IEEE PHOTONICS JOURNAL, VOL. 16, NO. 5, OCTOBER 2024

7801320

Dim and Small Target Detection Based on
Improved Bilateral Filtering and Gaussian
Motion Probability Estimation

Fan Xiangsuo“, Qin Wenlin

Abstract—Dim and small target detection plays an important
role in infrared target recognition systems. In this paper, we present
a dim and small target detection algorithm based on improved
bilateral filtering and Gaussian motion probability estimation,
aiming to improve the detection efficiency of the detection system.
First, a bilateral filtering algorithm based on image patch analysis
is proposed to complete the background modeling, compare with
single pixel, image patch contains more neighborhood information.
Then, we use the Gaussian process combining the target position of
consecutive o frames to predict the target position of the (n 4 1)th
frame, and the target energy is accumulated along the trajectory
direction at the same time. Finally, we construct the grayscale prob-
ability model to realize the multi-frame correlation detection, which
combining the grayscale features and the motion characteristics of
the target. Six scenes and eleven comparison algorithms are selected
for experiments, experimental results show the effectiveness and
robustness of the proposed algorithm.

Index Terms—Bilateral filtering, dim and small target, gaussian
process, motion estimation.

1. INTRODUCTION

NFRARED automatic search and tracking system weak tar-

get detection technology, as an important part of the weak sig-
nal detection field, is widely used in military and civilian fields,
such as space debris detection, early warning, missile guidance,
and so on [1]. However, due to factors such as long-range
imaging, clutter interference, and noise generated by imaging
devices, the detection of weak targets has become increasingly
difficult, and therefore has attracted the attention of research
scholars in recent years. Many scholars have been successful
in the field of weak target detection, and the current detection
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algorithms are mainly divided into two categories: single-frame
detection algorithms and multi-frame detection algorithms [2].

The grayscale value of the central pixel can be predicted
by the grayscale information of the neighborhood background,
which is the idea of background prediction. Through back-
ground modeling, the target and noise can be separated from
the background. Hu [3] proposed an improved non-local mean
background modeling method, which assgins different weights
based on the similarity of pixels in the filter window between two
adjacent frames. Song [4] improved the traditional propagation
filter based on image patch analysis, which predicts the grayscale
values of pixels by calculating the similarity between patchs,
and achieves a better background prediction effect. Han [5]
constructed a new background prediction window consisting
of an intermediate layer, an isolation layer, and a neighboring
background layer, which can detect targets of different scales
using only one window, the role of the isolation layer is to
separate the target from the background completely. Han [6]
proposed a multi-direction TDLMS algorithm, which can gen-
erate more accurate reference results compared with the tradi-
tional TDLMS algorithm, effectively reducing prediction errors
and obtaining better background modeling effect. In addition
to space domain filtering, frequency domain filtering can also
effectively remove background clutter [7]. Usually, the target
grayscale is higher than the background grayscale, so the noise
generated by the imaging device and the target belong to the
high-frequency component of the image, the background be-
longs to the low-frequency component of the image, we can
design high-pass filter or low-pass filter to separate the target
from the background in the frequency domain. For example,
Yang [8] proposed an entropy-based adaptive high-pass filtering
algorithm for background suppression of infrared images, and
Wang [9] used wavelet transform to suppress background clutter,
then combined with higher-order statistical analysis to detect
dim and small target.

Human visual saliency-based detection methods [10],
[11]achieve weak target detection based on the contrast be-
tween the target and the background. Ren [12] proposed an
improved double-layer local contrast measure (IDLCM) method
to suppress the image background, followed by further noise
interference removal by multidirectional gradient (MG), and
extracts the target using singular value decomposition. Lu [13]
defined a fusion of differential scaling (RDLCM) and differential
limiting (CDLCM) to enhance the target signal and suppress
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background clutter, and then complete the target detection by an
adaptive threshold segmentation algorithm. Kou [14] used anim-
proved density peak global search method (IDPGSM) to extract
the candidate target region, to enhance the candidate region’s
contrast through a double weighted enhancement (DWELCM)
method.

Detection methods based on low-rank and sparse theory [15],
[16] realize the detection of weak target based on the sparse
target and the low-rank background, and these methods have
a strong ability to suppress strong background clutters of the
image. Yang [17] introduced a comprehensive target saliency
measure, which first extracts the candidate target regions in the
image by the cross-window standard deviation (CSD), and then
remove the background clutter of the image by the low-rank
representation (LRR) method to enhance the target and suppress
the background, and finally determine the real target by the
iterative thresholding method. He [18] presented a low-rank
and sparse representation (LRSR) method, which constructs the
super-complete dictionary by two-dimensional Gaussian model,
then obtains the target, background and noise components of
the image by the LRSR model, and obtains the target image
by combining thresholding method. Gao [19] proposed the IPI
model, which constructs the image local block, then recovering
the image background through the IPI model and acquiring the
target image to achieve weak target detection.

Deep learning-based detection methods [20], [21] utilize
convolutional neural networks to train data samples, construct
detection models, and then detect weak targets. These methods
have the advantages of fast speed and high detection accuracy
compared with traditional image feature extraction methods. For
example, Zhang [22] presented a data-driven approach called
Attention-Guided Pyramid Context Network (AGPCNet) to
against the complex background. Hou [23] proposed a robust in-
frared weak target detection network (RISTDnet) based on deep
learning that constructs a feature extraction network combining
manual feature extraction methods as well as combining thresh-
old segmentation methods to extract targets. Yu [24] introduced a
multiscale local contrast learning network (MLCL-net), which
incorporates a bilinear feature pyramid network to overcome
the problem that the target scale is too small and the slight pixel
offset leads to a serious decrease in accuracy. Shi [25] proposed
a coordinated attention and feature fusion combination network
(CAFF-Net), to capture both low-level texture structure features
and high-level semantic information of dim and small target with
strong anti-interference ability, and can effectively avoid false
and missed detection in complex background.

The single-frame detection methods can complete the detec-
tion by using only a single frame, but there are some limita-
tions. Such as the filter-based method is easily disturbed by the
complex background clutters. The local contrast measurement
method has certain requirements on the contrast of the target and
the scale of the target, otherwise the highlighted non-target areas
are easily mistaken for the target causing detection failure. The
strong edge contour background in low signal-to-noise ratio can
destroy the sparse characteristic of the target and the low-rank
characteristic of the background leading to the false detection.
In addition, the deep learning method requires sufficient train-
ing samples, and the training process takes some time, so the
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timeliness of the algorithm is difficult to be satisfied. In summary,
the information we can utilize in a single frame is limited, to
detect target in low signal-to-noise ratio (SNR), it is necessary
to combine the time-domain information of the target.

