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Diffusion Model With Gradient Descent Module
Guiding Reconstruction for Single-Pixel Imaging

Chen Huang, Qiurong Yan

Abstract—Reconstructing high-quality images with few mea-
surements has always been a primary goal for single-pixel imaging
(SPI). Diffusion models have shown outstanding performance in
image generation and have been effectively attempted in image
reconstruction for ghost imaging. However, there is still a great deal
of space for improvement in the quality of image reconstruction
at low sampling rates. Inspired by the proximal gradient descent
algorithm (PGD), we propose Diffusion Model with Gradient De-
scent Module Guiding Reconstruction for Single-Pixel Imaging.
The gradient descent module in PGD is utilized for preliminary
image reconstruction. The preliminary reconstruction serves as
prior information to iteratively constrain the diffusion model, al-
lowing it to generate target images consistent with the training data
distribution. Additionally, the strong mapping ability of the diffu-
sion model replaces the traditional proximal operator to accelerate
convergence. Full connected sampling and convolutional sampling
are proposed as alternative sampling methods to the traditional
Gaussian random matrix sampling. Sampling and generation are
optimized jointly to capture key image information and improve
reconstruction accuracy. Simulations and experiments confirm
that our proposed network can significantly improve the quality
of image reconstruction at low measurement rates.

Index Terms—Compressed sensing (CS), single pixel imaging
(SPI), diffusion models(DMs), proximal gradient descent.

1. INTRODUCTION

INGLE-PIXEL imaging (SPI) is a technology that uses
S point detectors to image objects. It has significant ad-
vantages in detection sensitivity, broadening spectral response
range, and reducing imaging costs. With the development of
compressed sensing (CS) theory, SPI based on CS has attracted
much attention because of its elegant fusion of optics, mathe-
matics, and optimization theory. Current solutions mainly focus
on designing more efficient coding modes. This ensures that
more information is obtained per measurement [1], [2], [3].
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Additionally, new optimization algorithms have been developed
to achieve better reconstruction results with fewer measure-
ments [4], [5]. Nevertheless, the trade-off between sampling time
and image quality is still a limitation of its practical application.

To overcome the limitations of SPI, deep learning [6] is
widely used in SPI pattern generation and image reconstruction.
Compared to traditional iterative reconstruction methods, deep
learning algorithms can significantly improve both reconstruc-
tion speed and quality [5], [7], [8]. Methods can be categorized
into three categories: The first category includes end-to-end
reconstruction networks like Reconnet [9] and CSNet [10]. The
second category comprises model unfolding networks, such as
ISTA-Net [11] and GCDUN [12]. The third category involves
generative models, such as generative adversarial network [13]
and diffusion models [14].

With the development of generative models, generative mod-
els have been widely used in image generation, image denoising,
image restoration, and other fields [15], [16], [17]. Different
from learning direct mapping, generative models learn data
distributions based on probability and statistical knowledge, and
use these distributions to generate image samples. Generative
models include Energy-Based Models (EBMs) [18], [19], Gen-
erative Adversarial Networks (GANs) [13], [20], normalizing
flows (NFs) [21], [22], Variational Autoencoders (VAEs) [23],
[24], and diffusion models [14], [25], [26]. Diffusion models
effectively overcome the obstacles caused by the alignment of
posterior distribution in VAEs, reduce the inherent instability of
GANSs against targets, simplify the complex training process
relying on Markov chain Monte Carlo (MCMC) method in
EBMs, and perform network constraints similar to NFs, showing
superior performance [27]. Using the denoising score-matching
target, diffusion models train the neural network to estimate the
score function [28], provide a more stable training target than
GANSs, and are superior to VAEs, EBMs, and NFs in terms of
generation quality [26], [29].

