express N ×N real-valued ma-
trices with an (N + 1)× (N + 1) unitary mesh [44], but it
requires N incoherent light sources modulated by N intensity
modulators and additional N MZI building blocks compared to
N ×N unitary mesh. Training IPUNNs with phase encoding
close to RVNNs conveys that one could achieve non-degraded
performance using smaller footprints, lower insertion loss and
fewer optical components in specific ML application scenarios.

The performance enhancement of phase encoding may arise
from its capacity to induce a certain nonlinearity in UNNs,
which could be intuitively visualized from the comparison of
various encoding schemes applied in decision boundary tasks,
as shown in Fig. 2. From another aspect, similar to the usage
of kernel function in supporting vector machine [45], phase
encoding could project the original data to a higher-dimensional
feature space, making it more easier to be linearly separated. In
contrast to the pure phase encoding, hybrid encoding models do
not attain a better performance here, mainly because the encoded
amplitude and phase information originates from the same real-
valued feature, which may result in feature redundancy. This is
quite distinct from the complex encoding studied in [14], since
the amplitude and phase component of the features calculated
by a complex-valued encoder (e.g., learnable complex-valued
matrices) are always independent.

In practical applications of IPUNN chips, hybrid encoding
and amplitude encoding require intensity modulation for input
features, which results in power loss along with reduction in the
signal-to-noise ratio. On the other hand, implementing inten-
sity modulation on PICs is commonly realized through mod-
ulating Mach-Zehnder modulators or micro-ring modulators.

8800311 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

Nevertheless, these typical intensity modulators often introduce
unwanted phase shifts concurrently with intensity modulations.
For coherent IPUNNs, it necessitates the extra phase compensa-
tion to mitigate this adverse impact on feature encoding. Phase
encoding avoids these issues without requiring additional pho-
tonic devices and increasing footprints in the waveguide layer.
Hence, employing phase encoding in IPUNNs offers significant
advantages both from the perspective of the model performance
and hardware implementation, increasing potentials for acceler-
ating AI models by IPUNN counterparts.

VI. CONCLUSION

In summary, we have compared the performance of UNNs
with different encoding schemes for real-valued features in
several ML tasks. We numerically simulated fully unitary net-
work architectures respectively for decision boundary and image
recognition tasks. Simulation results indicate that, the UNNs
with phase encoding and the RVNNs with trainable biases
exhibit comparable performances for various benchmarks when
configurations remain identical, outperforming the other two
encoding schemes. Nevertheless, the hardware implementation
of UNNs is much simpler than RVNNs in theory. Furthermore,
a reconfigurable 10× 10 IPUNN chip was designed and fab-
ricated to experimentally demonstrate the implementation of
UNNs with phase encoding. We effectively reconfigure the
IPUNN chip to perform various benchmarks by in-situ training
using a high-order finite difference method based on Lagrange
interpolation. Good agreement between our simulation and ex-
perimental results is observed. It is worth noting that although
we demonstrate IPUNNs based on thermo-optical modulation
in this work, the computing paradigm presented here can also be
extended to other high-speed PIC platforms (e.g., electro-optical
modulation on the thin-film lithium niobate platform [46]).
Our results implicate that phase encoding-based IPUNN could
become a promising computing platform for AI acceleration,
bridging the real-valued representations of mainstream AI mod-
els and reconfigurable IPUNN architectures in a way that is
energy-efficient and conducive to large-scale integration.

REFERENCES

[1] N. Thompson, K. Greenewald, K. Lee, and G. F. Manso, “The computa-
tional limits of deep learning,” in Proc. 9th Comput. Limits, Jun. 14, 2023.
[Online]. Available: https://limits.pubpub.org/pub/wm1lwjce

[2] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News,
vol. 530, no. 7589, 2016, Art. no. 144.

[3] B. J. Shastri et al., “Photonics for artificial intelligence and neuromorphic
computing,” Nature Photon., vol. 15, no. 2, pp. 102–114, 2021.

[4] Y. Shen et al., “Deep learning with coherent nanophotonic circuits,” Nature
Photon., vol. 11, no. 7, pp. 441–446, 2017.

[5] M. Reck, A. Zeilinger, H. J. Bernstein, and P. Bertani, “Experimental
realization of any discrete unitary operator,” Phys. Rev. Lett., vol. 73,
pp. 58–61, Jul. 1994.