The multi-frame detection method makes full use of the
space-domain information and time-domain information, which
include the grayscale features and motion features of the tar-
get. The classical track-before-detect (TBD) algorithms mainly
include dynamic programming, higher-order correlation and
multi-level hypothesis testing, and so on. Yang [26] classified
the structure of infrared images into five categories, firstly con-
structed a multi-directional filtering window with three layers
of different gray levels, then combined morphological filtering
with median filtering to reduce the algorithm running time,
while proposed a target extraction method to determine the
candidate targets, and finally implemented the target detection
by a parameter optimization method based on fuzzy control
theory. The method achieves better tracking effect. Huang [27]
used the maximum background prediction algorithm to com-
plete the background modeling, then extracting the suspected
target, and proposed an improved Kalman filtering algorithm to
predict the position of the target in the next image frame and
track the target, which showed a high detection performance
in different complex scenes. Shaik [28] proposed a tracking
method based on frequency domain information correlation and
Bayesian estimation to determine the real target by calculating
the maximum probability of the target trajectory from the motion
trajectories of multiple candidate targets. The method has high
real-time performance and achieves good tracking results for
both stationary and moving targets. Chen [29] combined the
advantages of two-dimensional empirical modal decomposition
and time-domain differential filtering methods, and the two-
dimensional empirical modal decomposition has a strong adap-
tive capability, the algorithm can retain the target information in
the high-frequency component, then the effective enhancement
of the target intensity through the time-domain information
between adjacent frames to achieve weak target detection. The
method has better anti-clutter interference capability and better
detection effect in low signal-to-noise ratio and complex scenes.
Ren [30] proposed a detection method based on 3D collabo-
rative filtering and spatial inversion, which first removes the
background clutter by 3D collaborative filtering, followed by an
energy accumulation algorithm to enhance the target signal, and
finally extracts the real target by the spatial inversion method.
This method effectively solves the problem of false alarm or
false detection phenomenon caused by extremely similar target
grayscale and background noise grayscale under low contrast,
but the complexity of the algorithm is high. A representative
algorithm of detect-before-track (DBT) is pipeline filtering.
Li [31] improved adaptive pipeline filtering, which adaptively
adjusts the pipe diameter according to the moving speed of the
target, and the algorithm has stronger robustness in the case
of severe background noise interference. Dong [32] first used
Difference of Gaussian (DoG) algorithm to extract the interest
points, then tracking these points in adjacent frames by HVS,
and finally the tracking results were used to determine the real
target by clustering algorithm (R-means). Lei [33] combining
background estimation and frame difference method, which first
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estimates the background of an image by the median of the pixels
in the neighborhood of the pixel, then calculates the difference
between the current frame and its corresponding background
image, and fuses the results to achieve target detection. This
method has good real-time performance. However, due to the
limitation of median filtering, it is easily disturbed by complex
background and the detection performance is degraded.

Both DBT and TBD algorithms require background modeling
to obtain the difference map. The difference is that TBD does
not know the a priori information of the target and needs to
track all suspicious target to determine the real target through
the posteriori probability, therefore it can achieve detection
and tracking of weak targets in low SNR, but the storage and
computation of TBD are large. DBT, on the other hand, first
determines the target information of a single frame, and then
combines the target motion information and grayscale infor-
mation between frames to determine the targets on subsequent
images to achieve tracking of weak targets. The structure of DBT
algorithms is simple and it is easy to implement in hardware, but
the anti-interference performance is insufficient. By comparing
the above methods, a novel detection method is proposed in this
paper. The main contributions are as follow:

1) In order to retain the target information while minimizing
the background information, the traditional bilateral filtering is
improved in this paper. The traditional bilateral filtering only
uses the information of a single pixel to calculate the filter coef-
ficients, compared with a single pixel, the mean value of image
patch is more representative for the background information
around the target, so this paper constructs the mean information
of image patches at different scales, calculates the mean value
of these patches and we use these mean values intead of single
pixel to complete the background modeling.

2) The background modeling may weaken the target energy,
the target intensity should be enhanced. In this paper, based on
the historical position information of the target, the new target
position is predicted by Gaussian process to accumulate the
energy of the target along the motion direction, and the energy
enhancement can furtherimprove the contrast of the image.

3) Finally, after energy enhancement, a multi-frame detection
model based on grayscale weighted probability model is con-
structed by combining the motion characteristics and grayscale
features of the target between consecutive frames, and calculate
the probability of candidate targets, the real target is determined
by the maximum grayscale probability.

II. PROPOSE METHODS
A. Improved Bilateral Filtering Background Modeling

Gaussian filtering only considers the distance between the
neighborhood pixel and the central pixel, which tends to blur
the edge details of the image. Therefore, Tomasi and Manduchi
proposed bilateral filtering [34], which introduces a grayscale
similarity function to denoise while preserving the edges of the
image well. The dim and small target, as a “singularity” in the
image, is distinct from the surrounding background, therefore
the background information of the image is maximally preserved
by bilateral filtering to highlight the target and improve the
saliency.
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Yagiong Zeng [35] proposed an improved bilateral filtering
algorithm for background estimation of infrared images, the au-
thors construct a filtering template and participate in the filtering
process. The algorithm has a better background prediction effect
and better anti-interference ability than the traditional bilateral
filtering algorithm. However, the filtering template constructed
by this algorithm has a single structure, and applying it to scenes
where the target scale changes will reduce its effectiveness in
background estimation. In addition, the algorithm only consider
the information of single pixel in the neighborhood, which
achieves better background modeling when the scene is in a
small background fluctuation, when the background fluctuation
is large, the influence of the neighborhood information of single
image element on the central pixel is not sufficiently consid-
ered, which leads to undesirable prediction results. In order to
more fully exploit the neighborhood information of the target
and cope with different scale variations of the target between
adjecent frames at the same time, an improved bilateral filtering
background modeling method is proposed in this paper.

As shown in Fig. 1, A is a local window consisting of 3*3pix-
els, now it is expanded into a local window B consisting of
3*3 region blocks, each of which corresponds to A, and the
size of the region block is 3*3. The mean value of each region
block in B is calculated and replaced by the grayscale value
of the corresponding pixel in A, and then bilateral filtering
is performed. In order to maximize the preservation of the
background structure of the image, especially in the edge contour
region, this paper expands the single pixel into a patch, and the
patch analysis contains more information than a single pixel, so
that better background prediction results can be obtained. The
two filtering templates we constructed in the paper effectively
solve the problem of inaccurate prediction due to the possible
shift of pixels when the target scale is changed by the single-scale
filtering template. The specific expressions of the background
modeling algorithm in this paper are as follows:
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In the above equation, M7 and M, are the filtering templates
constructed in this paper, respectively.
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Fig. 1.  Schematic diagram of background modeling.