In 2022, Denoising Diffusion Restoration Models (DDRM)
[30] was proposed as the first sampling-based inverse problem
solver, effectively generating a series of high-quality, diverse,
and effective solutions for general content images. In 2023,
DiffIR [31] was introduced as a powerful, simple, and efficient
reconstruction benchmark based on diffusion models. These
studies show that diffusion models have achieved remarkable
results in image synthesis [14], [26], [29], [32] and image
restoration (IR) tasks (such as inpainting [33], [34] and super
resolution [35]). Shuai Mao [17] first applied the diffusion
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model to ghost imaging and achieved amazing results. How-
ever, since the measured values are directly multiplied by the
pseudo-inverse of the measurement matrix as the conditional
input to the diffusion model, in the case of insufficient sampling,
the limited sampling data may correspond to multiple possible
target images. Therefore the reconstruction performance can be
further improved.

When the measurement rate is less than 0.1, the results
of traditional algorithms are usually affected by background
noise or blurred lines, resulting in poor recognition. This is
due to the lack of features. If we can add a generative part
to the traditional model and use its imagination to extend the
existing features under low measurement rate conditions, it is
possible to break through the limitation of measurement rate
on clarity [36], [37], [38]. Therefore, this study uses diffusion
models (DMs), which are based on the noise diffusion process
and Bayesian theory, to generate target images that correspond
to the training data distribution. Compared to GANs, DMs
can map random Gaussian noise to complex target distribu-
tions with high quality, avoiding mode collapse and training
instability.

To enhance reconstruction performance at low measurement
rates, we propose Diffusion Model with Gradient Descent Mod-
ule Guiding Reconstruction for Single-Pixel Imaging. The gra-
dient descent module in PGD is used for preliminary image
reconstruction. The preliminary reconstruction provides prior
information to guide the diffusion model. This enables the gen-
eration of target images that match the training data distribution.
As a result, high-resolution reconstruction is achieved even
at very low sampling rates. The powerful mapping ability of
the diffusion model replaces the traditional proximal operator,
accelerating convergence. Fully connected sampling and con-
volutional sampling are designed to replace traditional random
Gaussian matrix sampling, making the sampling matrix learn-
able parameters. In this way, the sampling and generation are
jointly optimized to obtain key image information and improve
the image reconstruction quality. Moreover, by training the sam-
pling matrix in binary form, our proposed network can be applied
to SPI systems. Simulations and physical experiments verify the
effectiveness of the proposed network. The contributions of this
study are as follows:

e We propose a DM-based with Gradient Descent Module
Guiding Reconstruction Network (DGRN) for SPI sys-
tems. We use the gradient descent module in PGD to per-
form preliminary image reconstruction from the sampled
data. The preliminary reconstruction serves as a condition
to direct the diffusion model’s generation direction for
image reconstruction.

® The learnable sampling matrix is input into the forward
process to achieve the joint optimization of sampling and
generation. This design reduces estimation error and en-
hances the robustness of the system.

e By training the sampling matrix in the network into binary,
our proposed network can be applied to SPI systems, and
has been verified through experiments. The experimental
results show that the designed network can reconstruct the
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Fig. 1. DDPM, diffusion and reverse process.

main characteristics of images even with few measure-
ments.

II. RELATED WORK

A. Diffusion Models

As shown in Fig. 1, diffusion models aim to learn the data
distribution p(x) by denoising the normal distribution variables
progressively. The forward diffusion process defines a Markov
Chain where random noise is iteratively added to a given real
image xo ~ q(xo) until the distribution becomes an indepen-
dent Gaussian distribution. On the contrary, the reverse diffusion
process is to recover the original image from the Gaussian noise
which also follows a Markov Chain process.

The forward process does not contain learnable parameters.
Firstly, define the real data distribution xg ~ q(xo) and Markov
noise process. Then add Gaussian noise to the data, and add a
total of T steps to generate a series of noisy samples x1 ~ X .
The noise addition’s mean and variance at each timestep are
calculated by f¢. The diffusion process can be formulated as
follows:

q(x¢|xe-1) = N(x¢; /1 — Bexe—1, FeI) (1)

Ho et al. [14] note that we need not apply q(x¢|x¢—1) re-
peatedly to sample from x; ~ q(x¢|xo). Instead, q(x¢|xo)
can be expressed as a Gaussian distribution with ay =1 — 4
and @ = [[L_g s

a(x¢|x0) = N (x¢; Vagxo, (1 — a)I) (2)