[6] W. R. Clements, P. C. Humphreys, B. J. Metcalf, W. S. Kolthammer, and
I. A. Walmsley, “Optimal design for universal multiport interferometers,”
Optica, vol. 3, no. 12, pp. 1460–1465, Dec. 2016.

[7] F. Shokraneh, S. Geoffroy-gagnon, and O. Liboiron-Ladouceur, “The
diamond mesh, a phase-error- and loss-tolerant field-programmable MZI-
based optical processor for optical neural networks,” Opt. Exp., vol. 28,
no. 16, pp. 23495–23508, Aug. 2020.

[8] J. Carolan et al., “Universal linear optics,” Science, vol. 349, no. 6249,
pp. 711–716, 2015.

[9] J. Wang et al., “Multidimensional quantum entanglement with large-scale
integrated optics,” Science, vol. 360, no. 6386, pp. 285–291, 2018.

[10] J. M. Arrazola et al., “Quantum circuits with many photons on a pro-
grammable nanophotonic chip,” Nature, vol. 591, no. 7848, pp. 54–60,
2021.

[11] Y. Chi et al., “A programmable qudit-based quantum processor,” Nature
Commun., vol. 13, no. 1, 2022, Art. no. 1166.

[12] F. Shokraneh, S. Geoffroy-Gagnon, M. S. Nezami, and O. Liboiron-
Ladouceur, “A single layer neural network implemented by a 4×4 MZI-
based optical processor,” IEEE Photon. J., vol. 11, no. 6, Dec. 2019,
Art. no. 4501612.

[13] H. Deng and M. Khajavikhan, “Parity–time symmetric optical neural
networks,” Optica, vol. 8, no. 10, pp. 1328–1333, 2021.

[14] H. Zhang et al., “An optical neural chip for implementing complex-valued
neural network,” Nature Commun., vol. 12, no. 1, 2021, Art. no. 457.

[15] S. Pai et al., “Experimentally realized in situ backpropagation for deep
learning in photonic neural networks,” Science, vol. 380, no. 6643,
pp. 398–404, 2023.

[16] Y. Shi et al., “Nonlinear germanium-silicon photodiode for activation
and monitoring in photonic neuromorphic networks,” Nature Commun.,
vol. 13, no. 1, 2022, Art. no. 6048.

[17] C. L. Lawson and R. J. Hanson, Solving Least Squares Problems. Philadel-
phia, PA, USA: SIAM, 1995.

[18] N. C. Harris et al., “Linear programmable nanophotonic processors,”
Optica, vol. 5, no. 12, pp. 1623–1631, Dec. 2018.

[19] S. Pai et al., “Parallel programming of an arbitrary feedforward pho-
tonic network,” IEEE J. Sel. Topics Quantum Electron., vol. 26, no. 5,
Sep./Oct. 2020, Art. no. 6100813.

[20] R. Wang et al., “Photonic unitary neural network chip with complex-valued
transformation layer,” in 2021 Asia Commun. Photon. Conf., 2021, pp. 1–3.

[21] G. Sarantoglou, A. Bogris, C. Mesaritakis, and S. Theodoridis, “Bayesian
photonic accelerators for energy efficient and noise robust neural process-
ing,” IEEE J. Sel. Topics Quantum Electron., vol. 28, no. 6, Nov./Dec. 2022,
Art. no. 6100710.

[22] L. Jing et al., “Tunable efficient unitary neural networks (EUNN) and their
application to RNNs,” in Proc. 34th Int. Conf. Mach. Learn., 2017, vol. 70,
pp. 1733–1741.

[23] M. Arjovsky, A. Shah, and Y. Bengio, “Unitary evolution recurrent neural
networks,” in Proc. Int. Conf. Mach. Learn., 2016, pp. 1120–1128.

[24] Z. Yang, T. Zhang, J. Dai, and K. Xu, “Tunable-bias based optical neural
network for reinforcement learning in path planning,” Opt. Exp., vol. 32,
no. 10, pp. 18099–18112, May 2024.

[25] X.-K. Li et al., “High-efficiency reinforcement learning with hybrid archi-
tecture photonic integrated circuit,” Nature Commun., vol. 15, no. 1, 2024,
Art. no. 1044.