I denotes the original image, (i, j) denotes the central pixel,
I denotes the mean value of the area, and I} denotes the mean
of the 3*3 blocks in the area. P; denotes the result of bilateral
filtering, INV,, ,, denotes the range of the filter window, (z1,y1)
denotes the neighborhood size, and r; denotes the neighborhood
radius. o4, is the standard deviation of the spatial neighborhood,
and o,, is the standard deviation of the pixel value. C is a
constant, which is the weighted sum of the product of spatial
weights and grayscale weights.
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I denotes the original image, (¢, j) denotes the central pixel, I,
denotes the grayscale mean of the area where the pixel is located,
and I/} denotes the mean of the 5*5 blocks in the area. P, denotes
the result of bilateral filtering, N,, ,, denotes the range of the
filter window, (2, y2) denotes the neighborhood size, and rs
denotes the neighborhood radius. o4, is the standard deviation
of the spatial neighborhood, and o, is the standard deviation of
the pixel value. C' is a constant, which is the weighted sum of
the product of spatial weights and grayscale weights.
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where P denotes the result of P multiplying with P, the
bilateral filtered background prediction image.

B. Gaussian Motion Estimation

Most of the clutter interference can be removed and the
contrast of the image is improved after background suppression.
However, because the limitations of the spatio-temporal filter-
ing algorithm, the suppression of some strong edge contours
and noise interference is insufficient, resulting in more clutter
retaining in the difference map, and the contrast between the
target and the surrounding background is not obvious, which
is not conducive to detect the target. To improve the detection
efficiency of the algorithm, the contrast between the target
and the background clutter can be improved by enhancing the
intensity of the target. The energy enhancement algorithms
are mainly time-domain energy accumulation or space-domain
energy accumulation algorithms [36], [37], which enhance the
target signal to a certain extent but do not consider the time-space
domain information of the target sufficiently; therefore, it is
crucial to fully incorporate the spatio-temporal information in
the target energy enhancement process.

Shaik [38] used the initial position of the target and its his-
torical position information to predict the target position in the
next frame based on the Bayesian conditional probability prin-
ciple, which enables the detection and tracking of weak target.
Gaussian process is widely used in the field of target tracking,
and it is mainly used for the prediction of target position [39].
The prediction of Gaussian process is an interpolation method,
which assumes that the function is smooth and does not change
significantly between observation points. Therefore, when the
points we need to predict are far away from the observed points,
the reliability of the prediction result will be reduced. Since the
Gaussian process requires to calculate the inverse matrix of the
covariance matrix, this method is feasible when the number of
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observations is small. Too many observations will increase the
execution time of the algorithm.

Inspired by Gaussian process, in long-range imaging, the
change of the position of small target is small between frames
and the moving direction has certain regularity, Gaussian process
can be applied to predict the target position. Assuming that the
target position of the N frames is known, the target position
of the N+1th frame can be predicted by Gaussian process, and
then the candidate target energy of the N frames is accumulated
along the trajectory, which can greatly enhance the intensity of
the target. The Gaussian process is briefly described as follows.

Suppose that the values of the function at different points
are random variables that obey a Gaussian distribution with the
following prior distribution [39]:

f(x) ~GP (m(m), k (.Z‘,.’L‘,)) )

Where m(x) is the prior mean function of f(x) and k(z,2’) is
the covariance function of f(z). Typically, we choose the radial
basis function based covariance function as follows:

k(x,x')-o?exp( 2 <||I Z ’||) ) (6)

Where UJ% and ¢ are hyperparameters that denote the variance
and length scale of the function, respectively.

Given the previous n coordinates X = [z1, Z3,...,z,] and
the corresponding function values Y = [y1, ya, . . . , Yn], We can
calculate the covariance matrix K (X, X) at these points and the
vectors k (2,41, X) associated with them as follows:

k(o) k(o) k (21, 20)
KX, X) = k(mgz,scl) k(xg.,xg) k(w27xn)
En ) k(o) o k(o)
(7
k(@ni1, X) = [k(@ni1, 21)k(@ng1, 22) - - k(Tns1, 70)]

®)

We can use these values to calculate the predicted distribution
of the (n + 1)th coordinates given the (n)th coordinates:

F@ns)I(X, Y, 2p41) = N((@nt1), 02 (@nt1)) - 9)
Where pi(x,, 1) and 0%(z,,41) are:
(@ g1) = kg1, X)[K(X, X) + 07 171V

02(zp41) = k(@ns1, Tnt1) — k(zps1, X)
[K(X,X)+ o021 (X, xp11)

(10)

Where 1 is the unit matrix and o2 is the variance of the noise.
This allows the Gaussian process to be used to predict the value
of the function of the (n + 1)th coordinate.

To reduce the program running time, the differential map is
segmented using the double-window segmentation algorithm
before energy enhancement. The selection of segmentation
threshold follows the following principles: retain the target re-
gion while minimizing the interference of background noise, too
much clutter will increase the running time. After the threshold
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Fig. 2. Gaussian prediction schematic.

segmentation, only a small number of interest points are left on
the image, and the target signal intensity is enhanced by energy
accumulation, and the target signal enhancement will also elim-
inate part of the clutter interference. Relevant expressions are as
follow [40]:

rr=1ro=>5
n= rlf X Zm_(jlr/12/)2 Zzz(j(lf/)z) P(Z +m,j+ TL)
r1/2 n=(ry/2 . .

42 = % X Zm—g ’I"/1/)2 Z’I’L:E(T’/l/)z) P(Z + m,J + ’I’L)
— 491792
=
ifq:; >T
D(i,j) =1
else
D(i,

j)=0
(11)

In the above equation, P represents the difference image. ry
and r, represent the radius size of the inner and outer windows,
respectively. ¢; and go represent the average gray value of the
inner and outer windows, and g3 represents the difference of
mean value between ¢; and ¢o. T represents the segmenta-
tion threshold, which is selected empirically. The basic prin-
ciple is to ensure that the target region is preserved while the
amount of noise or clutter is least. D represents the segmented
image.

As shown in Fig. 2, n represents the number of candidate
target regions of the current, ¢ denotes the current frame, C’,i
is the kth candidate target of the current frame, assuming that
the true position C, %, ..., C} ! of its previous frames is known,
and P} is obtained by Gaussian process prediction, by comparing
the distance between Pg' and the candidate targets, the closest
distance is the true position of the kth candidate target of the
current frame, then the target energy of the previous frames is
accumulated to the kth candidate target, and the target signal
enhancement is completed. The reason why the target position
can be predicted by Gaussian process is that the position of
weak targets does not change significantly between consecutive
frames, however, in some scenes there are cases where the
background moves, so the energy of these pseudo-targets will
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also be enhanced. The specific expressions are as follows:

Ly, 1 (41, Ynt1) = GPpre(Li(x1,91),
L2(1’273}2)7 .. '7Ln(xna yn))

W= \/(iﬁu — Zpi1)? F Yii — Yns1)”
L1 (@n1, Yny1) = mindyy (T, yii)
Gk = Dk * Ik

1
fi1 = Sonit Grlan, yk)

G Pp,. denotes the Gaussian process prediction function,
L, (2, yyn) denotes the centroid of the candidate target in the
nth frame, L] | | (241, yn41) denotes the predicted centroid of
the (n + 1)th frame, 77 denotes the number of candidate targets
on the (n + 1)th frame, d denotes the distance between the
predicted centroid and the centroid of all candidate target regions
in the image, and L, 1(@n41,Ynt1) is the real centroid of the
(n+ 1)th frame. G} denotes the gray value of the candidate
target region, and (&, ; denotes the accumulation of the gray
value of the previous n-frame target region corresponding to the
current candidate target region to the candidate target region
corresponding to the (n + 1)th frame, which is the energy
enhancement result.