The reverse process aims to infer the conditional probability
d(x¢-1|x¢) to gradually recover the original data xo from
the Gaussian noise x. Sohl-Dickstein et al. [25] pointed
out that q(x¢_1|x¢) tends a diagonal Gaussian distribution
when T — oo and correspondingly 3¢ — 0, so we can use the
Po(x¢—1|xt) obtained by deep network fitting to approximate
d(x¢—1|x¢). Therefore, in the reverse process, at each timestep
t, the deep network model estimates the predicted value z
of random noise z using x¢ and t. This estimation continues
iteratively until x¢ is obtained through calculation. Based on
the Bayesian posterior probability, the backward process can be
expressed as follows [14]:

Po(Xe_1]xt) ~ N (u, o21)

zy = Zo(x¢, t) 3)
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Fig. 2.

The network structure diagram of DGRN. Specifically, DGRN consists of three modules: the Sampling and Initialization Module(SIM), the Gradient

Descent Module(GDM), and the UNet-based deep network module. SIM and GDM together constitute an encoder-decoder network for low-quality preliminary
reconstruction of the input image. The preliminary reconstructed image x{, is concatenated with the noise image after a certain number of timesteps x¢ in the
channel dimension and then input into UNet for generation. The prediction noise Z is generated through training. Then, the loss of random Gaussian noise z and
prediction noise Zt is calculated, and the network parameters are updated via backpropagation.

B. Proximal Gradient Descent Algorithm

In SPI based on CS, we represent the compression measure-
ment process as:

y=®x+¢ 4)

where x € RN is original signal and ® € RM*N is the mea-

surement matrix(M << N), y € RM is the measured value,
€ represent noise. Reconstructing x by y is the solution to the
underdetermined problem.

Based on the sparse prior, This recovery process can be
expressed as the following energy function:

1
X:argmin§||y—‘ﬁx|\§ +2J(x) (5)

where A is a hyper-parameter to weight the regularization term
J(x).

Technically, PGD approximatively expresses (5) as an itera-
tive convergence problem through the two subproblems: gradi-
ent descent (6) and proximal mapping (7):

r(F) = (k=0 _ ppT (@x(kfl) — y) (6)

x®) = prow; ,(r™) (7)

PGD iteratively updates r* and xX¥ until convergence. ISTA-
Net [39] is a typical PGD-based algorithm in which the regula-
tion term is defined as an 1; norm, J(x) = ||x||1.

Inspired by [40], which collaboratively trained an UNet to
serve as the proximal mapping in ADMM algorithm [41], in this
study we apply the gradient descent module of PGD to guide
the preliminary reconstruction of the image. The preliminary
reconstruction module obtained by the gradient descent module
is input into UNet. In each iteration, UNet can learn the charac-
teristics of the data to update the parameters. Furthermore, it can
perform constraint processing to replace the traditional proximal
mapping operation, thereby improving the generalization ability
and anti-overfitting ability of the model.

III. PROPOSED NETWORK

We go into further detail about our proposed DGRN for SPI
in this section. We will introduce the architecture and internal
components of DGRN.

A. Overview of DGRN

The network structure is shown in Fig. 2, mainly composed
of three modules: the Sampling and Initialization Module(SIM),
the Gradient Descent Module(GDM), and the UNet-based deep
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Fig. 3.  Structure diagram of SIM and GDM based on fully connected layer.

network module. SIM and GDM together constitute an encoder-
decoder network for low-quality preliminary reconstruction of
the input image. The first layer of SIM simulates the compressed
sampling process in SPI, and the layer’s weight matrix serves as
the measurement matrix. Unlike traditional random matrix, the
measurement matrix is learnable. Inspired by diffusion models,
the preliminary reconstructed image xg is concatenated with
the noise image after a certain number of timesteps xy in the
channel dimension and then input into UNet for generation.
The preliminary reconstructed image xj, serves as a condition
to guide the generation model learning the internal statistical
distribution of the sample. The prediction noise Zz is generated
through training. Then, the loss of random Gaussian noise z and
prediction noise zq is calculated, and the network parameters are
updated via backpropagation.