[26] I. A. D. Williamson, T. W. Hughes, M. Minkov, B. Bartlett, S. Pai, and
S. Fan, “Reprogrammable electro-optic nonlinear activation functions for
optical neural networks,” IEEE J. Sel. Topics Quantum Electron., vol. 26,
no. 1, Jan./Feb. 2020, Art. no. 7700412.

[27] K. Takiguchi, T. Kitoh, A. Mori, M. Oguma, and H. Takahashi, “Opti-
cal orthogonal frequency division multiplexing demultiplexer using slab
star coupler-based optical discrete Fourier transform circuit,” Opt. Lett.,
vol. 36, no. 7, pp. 1140–1142, 2011.

[28] M. Y. Saygin, I. V. Kondratyev, I. V. Dyakonov, S. A. Mironov, S. S.
Straupe, and S. P. Kulik, “Robust architecture for programmable universal
unitaries,” Phys. Rev. Lett., vol. 124, Jan. 2020, Art. no. 010501.

[29] G. Cong et al., “On-chip bacterial foraging training in silicon photonic
circuits for projection-enabled nonlinear classification,” Nature Commun.,
vol. 13, no. 1, 2022, Art. no. 3261.

[30] Z. Zhang and M. Sabuncu, “Generalized cross entropy loss for training
deep neural networks with noisy labels,” in Proc. Int. Conf. Adv. Neural
Inf. Process. Syst., 2018, vol. 31, pp. 8792–8802.

[31] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
2014, arXiv:1412.6980, doi: 10.1038/s41566-021-00796-w.

[32] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, Nov. 1998.

[33] H. Xiao, K. Rasul, and R. Vollgraf, “Fashion-mnist: A novel image dataset
for benchmarking machine learning algorithms,” 2017, arXiv:1708.07747.

[34] G. Bradski, “The OpenCV library,” Dr Dobb’s J. Softw. Tools, vol. 25,
no. 11, pp. 120–123, 2000.

[35] C. Ramey, “Silicon photonics for artificial intelligence acceleration :
Hotchips 32,” in 2020 IEEE Hot Chips 32 Symp., 2020, pp. 1–26.

[36] H. H. Zhu et al., “Space-efficient optical computing with an integrated
chip diffractive neural network,” Nature Commun., vol. 13, no. 1, 2022,
Art. no. 1044.

https://limits.pubpub.org/pub/wm1lwjce
https://dx.doi.org/10.1038/s41566-021-00796-w

TANG et al.: RECONFIGURABLE INTEGRATED PHOTONIC UNITARY NEURAL NETWORKS WITH PHASE ENCODING ENABLED 8800311

[37] T. Fu et al., “Photonic machine learning with on-chip diffractive optics,”
Nature Commun., vol. 14, no. 1, 2023, Art. no. 70.

[38] D. A. B. Miller, “Perfect optics with imperfect components,” Optica, vol. 2,
no. 8, pp. 747–750, Aug. 2015.

[39] R. Hamerly, S. Bandyopadhyay, and D. Englund, “Asymptotically fault-
tolerant programmable photonics,” Nature Commun., vol. 13, no. 1, 2022,
Art. no. 6831.

[40] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Learning representa-
tions by back-propagating errors,” Nature, vol. 323, no. 6088, pp. 533–536,
1986.

[41] J.-P. Berrut and L. N. Trefethen, “Barycentric Lagrange interpolation,”
SIAM Rev., vol. 46, no. 3, pp. 501–517, 2004.

[42] M. Y.-S. Fang, S. Manipatruni, C. Wierzynski, A. Khosrowshahi, and
M. R. DeWeese, “Design of optical neural networks with component
imprecisions,” Opt. Exp., vol. 27, no. 10, pp. 14009–14029, May 2019.

[43] Y. Tian et al., “Scalable and compact photonic neural chip with low
learning-capability-loss,” Nanophotonics, vol. 11, no. 2, pp. 329–344,
2022.

[44] B. Wu et al., “Real-valued optical matrix computing with simplified mzi
mesh,” Intell. Comput., vol. 2, 2023, Art. no. 0047.

[45] B. Schölkopf and A. J. Smola, Learning With Kernels: Support Vector
Machines, Regularization, Optimization, and Beyond. Cambridge, MA,
USA: MIT Press, 2002.

[46] D. Zhu et al., “Integrated photonics on thin-film lithium niobate,” Adv.
Opt. Photon., vol. 13, no. 2, pp. 242–352, Jun. 2021.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