12)

C. Effective Displacement Energy Probability

After energy enhancement of the candidate target area, a small
number of points of interest will be retained. These interest
points may be background, random noise or target, and the
grayscale of the target may be lower than the grayscale of the
strong edge contour background or random noise points. For this
reason, the target needs to be separated from the noise based
on the continuity of the target motion and the randomness of
the noise. In traditional multi-frame detection methods (such
as pipeline filtering [31]), the number of target appears and
target moves between consecutive frames are usually counted,
and if the number exceeds a threshold, the current point is the
real target. The algorithm can achieve better detection results
in scenes where the background moves slowly or even does
not move, once the background moves rapidly with the target,
the method is prone to missed or false detection, reducing the
reliability of the detection algorithm.

Based on the continuity of the target movement between
frames, this paper proposes a detection approach which is the
effective displacement energy probability model. Assuming that
the target does continuous motion in 5-9 consecutive frames, the
target appears in the current frame then will also appear in the
small neighborhood of the corresponding position in the next
frame, and the number of target appears between consecutive
frames is recorded. Also, if the number of target moves between
consecutive frames reaches half of the frames, the target is
considered to be effectively move. When the number of occur-
rences of the target between consecutive frames reaches the set
threshold and it is a effective move, the sum of the energy of
the point between consecutive frames is calculated, and the sum
of the energy of all candidate target points in the image is also
calculated. Considering that the noise is randomly distributed,
the probability of appearing in consecutive frames is small, and
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Fig. 3.  Effective probability diagram.

almost no effective movement occurs; while the background
clutter usually does not move, but there is a possibility of
effective movement; however, the target is continuously moving
between frames, so the probability of effective movement of
the target is larger, and the corresponding energy probability is
also larger, so the candidate target point with the largest energy
probability can be considered the real target.

Fig. 3 shows the detection model constructed in this paper, and
the number of image frames L that the model can accommodate
is 5. Now to determine the real target from the n suspicious
targets in the first frame, assume that the ith candidate target in
the first frame is in the small neighborhood of the same position
in the second frame, and the number of target appears @, plus
1, and if the position is moved, the number of target moves m.,,m,
plus 1. Then we continue to search the third frame with the target
position of the second frame as the center, until we traverse the
whole pipeline and output the results of @y, and m,y,y,. When
both @y, and M,y are more than half of the pipe length,
we define the target point as the effective displacement. The
effective displacement energy of the target I; is calculated and
the point with the highest probability of effective displacement
energy 7; is the real target point. For the case that the target
is lost in the current frame, the target position of the previous
frame is used as the center to search the next frame. The specific
expressions are as follows:

if apum > (L/2) && mumum > (L/2)
E'=Y_ 1Bl (I<L)
T = Z_
3 ZEL
F = IIlElJX{T‘l,jé7 N

13)

T}

The above equation, £ denotes the image after energy en-
hancement, k£ is the frame number where the effective dis-
placement occurs, n denotes the number of candidate targets
in the image, and F; denotes the energy accumulation value
of the effective movement of the ith candidate target. T; de-
notes the energy probability of the candidate target. F' denotes
the real target, which candidate target with the highest energy
probability.
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Fig. 4. Flowchart of the algorithm in this paper.

D. Algorithm Summary

This section summarizes the algorithm of this paper, which
follows the ideas of background modeling, energy enhancement
and multi-frame correlation detection. First, considering that the
traditional bilateral filtering using a single pixel for background
prediction does not fully utilize the background information of
the local neighborhood, this paper extends the single pixel of the
traditional filtering into a block for background prediction and
incorporates the filtering results of two different scale filtering
templates, and the improved background modeling algorithm
fully exploits the neighborhood information of the target. Then,
the candidate target region is obtained by the double-window
segmentation method, and the Gaussian process is used to pre-
dict new position, and realize the accumulation of the candidate
target energy along the direction of the motion trajectory. Finally,
according to the continuity of target motion and the randomness
of noise, combining the motion characteristics and gray-scale
characteristics of the target, an effective displacement energy
probability model of the target is proposed, and the candidata
target with the largest energy probability is the real target point.
The related experimental results are in Part III. Fig. 4 shows the
flow chart of the algorithm in this paper, and Table I shows the
pseudo-code related to the algorithm in this paper.

..........................................................

III. EXPERIMENT

A. Experimental Setup

1) Dataset: To verify the feasibility of our algorithm, six
scenes are used to experimental validation. These scenes contain
clouds with different degrees of complexity and motion speed
of target. The specific information is referred to Table II. The
dataset is obtained from the literature [41]. The targets are
marked in the original image, and the target area is enlarged
and placed in the lower left corner of the image (as shown in
Fig. 5).

2) Evaluation Indicators: In addition to the intuitive back-
ground modeling, energy enhancement and multi-frame cor-
relation detection to reflect the feasibility of the algorithm,
the evaluation indexes such as background structure similar-
ity(SSIM), background suppression factor(BSF) and signal-to-
noise ratio(SNR) are also selected to evaluate the effectiveness of
the algorithm. Among them, the background modeling effect is
analyzed by the background suppression factor and background
structure similarity, and the larger the value, the better the
background suppression effect. The energy enhancement effect
is analyzed by the SNR and the average gray level of the target
region. Finally, the ROC curve can be used to evaluate the
detection performance of the algorithm, which can better reflect
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TABLE I TABLE III
ALGORITHM PSEUDO-CODE COMPARISON ALGORITHM PARAMETER SETTINGS
Algorithm 1: Spatio-temporal filtering and energy probability Algorithm parameter
model Bilateral [35] Filter size: 7 X 7, 04 =2, 0, = 0.1
Input: Original images f TDLMS [43] Support size: 5 x 5, step size: 1 x 1078
Output: Resulting images fr MPCM [10] N =1[3,5,7,9]
1: Set parameters o4=2, L=5 TLLCM [11] C=3,k=9, R€[57,9]
2: for i=1 to m PSTNN [45] Patch size: 40 x 40, sliding step: 40, A = 0.7
3: for j=1 to n MGDWE [44] Mean filter size: 7 x 7
4: Background modeling use Equation (1), (2), (3) and (4) Anisotropy [46] K = 120, step = 4, M = 40
5: P=Bilateral(f) NTFRA [47] Patch size: 40 x 40, sliding step: 40, 8 =
6: end 0.01, A\=0.6
7- end TLLDM [48] Filter size: 15 x 15, K =3
8: G=f-P ELUM [50] Filter size: 3 x 3, K1 =5, Ko =3
9: Image segmentation by Equation (11) LGDC [49] K = 0'.65’ N=3A=05
10: E=segment(G) Proposed Filter size: 3 x 3 and 5 x 5, 04 = 2
11: K=E*f
12: Target enhance by Equation (12) the relationship between detection rate and false alarm rate. The
13: D=enhance(K) relevant calculation equation is as follows [42]:
14: Target exaction by Equation (13)
15: fr=probability(D) SSIM — (2urpr +€1)(20rF + €2) (14)
(u% + np +e1)(0f + 0% + €2)
TABLE II oF)
DATASET DETAILS BSF = Ui s)
out
Image frames Image size Target size Background Equation (14), 1 is the mean value, pur is the original image
Scene 1 300 512%640 3%3 Slow movement  Mmean, pr is the predicted image mean. o is the standard devi-
Scene 2 300 512*%640 3%3 Slow movement ation, o p is the covariance. €1 and 5 are constants. Equation
Scene 3 300 512%640 3%3 Fast movement (15), 04, is the variance of the original image, 0, is the variance
Scene 4 500 512#640 3#3  Slow movement  of the difference image.
Scene 5 500 512*%640 3%3 Slow movement (wr—nn)/on
Scene 6 500 512%640  3*3  Fast movement SNR =10 x log (16)