The well-trained network can perform high-quality image re-
construction through the reverse diffusion process. The network
predicts the noise z at each timestep t and uses these predictions
to reduce the noise in the data. This process starts with random
Gaussian noise as input xp. As time t regresses from T to
0, x¢_1 is computed by (3), so as to gradually reconstruct the
original image x¢o from the learned prior distribution. During
the iterative reconstruction, the initial reconstructed image xg
serves as a data consistency term to limit the generation direction
of the model.

In our numerical simulation experiments, both network train-
ing and testing are carried out in the process of simulating
SPI using common photodetectors. In this process, we obtain
the measured value input into the network by multiplying the
measurement matrix with the gray matrix representing the light
intensity. This method effectively simulates the working princi-
ple of common photodetectors in SPI systems.

B. SIM and GDM

In this section, we introduce the Sampling and Initialization
Module(SIM) and the Gradient Descent Module(GDM) in de-
tail. The encoding-decoding structure together forms a sampling
and preliminary reconstruction network for low-quality image
reconstruction of the input image. A fully connected sampling
method and a convolutional sampling method were designed.
Corresponding gradient descent modules were designed for each
sampling method.

1) SIM and GDM Based on Fully Connected Layer: In this
section, we introduce SIM and GDM based on the fully con-
nected layer (Fig. 3). SIM consists of two fully connected layers.
The original image size of the input is 64 * 64, and is flattened
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with the dimension of x € R*4096_ The first fully connected
layer’s output can be regarded as the measured valuey € RYM.
The measured value y is mapped to the initialization ro by
the second fully connected layer. The relationship between the
measurement rate(IMR)) and M can be described as follows:

MR = * 100% (8)

64 % 64

In our designed network, the weight matrix ® of sampling is
used as a learnable parameter. Previous research indicates that
using a fully connected layer for sampling not only provides
adequate weight for image reconstruction but also decreases
training time [42].

In the preliminary reconstruction of the image, the gradient
descent module is employed. During the noise addition at each
timestep of the forward diffusion, the network achieves rapid
convergence and avoids local optima by repeatedly updating xg,
and y until convergence. The specific operation is shown in (9).

xg = 1o — p®T (Pro — y) )

2) SIM and GDM Based on Convolutional Layer: We refer to
the subpixel convolution approach introduced by Shi et al. [43].
Fig. 4 shows the structure of the convolution sampling recon-
struction network, and the size of the input image is 64 * 64 * 1.
The first convolutional layer is composed of M convolution
kernels. The size of each convolution kernel is 16 x 16, and
the stride is 16, so the sampling matrix ® can be expressed as
R16416+M resulting in measurements of 4 * 4 x M. Then the
sub-pixel interpolation method is used to generate a sampling
result with dimensions of 4v/M  4v/M x 1.

The up-sampling sub-network uses the measurement results
from the down-sampling sub-network as its input. We use 256
kernels of size v/M * v/M with a stride of size v/M, producing
an up-sampling result of dimensions 4 x4 % 256. Then the
sub-pixel interpolation method is used to generate a preliminary
reconstructed image with a size of 64 * 64 x 1. The relationship
between MR and M can be formulated as follows:

B 16« M
64 %64

Due to the use of convolution for sampling, the measured value is
not a single-dimensional array, so it can not be directly calculated
by (9). In (9), ®x¢ can be regarded as a sampling process,
®T(Pxg — y) can be regarded as a reverse sampling process.
As shown in Fig. 4, in GDM, convolution and deconvolution are
used. the process can be formulated as follows:

MR * 100% (10)

Xg =T — pPF(P x 19 —y) (11)

* means convolution, and ¥ means deconvolution.

C. UNet-Based Deep Network Module

As shown in Fig. 5, the preliminary reconstructed image xg
is concatenated with the noise image after a certain number
of timesteps x in the channel dimension, then input into the
UNet-based deep network module for generation and return
the predicted noise Z¢. In terms of network architecture, we
adopt the same UNet structure as DDPM [14]. First, the input
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is down-sampled and then up-sampled. In addition, the depth
of the network also has a certain impact on the reconstruction
performance, which will be discussed in detail in Section IV-C3.

To introduce nonlinear factors, we use Group Normaliza-
tion [44] and Attention [45] to enhance the ability of the net-
work to process data. Since the network needs to process input
images at any given timestep, similar to the position encoding
in Transformer [45], we add additional timestep information to
the network by time embedding.

These methods together constitute the architecture of the
UNet-based deep network module, which can effectively pro-
cess noise images x¢ and generate accurate prediction noise Zt,
improving the reconstruction effect and the overall performance
of the network.

D. Network Training

In the training phase, the original image x is inputted. Ateach
timestep from 0 to T, the measured value y is obtained through
convolutional or fully connected layer sampling. Subsequently,
the preliminary reconstruction is performed to obtain ro and
the preliminary reconstruction xq using (11) or (9). Standard
Gaussian noise z is then generated. x; is calculated by (2) and
concatenated with xg, along the channel dimension as input to the
UNet network to predict the noise z. Finally, the loss between
the standard Gaussian noise z and the predicted noise Z; is
computed. The network parameters 8 are updated using gradient
descent. These steps are repeated until the network converges.
The whole process can be summarized as Algorithm 1.

The whole reconstruction process is summarized as Algo-
rithm 2. After the network training is completed, sample a
Gaussian noise as x from the standard Gaussian distribution.
Then, according to different sampling methods, the measured

Algorithm 1: Training.

Input: The original image xo
1: repeat
2: fort=0,1,...,Tdo
3: /*Reconstruct the image x¢ with SIM and GDM*/

4 if sampling by convolutional method then
5 Y < Feonv sampling (XO)

6: ro < Finit(y)

7: Xg =ro — p@X(P® xrg —y)

8: else

9: y < chfsampling (XO)
10: ro < Finit(y)
11 Xy =19 — p®T(Pro —y)
12: end if

13: z~ N(0,I)
14: Xt = \/QtXg + 1-— OtZ

15: the predicted noise Zy + FuNet (Xt, Xg)

16:  Loss < Vy||z — 7¢]|?

17: Update network parameters 6 using gradient descent
18: end for

19: until network converges

value y is used to obtain ro and the preliminary reconstructed
image xp. If t > 1, a standard normal distribution noise sample
z is generated. At each timestep, the noise zy, is predicted by the
UNet network, and x¢_1 is calculated according to (3). Repeat
the above process until xg is reconstructed.

IV. EXPERIMENTS

In this section, we outline the implementation details of our
designed network, and compare it with the existing excellent
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Algorithm 2: Reconstruction.
Input: The measurement value y
I: xt ~ N(0,I)
2:fort =T,...,1do

3: if sampling by convolutional method then
4: ro < Finit(y)

5: Xg =To — p®*(®xro —y)

6: else

7. ro < Finit(y)

8: xg =19 — p®T(Pro —y)

9: end if
10 z~N(0,I)ift > 1,elsez=10
11: the predicted noise Z¢ + Funet (Xt, Xg)
12: Xt—1 — \/La—t(xt — \}%%21;) + o0tz
13: end for

14: return The reconstruction image X¢

methods. Additionally, we perform ablation experiments to an-
alyze the contribution of each component.

A. Implementation Details

For network training, we randomly selected 15910 im-
ages from 202599 images in CelebA dataset, and cut them
into 64 x 64 size as the training set. All networks are imple-
mented in Pytorch. To make the convolution kernel size in
convolutional sampling integer, our measurement rate is set to
{25%, 10%, 6.25%, 3.5%,1.6%}. As for the setting parame-
ters, the batch size is 16, the epoch is 40, and the learning rate
is 1 x 104, We employ Adam optimizer [46] and Smooth L1
loss [47] to train the network. In GDM, as a learnable parameter,
the step size p is initially set to 0.1 and is constantly updated
in subsequent iterations. For DGRN, the total diffusion step T
is set to 1000, and noise schedule 3 is set to increase linearly
from 1le — 4 to 2e — 2 and then corrected by sigmoid function.
B¢ is a key parameter in the diffusion model to control the noise
intensity added at each time step, and will be discussed in detail
in Section IV-C3. In the test, we selected 16 pictures in CelebA
dataset except 15910 for the training set as the test set. The
reconstruction results are evaluated using two commonly used
image assessment criteria: Peak Signal to Noise Ratio (PSNR)
and Structural Similarity (SSIM).