Equation (16), pp is the target region mean, pp is the back-
ground region mean, and o g is the background region variance.
The SNR calculated in this paper is the global SNR.

NTDT
Py = NT x 100% a7
NFDT
Pr = 1 1
( NP x 100% (18)

Equation (17), P, is the detection rate, N'T'is the total number
of targets in the sequence image, and NT'DT is the number of
targets that can be detected. Equation (18), P is the false alarm
rate, N F'DT represents the sum of false pixels, and N P is the
sum of the total pixels of the sequence image.

3) Comparison Algorithms: Our algorithm is compared with
11 state-of-the-art algorithms, which are conventional bilat-
eral filtering [35], TDLMS [43], MPCM [10], MGDWE [44],
TLLCM [11], PSTNN [45], anisotropy [46], NTFRA [47],
TLLDM [48], LGDC [49] and ELUM [50]. The relevant pa-
rameters of these algorithms are shown in Table III.

4) Analysis of Filter Window Scale Design: In the experi-
ments, we constructed two filtering templates of 3*3 and 5*5,
respectively, because the size of weak targets is generally about
3*3-5%5. However, it is found that the background modeling
effect achieved by a single 3*3 or 5*5 filter template is insuffi-
cient, and a better background modeling effect will be achieved

Fig. 5. The original image and its 3D map.
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if the background prediction results of two filter templates are
fused. The following Fig. 6 shows the SNR comparison of the
six sequence images at different scales of filtering templates,
and the results show that the SNR obtained by the fusion of two
filtering templates is better than that of a single filtering template,
therefore the fusion results of the two filtering templates are
chosen for the experiments in this paper.

B. Analysis of Background Modeling Effect

1) Qualitative Evaluation: To evaluate the background sup-
pression effect of our algorithms, it is compared with 11 algo-
rithms, which include classical background modeling algorithms
such as bilateral filtering algorithms, two-dimensional least
mean square filtering algorithms, and anisotropic background
suppression algorithms; including local contrast measurement
algorithms such as MPCM, MGDWE, TLLCM, LGDC, ELUM
and TLLDM; and low rank and sparse theory algorithms such
as PSTNN and NTFRA algorithms. The first row shows the
background prediction images obtained by the different algo-
rithms, the second row shows the difference maps corresponding
to the original images, and the third row shows the 3D images
corresponding to the difference maps.

Fig. 7 shows the comparison of the background modeling
effect of scene 1. The traditional bilateral filtering achieves
a better background modeling effect, but a small amount of
clutter remains; TDLMS highlights the target area better, and the
clutter suppression effect is not enough for the image edges, and
also retains a large amount of background with lower intensity;
MPCM and MGDWE algorithm have similar background sup-
pression effect, although the target can be observed, most of the
background energy is enhanced, and the background grayscale is
higher than the target grayscale, which is caused by the uneven
distribution of grayscale and the small scale of the target, the
TLLCM algorithm has less clutter, the background suppres-
sion effect is better than MPCM and MGDWE algorithms; the
PSTNN, LGDC and NTFRA algorithms have stronger suppres-
sion ability of background clutter, at the same time can retain
the target information better, and the difference map contains
less strong clutter; the anisotropy algorithm has better retention
effect for the target, but the background suppression ability is not

7801320

enough and the background interference is serious; the TLLDM
and ELUM algorithm not only remove most of the background
clutter, but also enhance the target area significantly.

Fig. 8 shows the comparison of the background modeling
effect of scene 2. The traditional bilateral filtering, LGDC,
PSTNN, NTFRA and TLLDM algorithms all show excellent
background suppression ability, although the differential map
still contains some clutter, but these clutter intensity is low
and can be removed by simple threshold segmentation; the
TDLMS obtained differential image has obvious targets, and the
number of clutter is relatively less, but still cannot remove the
interference for the image edges; while the MPCM, MGDWE,
TLLCM and ELUM algorithms are close to the background
suppression effectin this scene, and can clearly observe the target
signal, and have a better enhancement effect on the target signal,
but the number of clutter is large; the anisotropic algorithm has
a weak background suppression ability in this scene, although it
can retain the target information better, the background clutter
interference is serious.

Fig. 9 shows the comparison of the background modeling
effect of scene 3. Most of the algorithms achieve better back-
ground suppression effect, such as traditional bilateral filtering,
PSTNN, ELUM and TLLDM algorithms obtain difference maps
with almost no clutter, MPCM, TLLCM, LGDC and NTFRA
algorithms also contain less background clutter, compared with
the above two scenes, TDLMS, MGDWE and anisotropic al-
gorithms also achieve better background modeling effect or
enhancement effect, but the background interference is still
serious compared with other algorithms.

Fig. 10 shows the comparison of the background modeling
effect of scene 4, which has a relatively smooth background,
high target contrast and fewer cloud edges, so most algorithms
also obtain ideal background suppression effect in this scene,
the background suppression effect of TLLDM and LGDC algo-
rithm is better than other comparison algorithms, the traditional
bilateral filtering and PSTNN algorithms are second, MPCM,
TLLCM, ELUM and NTFRA algorithms also highlight the
target clearly. The background suppression effect of TDLMS,
MGDWE and anisotropic algorithms is insufficient, and all have
different degrees of noise interference.

Fig. 11 shows the comparison of the background modeling
effect of scene 5. In this scene, the background is smooth,
but there are a few edge contours. Although TDLMS, MPCM,
MGDWE and TLLCM retain the target information better, due to
the limitations of the algorithms, the difference maps obtained
by these algorithms also have more background interference,
which will have a certain impact on the subsequent detection
process. Other comparison algorithms achieve ideal background
modeling effect, not only retaining the target information, but
also effectively suppressing the background clutter.