B. Compare With State-of-the-Art Methods

In this section, we evaluate DGRN against the traditional
optimization-based reconstruction algorithm TVAL3 [48] as
well as four compressed sensing reconstruction algorithms based
on deep learning: CS-Net [49], ISTA-Net+[11], MPIGAN [50]
and DiffIR [31]. The PSNR and SSIM reconstruction perfor-
mance in CelebA dataset is summarized in Table I. It can be
seen from the results that our DGRN outperforms other com-
petitive methods in terms of PSNR and SSIM in all cases. It is
effectively proved that x¢ and xg in diffusion models can guide
the generation of images. The DGRN uses a diffusion model
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with generative features. Thanks to the “imaginative” ability of
our method, DGRN can still generate clear images even at low
measurement rates.

Fig. 6 shows the PSNR values for testing sets using different
algorithms at various measurement rates. The samples generated
by several models are shown in Fig. 7, indicating that the images
generated by DGRN are more delicate and textured than other
algorithms.
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TABLE I
PSNR(DB) AND SSIM OF DIFFERENT ALGORITHMS UPON CELEBA DATASET AT DIFFERENT MEASUREMENT RATE

Methods MR=25% MR=10% MR=6.25% MR=3.5% MR=1.6%

PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM  PSNR  SSIM

TVAL3 [48] 25.620 0.8542 23732 0.7277 23.334 0.6707 20.640 0.5882 19.745 0.5228
CSNet [49] 27.781 0.8591 26445 0.8072 24.633 0.7814 21.948 0.6392 21.296 0.6080
ISTA-Net+ [11] 27.571 0.8654 26.468 0.8423 24472 0.7823 22944 0.7651 21.387 0.6274
MPIGAN [50]  29.211 0.8767 26.687 0.8150 24.717 0.7326 22982 0.6487 21375 0.5706
DiffIR [31] 29.359 0.8946 26.610 0.8186 24.634 0.7991 22.137 0.7067 21.122 0.6506
DGRN(Ours)  30.009 0.9037 27.647 0.8672 25.892 0.8192 23.824 0.7739 21.551 0.7153

TABLE II

PSNR(DB) AND SSIM OF DIFFERENT SAMPLING METHODS UPON CELEBA DATASET AT DIFFERENT MEASUREMENT RATE

. MR=25% MR=10% MR=6.25% MR=3.5% MR=1.6%
Sampling Methods
PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
random gaussian matrix 27.288 0.8430 25.063 0.7872 25.407 0.7517 23.643 0.7294 20.886 0.6575
fully connected layer ~ 28.222 0.8573 27.187 0.8294 25.883 0.7774 23.651 0.7510 21.094 0.6980
convolutional layer 30.009 0.9037 27.647 0.8672 25.892 0.8192 23.824 0.7739 21.551 0.7153

C. Ablation Studies

To gain further understanding, we used the same data to
conduct ablation experiments from different perspectives at a
measurement rate of 10%.

1) Impact of the Sampling Methods: We propose two sam-
pling methods: fully connected layer sampling in Section III-B 1
and convolutional sampling in Section III-B2 as part of the
compressed sampling network. Fully connected sampling and
convolutional sampling make the sampling matrix a learnable
parameter, allowing them to be continuously optimized during
the network training process, which can more effectively retain
and extract important information in the image, overcome the
shortcomings of traditional random matrix sampling, and sig-
nificantly improve the reconstruction performance. We compare
these two methods with random Gaussian matrix sampling while
other network parameters are consistent. Table II shows the
effects of three different sampling methods on image recon-
struction performance. The results demonstrate that the use of
learnable sampling matrix significantly improves the overall
performance of the DGRN compared with the traditional Gaus-
sian random matrix sampling method. By jointly optimizing
sampling and generation, the network can capture image fea-
tures more accurately, improve the reconstruction quality, and
enhance the adaptability and robustness of the model.

The convolutional layer sampling achieves better results than
the fully connected layer, especially at low sampling rates. As
the network training progresses, convolutional layer sampling
can continuously optimize the information extraction perfor-
mance at low sampling rates. Additionally, convolutional layer
sampling offers the benefits of parameter sharing and sparse
connections, significantly reducing the number of weights in
the sampling layer. At a measurement rate of 0.1, we calculate
that the fully connected layer possesses 1677722 parameters as

Fig. 8. Reconstruction results(tMR = 0.1). (a) Original images, (b) Prelimi-
nary reconstruction, (c) reconstruction by DGRN.

well as the parameters of the convolutional layer are 25600. The
subsequent simulation experiments will use the network based
on convolutional sampling.

2) Impact of the Gradient Descent Module: We use the gra-
dient descent module in PGD in the preliminary reconstruction
sub-network for low-quality image reconstruction. To explore
the contribution of the gradient descent module to DGRN, we
contrasted the performance of the network after removing the
gradient descent module. Fig. 8 shows that the reconstructed
images are generated under the guidance of the preliminary
reconstructed image at a measurement rate of 0.1. Moreover,
in Fig. 8(b) is the preliminary reconstructed image. The contour
of the preliminary reconstructed image can be seen in the figure,
which is consistent with the original image. It effectively proves
that the preliminary reconstructed image with the gradient de-
scent module can guide image generation in diffusion models.
However, in the process of predicting noise, the preliminary
reconstructed image xg, is input into the UNet network together
with the noise image x¢. The network predicts the noise z; and
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Fig. 9. Average PSNR on testing sets at different timesteps(MR=0.1).

TABLE III
RESULTS OF ABLATION EXPERIMENTS IN THE CASE OF MEASUREMENT 10%

Experiment Methods PSNR(dB) SSIM
DGRN 27.647 0.8672

1 (a) 26.895 0.8306

2 (b) 25.178 0.8079

3 (©) 26.605 0.8326

4 (d) 25.167 0.7876

5 (e) 26.882 0.8472

6 ) 26.305 0.8124

(a) DGRN with dim=(1,2,4), (b) DGRN with linear beta schedule,
(¢) DGRN with quadratic beta schedule, (d) DGRN with cosine beta

schedule, (¢) DGRN with timesteps =500, (f) DGRN with timesteps
=2000.

trains by calculating the loss between the predicted noise z
and the random noise z. Since this process does not directly
calculate the loss between the original image x¢ and the prelim-
inary reconstructed image X, the network may capture some
noise characteristics, so some noise points will remain in the
preliminary reconstructed image.

It can be seen from Fig. 9 that by integrating the gradient
descent module into the reconstruction network, we can obtain
higher-quality images with fewer iterations than without using
the module. In addition, in the gradient descent module, the exis-
tence of the regularization term can make the model parameters
smoother. This method of iteratively optimizing the parameters
of the network helps to improve the anti-noise ability of the
model and improve the quality of reconstruction.

3) Impact of the Network Parameters: To find the appropriate
network parameters, we conducted ablation experiments from
different perspectives. The effects of the dimension of UNet
network layers, different variance schedule generation methods,
and timesteps on the reconstruction performance were explored
at a measurement rate of 10%. In Table III, Experiment 1 is
to modify the dimension of UNet network layers. When the