Fig. 12 shows the comparison of the background model-
ing effect of scene 6. Similar to scene 5, the background is
smooth, but the target is not obvious enough, while the back-
ground moves quickly with the target. Except for TDLMS and
TLLCM with serious background interference, other algorithms
achieve effective background suppression even though a small
amount of clutter remains, and the target energy is lost after the
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Fig. 7. Background modeling effect of scene 1.
TABLE IV
SCENE 1 EVALUATION INDICATORS
Proposed Bilateral TDLMS MPCM TLLCM PSTNN Anisotropy NTFRA TLLDM MGDWELGDC ELUM
[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM  0.9999  0.942 0.9909  0.9986 0.9992 0.9997 0.9993  0.9987 0.9999 0.9965 0.9996 0.9999
BSF  783.88 94.448 118.9 180.34 25277  385.7 291.94 19238 381.13 11647 359.07 605.50
The meaning of bold entities denote the max value of the evaluation indicators.
TABLE V

SCENE 2 EVALUATION INDICATORS

Proposed Bilateral TDLMS MPCM

TLLCM PSTNN Anisotropy NTFRA

TLLDM MGDWE LGDC ELUM

[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM 09996 0.9208 0.9865  0.9985 0.9993 0.9995 0.9977 0.9994 0.9995 0.9960 0.9995  0.9989
BSF 31511 2969 79.07 137.52 230.43 2943 149.51  281.69 245.72 90.0408 300.50 134.9602

The meaning of bold entities denote the max value of the evaluation indicators.

background suppression of MPCM, MGDWE, and ELUM algo-
rithm. Compared with other algorithm, the proposed algorithms
can achieve better background modeling effect in all six scenes
and has a strong background suppression ability, the number of
background clutter in the difference map is less.

2) Quantitative Evaluation: Two evaluation indexes, BSF
and SSIM, are selected to evaluate the background modeling
effect of the algorithms. Table IV shows the comparison of
algorithm evaluation metrics for scene 1. It can be seen that
the SSIM of the TLLDM and ELUM algorithm is higher than

the other comparison algorithms, while the BSF of the ELUM
algorithm is higher than the other comparison algorithms. The
SSIM of the proposed algorithm is the same as the TLLDM and
ELUM algorithm, but the BSF are all higher than those of the
other comparison algorithms, which is better compared with the
traditional bilateral filtering algorithm.

Table V shows the comparison of algorithm evaluation in-
dexes for scene 2. In this scene, the SSIM of the TLLDM
algorithm is still higher than the other comparison algorithms,
while the BSF of the traditional bilateral filtering algorithm
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Fig. 10. Background modeling effect of scene 4.
TABLE VI
SCENE 3 EVALUATION INDICATORS
Proposed Bilateral TDLMS MPCM TLLCM PSTNN Anisotropy NTFRA TLLDM MGDWELGDC ELUM
[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM  0.9999 09248 0.9883 0.9998  0.9998 0.9998  0.9992  0.9999 0.9999 0.9982 0.9997 0.9998
BSF 58291 694.16 88.83 35736  487.71 534.34 268.7 57521 37249 153.00 390.19 404.66
The meaning of bold entities denote the max value of the evaluation indicators.
TABLE VII
SCENE 4 EVALUATION INDICATORS
Proposed Bilateral TDLMS MPCM TLLCM PSTNN Anisotropy NTFRA TLLDM MGDWE LGDC ELUM
[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM  0.9999 0.9478 0.988 0.9997 0.9997 0.9998  0.9994  0.9998 0.9999 0.9992  0.9999 0.9996
BSF 670.97 447 91.51 309.99 379.05 507.34 287.84 < 463.52 39136 179.349 661.69 209.13

The meaning of bold entities denote the max value of the evaluation indicators.

is higher than the other comparison algorithms. Although the
difference of the BSF between our algorithm and the ELUM
algorithm is small, the SSIM is much higher than the ELUM
algorithm.

Table VI shows the comparison of algorithm evaluation in-
dexes for scene 3. Most of the comparison algorithms achieve
better background modeling effect in this scene, such as the
SSIM of NTFRA and TLLDM reaches 0.9999. Although the
SSIM of traditional bilateral filtering algorithm is lower, its
BSF is higher than the other comparison algorithms including
our algorithm. The BSF of our algorithm is lower than the

traditional bilateral filtering algorithm, it is still higher than the
other algorithms, and the SSIM is also higher than the traditional
bilateral filtering.

Table VII shows the comparison of algorithm evaluation
indexes for scene 4. In this scene, all the comparison algorithms,
except the traditional bilateral filtering algorithm, achieve high
SSIM, these algorithms achieve the desired background mod-
eling effect. For the BSF, all the comparison algorithms obtain
high BSF except for the TDLMS algorithm, which has a low
BSF. Both the SSIM and BSF of the proposed algorithm are
higher than the other comparison algorithms.
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TABLE VIII
SCENE 5 EVALUATION INDICATORS
Proposed Bilateral TDLMS MPCM TLLCM PSTNN Anisotropy NTFRA TLLDM MGDWELGDC ELUM
[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM 09999 0.9460 0.9884  0.9991 0.9993 0.9999 0.9978  0.9998 0.9999 0.9980 0.9999 0.9999
BSF 737.19  450.29 31.24 155.93 24449 606.13 16543 47221 33149 110.85 620.55 741.47
The meaning of bold entities denote the max value of the evaluation indicators.
TABLE IX
SCENE 6 EVALUATION INDICATORS
Proposed Bilateral TDLMS MPCM TLLCM PSTNN Anisotropy NTFRA TLLDM MGDWELGDC ELUM
[35] [43] [10] [11] [45] [46] [47] [48] [44] [49] [50]
SSIM 09999 0.9465 0.9880  0.9999 0.9981 0.9998 0.9972  0.9998 0.9998 0.9997 0.9999 0.9998
BSF 504.71 280.53 24.84 217.72  156.16 483.36 14340 43893 334.62 180.60 380.48 295.16

The meaning of bold entities denote the max value of the evaluation indicators.

Table VIII shows the comparison of algorithm evaluation
indexes of scene 5. In this scene most of the algorithms have
better evaluation indexes, but some data is relatively low, such as
TDLMS algorithm. In this scene, the SSIM of PSTNN, TTLDM,
LGDC and ELUM algorithms reaches 0.9999, which is equal to
the proposed algorithm. Meanwhile, the BSF of the algorithm
in this paper is slightly lower than that of ELUM algorithm, but
higher than that of other compared algorithms.

Table IX shows the comparison of algorithm evaluation in-
dexes of scene 6. In this scene, the SSIM of most algorithms
is more than 0.99, MPCM, and LGDC even reaches 0.9999,

which is the same as the SSIM of our algorithm, but in terms of
BSF, the proposed algorithm is higher than the other comparison
algorithms. On the whole, the algorithm in this paper has better
background modeling effect and strong background suppression
ability.