IEEE PHOTONICS JOURNAL, VOL. 16, NO. 4, AUGUST 2024

dimension of layersis {1, 2, 4}, the number of channels changed
by the corresponding downsampling layer is {64,128,256}.
Experiment 2, Experiment 3 and Experiment 4 respectively
used linear growth, cosine growth and quadratic function growth
from 1le — 4 to 2e — 2 to generate variance schedule ;. The
results show that the sigmoid growth method performs better
in the quality of the generated image. Its smooth and non-
linear noise addition curve provides better noise distribution
and a more stable training process, which helps the model to
learn the distribution characteristics of data more effectively,
to generate high-quality reconstructed images in the process
of reverse denoising. In Experiment 5 and Experiment 6, the
total timesteps T were set to 500 and 2000 respectively. The
results show that the reconstruction effect is the best when the
timestep is 1000. Although the step size of 2000 increases the
computational complexity, it does not bring better reconstruction
quality. This means that we can select the appropriate parameter
configuration through experiments to find the best balance be-
tween reconstruction accuracy and computing resources. These
experiments will guide further research and improvement of the
proposed methods. We finally choose the dimension of UNet
network layers {1, 2, 4, 8}, sigmoid growth, and total timesteps
of 1000 as the final setting of DGRN.

D. Application on Single Pixel Image

We have built a SPI system in the early stage [42]. To suit
the hardware requirements, we developed a binary version of
DGRN. When training the binary sampling matrix, the overall
network architecture remains unchanged. Drawing inspiration
from [51], we binarized our trainable measurement matrix using
the sign function.

1 x>0

sign(x) = {_1 2 <0 (12)

However, the derivative of the sign function is almost zero
everywhere, making the backpropagation unable to proceed
smoothly. Thus in the backpropagation process, we use Htanh
function to calculate the gradient.

When conducting actual experiments, the photodetector op-
erates in counting mode, where each measurement is the pho-
ton count over equal time intervals. The photon counts over
equal time intervals are proportional to the light intensity.
We loaded the trained binary fully connected layer measure-
ment matrix into the experimental device. The we normal-
ized the measured values and input them into the trained net-
work model, and successfully reconstructed the image. Fig. 10
illustrates the SPI reconstruction results (64 x 64) of target
Z and airplane compared with TVAL3 at five measurement
rates{25%, 10%, 6.25%, 3.5%, 1.6%}. The target pattern is
etched onto the mask plate, which must be a binary image. Only
the patterned areas allow light to pass through. The results from
our experiments effectively validate the results of our simulation
experiments, and affirm the scientific soundness of our approach
and the feasibility of its real-world application. In the future, we
will strive to build imaging systems that support more complex
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Fig. 10. Reconstruction results of sampled images in SPI system. (a) and
(c) are the reconstruction results of TVAL3, (b) and (d) are the reconstruction
results of DGRN.

scenes to further verify the applicability of our algorithms in
complex scenes.

However, models with generative features will introduce a
certain degree of distortion in reconstruction. Although the
reconstruction result is clear at a low measurement rate, it is
different from the original image, which involves the trade-
off between clarity and authenticity. The traditional method
has serious blurring and noise problems under extremely few
measurements, which makes it difficult to effectively identify
the target and cannot guarantee the authenticity of the target.
Therefore, we believe that in very low measurement rate re-
construction, clarity should take precedence over authenticity.
First, ensure the identifiability of the target, and then pursue
higher authenticity. In the future, we will continue to study in this
direction.

V. CONCLUSION

In this study, we propose a DM-based with Gradient De-
scent Module Guiding Reconstruction Network (DGRN) for
SPI systems. To improve the performance of the single-pixel
reconstruction network based on the diffusion model, we specif-
ically designed the Sampling and Initialization Module(SIM)
and the Gradient Descent Module(GDM). The outputs of SIM
and GDM serve as conditions guiding the diffusion model.
Experimental results show that our designed network outper-
forms existing compressed reconstruction networks. Ablation
experiments demonstrate that the Gradient Descent Module ef-
fectively improves the quality of image reconstruction, enabling
higher-quality images with fewer iterations. Additionally, it is
proved that the learnable fully connected sampling and convolu-
tional sampling overcome the defect of missing information in
traditional random matrix sampling, and significantly improve
the reconstruction performance especially at low sampling rates.
By training the sampling matrix in the network into binary, our
proposed network can be applied to SPI systems. The experi-
mental results are better than TVAL3.
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