C. Analysis of Energy Enhancement Effect

In the process of acquiring the difference image, some of the
target energy is weakened, so it is necessary to improve the
contrast of the target. To avoid increasing the execution time,
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a double window segmentation algorithm is used to extract
the candidate targets. Because the target and the surrounding
background have certain differences in grayscale, most of the
background clutter interference can be removed by these fea-
tures, thus retaining some points of interest that are closer
to the grayscale features of the target. The coordinate of the
new target is predicted by its historical motion coordinate, and
then the historical energy of corresponding candidate target
is accumulated to the new predicted target. The method fully
combines the spatio-temporal domain information of the target
to improve the target energy, and it can be seen from Fig. 13 that
the grayscale of the target is low before enhancement, and the
grayscale value is significantly increased after the enhancement.
In scene 1, the target has the highest grayscale value before en-
hancement, and the target grayscale is lower than the background
clutter grayscale after enhancement, because this paper takes the
grayscale information of consecutive multi-frame images for
enhancement, in which the background region is larger and the
target region is smaller, and the magnitude of background energy
enhancement is higher than that of target energy enhancement
in the process of energy accumulation. In contrast, scene 2
and scene 3 do not appear similar cases. In scene 4, although
some candidate target energies are also enhanced, the target
grayscale is still the highest. The energy enhancement effect
of scene 5 and scene 6 energy enhancement effects are similar,
there is a small amount of noise in addition to the target before

500
00
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target—.

——target

the energy enhancement, but the energy enhancement effect of
the noise is less pronounced relative to the target, whereas the
energy enhancement effect of the target is obvious. In order
to objectively evaluate the enhancement effect of the proposed
algorithm. Target area average grayscale and SNR are used to
compare the effect of the target before and after enhancement,
see Table X. The target area average grayscale of the six scenes
before target enhancement are 0.5556, 4.8889, 5.2222, 6.3333,
1.2222 and 5.5556,respectively, after enhancement they reach
55.7778, 81.2222, 75.0000, 70.3333, 82.4444 and 107.8889,
respectively. The SNR are —6.70, 2.93, 3.22, 4.06, 17.86 and
17.83 for the six scenes before target enhancement, and 13.36,
15.05, 14.72, 14.39, 21.12 and 22.16 after enhancement, which
indicate that the energy enhancement algorithm proposed in this
paper has better target energy enhancement effect.

D. Detection Results

After completing the clutter suppression and energy enhance-
ment, the multi-frame correlation detection is implemented by
the energy probability model proposed in this paper to de-
termine the real target and extract its corresponding motion
trajectory. To verify the effectiveness of the detection algo-
rithm in this paper, we compare the detection results with
11 detection algorithms, including bilateral filtering algorithm,
TDLMS algorithm, MPCM algorithm, MGDWE algorithm,
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Fig. 13.  Target enhancement effect.
TABLE X
TARGET ENHANCEMENT EVALUATION INDICATORS
Scene 1 Scene 2 Scene 3 Scene 4 Scene 5 Scene 6
Average grayscale Before 0.5556 4.8889 5.2222 6.3333 1.2222 5.5556
After 55.7778 81.2222 75.0000 70.1111 82.4444 107.8889

SNR(dB) Before -6.7 2.93 3.22 4.06 17.86 17.83

After 13.36 15.05 14.72 14.39 21.12 22.16
Fig. 14. Detection result of scene 1.

TLLCM algorithm, PSTNN algorithm, Anisotropy algorithm,
NTFRA algorithm, LGDC algorithm, ELUM algorithm and
TLLDM algorithm.

As can be seen from Fig. 14, most of the algorithms can
locate the target in scene 1, but there are different degrees of
miss detection and more clutter interference. TLLDM algorithm
and PSTNN algorithm have better detection performance among
all compared algorithms with less clutter, followed by bilateral
filtering algorithm, TDLMS, MPCM, MGDWE, TLLCM and
ELUM algorithms. However, these algorithms have different
degrees of miss detection and more strong clutter interference,
anisotropy can not completely remove the background clutter,
LGDC and NTFRA can accurately locate the target, but also has
a miss detection phenomenon. In contrast, the algorithm in this
paper can effectively eliminate the noise interference and extract
the target accurately.

From the Fig. 15, we can see that the TDLMS, TLLCM,
PSTNN and TLLDM algorithms achieve better detection results,
and the extracted target motion trajectories are relatively com-
plete, despite less interference. In contrast, the bilateral filtering
algorithm, MPCM, MGDWE,LGDC and NTFRA algorithms
miss detection is more seriously, the extracted target motion
trajectories are incomplete. The anisotropic and ELUM algo-
rithm also reside more background clutter, and it can be seen
that part of the target trajectory is covered by the background
clutter. Our algorithm achieves better detection effect in this
scene.

Fig. 16 shows the comparison of the detection results of
scene 3. Since the background of this scene changes rapidly, the
obvious background motion trajectory is visible in the compari-
son algorithm, but most algorithms can still detect the target and
extract the target motion trajectory completely. The difference
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Fig. 15.  Detection result of scene 2.

Fig. 16.  Detection result of scene 3.

Fig. 17. Detection result of scene 4.

Fig. 18.  Detection result of scene 5.

is that the energy probability model of the algorithm in this slowly, so it can be seen that all algorithms can obtain ideal

paper can eliminate the false target, the motion trajectory of the  detection results in this scene.

background can be removed. Fig. 18 shows the comparison of the detection results of
Fig. 17 shows the comparison of the detection results of scene 5. All algorithms in this scene detect the target signal,

scene 4, where the background is relatively smooth and moves but the false alarm rate of NTFRA is high, and the other
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Fig. 19.

Detection result of scene 6.
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Fig. 20. Comparison of ROC curves.

comparison algorithms also have a small amount of false

alarms.

rapidly.

Fig. 19 shows the comparison of the detection effect of
scene 6. In this scene, the detection effect is less satisfactory
because the background moves faster and there are a few small
patches similar to the target in the image interfering with the
detection process, although the target is successfully detected,
there is still a high false alarm rate and missed detection rate.
Analysis of the above experimental results shows that our algo-
rithm utilizes the motion characteristics of the target motion
and the grayscale features, incorporates the spatio-temporal
domain information of the target, and is able to effectively
remove background clutter and successfully detect the target
even in scenes where the target and the background are moving

E. ROC Curve Analysis
In the previous background modeling and energy enhance-
ment sections, three evaluation metrics, SNR, SSIM and BSF,
were used to evaluate the background clutter suppression ability
of the algorithm. However, dim and small target detection is
more concerned with the detection rate and correctness of the
algorithm, in the detection section, detection rate and false alarm
rate are used to evaluate the detection effectiveness, and the
six ROC plots in Fig. 20 correspond to the six scenes selected
in the paper. From Fig. 20(a), we can see that the detection
rate of most of the comparison algorithms more than 70%,
while the detection rate of the proposed algorithm is higher
than other comparison algorithms and the false alarm rate is
lower than other algorithms; from Fig. 20(b), we can see that
the detection rate of all comparison algorithms exceeds 70%,
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and most of them more than 85%, the detection rate of our
algorithm is the highest; from Fig. 20(c) the detection rate of all
algorithms exceeds 60%, and the detection rate and false alarm
rate of this paper’s algorithm are better than other comparison
algorithms; in Fig. 20(d) it can be seen that the detection rate
of all algorithms exceeds 85%, and the false alarm rate of the
proposed algorithm is the lowest, despite the small difference
in the false alarm rate of each algorithm; in Fig. 20(e) and (f),
most of algorithms exceeds 80%, the proposed methods in this
paper still exhibit an excellent performance in detection rate
and false alarms rate. It demonstrates the detection efficiency
of the algorithm proposed in this paper is high and has some
feasibility.

IV. DISCUSSION

Analysis of the above experimental results shows that the
proposed algorithm achieves better background modeling and
detection results with other comparison algorithms, but there
are still some limitations of these algorithms, such as multi-
edge contour scenes with low SNR, and the grayscale difference
between the target and the edge contour is small, which can
easily lead to detection failure. Therefore, this section focuses
on the applicability and limitations of these algorithms.

The traditional bilateral filtering algorithm may lead to the
loss of some detailed information when smoothing the image,
which may affect the features of the target, thus reducing the
detection rate of target detection. The TDLMS filter has a small
error between the expected and predicted values in smooth
background, and the algorithm converges faster. In the complex
background, the error between the expected and predicted values
at the edge contours is larger, and the algorithm has difficulty
converging, and more clutter remains in the difference map,
which leads to a higher false alarm rate. If the difference between
the target and the background in the IR image background
is small, the anisotropic diffusion filter may not be able to
distinguish significantly between the target and the background,
thus limiting the effectiveness of detection of weak targets,
the selection of the step size is also crucial. In multi-edge
contour scenes, too large or too small a step size can leave more
background clutter. The MPCM algorithm is unable to highlight
the interference of the background in scenes with dim and small
target, and enhancing the target also enhances the background,
resulting in a higher false alarm rate, despite it uses multi-scale
windows to accommodate different target scales. In infrared
images, the texture and grayscale distributions of the target and
the background may be very similar, when the difference of the
local entropy between the target and the background is small,
which may lead to difficulties for the MGDWE algorithm to
distinguishing the target from the background. In particular, the
detection rate of the algorithm may be affected by the small
target scales. Both the TLLCM algorithm and the TLLDM
algorithm use a three-layer local window, the TLLCM detects the
target by local contrast, the TLLDM identifies the target based
on the ratio difference of local contrast. Therefore, its effect
is better than the TLLCM algorithm, but both algorithms are
prone to false detection and enhance the intensity of background
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clutter in a bright background. LGDC can enhance the contrast
between the target and the background, in complex backgrounds
with numerous regions exhibiting similar gradient and curvature
characteristics, background textures may interfere with target
detection. Consequently, the LGDC method may be unable to
effectively distinguish the target from the background. Although
the ELUM utilizes local uncertainty measurements to suppress
complex backgrounds, the algorithm’s robustness and stability
may be insufficient when dealing with highly variable back-
ground features or high levels of noise, leading to false alarms or
missed detections. The PSTNN algorithm is weak in suppressing
strong edge contour backgrounds during tensor decomposition
and low-rank approximation in some scenes, which leads to
low robustness of the algorithm. NTFRA algorithms usually
require high computational complexity, because the solution
of nonconvex optimization problems often requires the use of
iterative algorithms and may require significant computational
resources and time to reach convergence.

The bilateral filtering based on the neighborhood block level
proposed in this algorithm can smooth the image better because
it considers both the similarity and spatial relationship of pixels
within the neighborhood patch. Compared with between single
pixel, the neighborhood patch can provide greater contextual
information, thus producing better background modeling results.
The Gaussian motion estimation energy enhancement algorithm
can effectively compensate for the loss of target energy caused
by background modeling, and the effective displacement proba-
bility effectively excludes noise interference and extracts the real
target. However, the neighborhood patch filtering may encounter
challenges when dealing with large targets. Due to the local
nature of bilateral filtering, it may not be able to accurately han-
dle large targets spanning multiple neighborhood blocks within
a single neighborhood block. In addition, bilateral filtering at
the neighborhood block level involves more pixels and more
complex computations than traditional bilateral filtering at the
individual pixel level. This may lead to increase computational
complexity, which is an area for improvement in our next work.

V. CONCLUSION

A dim and small target detection method for sequence images
is proposed in the paper, which consists of three parts. Firstly, the
difference image is acquired through a spatio-temporal filtering
method, then the target signal intensity should be improved, in
order to reduce the running time during the energy enhancement,
a threshold segmentation algorithm is used to further remove
the background clutter. The new target position is predicted by
Gaussian process based on the historical position data of the
target, and the target energy is accumulated along the trajectory
direction. Finally, to realize the correlation detection of targets
between consecutive frames, a grayscale probability model is
constructed in this paper, which can effectively reject noise and
extract the real target. After a comparative analysis with other
detection algorithms, the following conclusions are drawn:

1) Firstly, this paper fully considers the neighborhood in-

formation of the target and constructs two different scale
filter windows to achieve a better background modeling
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2)

3)

In

effect. The SSIM of six scenes are 0.9999, 0.9996, 0.9999,
0.9999, 0.9999 and 0.9999, the BSF are 783.88, 315.11,
582.91, 670.97, 737.19 and 504.71, respectively.

Then, the target energy accumulation was achieved by
using the historical motion information and grayscale
information of the target. And the SNR and the average
grayscale of the target area were selected to evaluate the
energy enhancement effect. The average grayscale of the
six scenes before the energy enhancement was 0.5556,
4.8889, 5.2222, 6.3333, 1.2222 and 5.5556, respectively.
After the enhancement was 55.7778, 81.2222, 75.0000,
70.1111, 82.4444 and 107.8889, respectively. The SNR
are —6.70, 2.93, 3.22, 4.06, 17.86 and 17.83 for the
six scenes before target enhancement, and 13.36, 15.05,
14.72,14.39, 21.12 and 22.16 after enhancement, respec-
tively.

Finally, the detection of weak targets is achieved by the
target energy probability model, and the detection rate of
the algorithm in this paper reaches more than 90% in all
Six scenes.

summary, the algorithm proposed in this paper is an ef-

fective and robust weak target detection method. However, the
proposed method also has some limitations, such as the pro-
cessing time of background modeling method based on image
patches is long and the diminished effectiveness when handling
large targets spanning multiple neighboring blocks. Based on
Gaussian estimation, the energy enhancement method exhibits
better adaptability. But the inherent limitations of Gaussian
process prediction, significant prediction errors occur after a
certain number of frames, leading to inaccurate prediction.

And

the detection effect is depending on the pre-processeffect.

Therefore, it is necessary to optimize the execution efficiency
and refine the structure of our algorithm in future work.
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