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MCIR-YOLO: White Medication Pill Classification
Using Multi-Band Infrared Images
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Abstract—The identification and categorization of pills consti-
tute critical tasks within a contemporary hospital, particularly
for avoiding medication errors. Conventional approaches to vi-
sual recognition and classification predominantly rely on visible
light imagery, proving inadequate for discerning white pills with
similar visual characteristics. However, white pills exhibit distinc-
tive infrared properties across various spectral bands. Building
upon these observations, this paper introduces the MCIR-YOLO
algorithm, a multi-band infrared image object detection system,
which enhances the YOLOv5s model through multimodal fusion
techniques. This study presents a novel dataset comprising IR
images of white round pills captured across six channels, with
peak wavelengths ranging from approximately 1400 nm to 1650 nm.
Furthermore, a multimodal fusion strategy is proposed, facili-
tating multi-level feature integration across the six IR channels.
This fusion technique exploits the scale features inherent to each
IR modality, thereby enabling comprehensive information fusion
across multiple modalities. Additionally, the model incorporates an
auxiliary detection branch, independent of the backbone, which
utilizes fused feature information to calculate a distinct loss, ef-
fectively mitigating overall loss. Attention mechanism modules are
integrated after two distinct fusion points to enhance feature pre-
cision. Leveraging mean and scaling of IR features, these attention
mechanisms significantly boost detection accuracy. Experimental
results demonstrate that the improved model outperforms the
baseline YOLOv5s model, particularly evident in a self-constructed
dataset of white round pill IR images, where mAP0.5 increased
by 5.47% and 7.96% for single-channel (peak at 1650 nm) and
six-channel configurations, respectively. Notably, the utilization
of the MCIR-YOLO model for six-channel recognition yields a
substantial advantage of 12.05% over the best-performing single-
channel IR image recognition.

Index Terms—Near infrared images, object detection, multi-
band IR, pill categorization, feature fusion.
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I. INTRODUCTION

W ITH the continuous advancement of deep learning-based
object detection techniques in the field of computer

vision, object detection has found widespread application and
profound impact in various domains, including medical-assisted
diagnosis [1], remote sensing target recognition [2], autonomous
driving [3], facial recognition [4], military target recognition [5],
etc.

Correctly identifying prescription medication stands is a criti-
cally important issue in medication reconciliation [6], while the
recognition and classification of white round pills containing
different ingredients presents a significant challenge. Traditional
computer vision methods for pill identification primarily rely on
benchmark algorithms such as the R-CNN series [7], [8], [9] and
YOLO series [10], [11], [12], [13]. These algorithmic models
are typically constructed based on large-scale pill datasets and
utilize two-stage detectors for efficient object detection [14].
However, the medical pills are generally manufactured by active
pharmaceutical ingredients (APIs) mixed with powdered excip-
ients. Due to the minimal variations in surface characteristics
among the white round pills with similar excipients, mostly
lactose or starch, there is a significant margin of error in the
detection results. In this case, traditional object recognition
approaches have encountered a bottleneck in prescription pill
identification.

Currently, the majority of object recognition algorithms pri-
marily rely on datasets composed of visible light data [15],
leading to suboptimal performance in identifying objects that
share similar colors, shapes, and sizes. As IR spectroscopy is
well-known for the identification of active substances and adul-
terants [16], IR images would be an effective approach to identify
pills of the same color with different ingredients. Additionally,
IR images that are generated through the sensing and processing
of IR radiation, possess advantages in coating penetration that
are not present in visible light [17], [18]. Despite progress in
utilizing IR images for object recognition, single-wavelength
near-infrared image data alone is insufficient to provide all the
necessary feature information required for pill identification.

To address the aforementioned issue, this paper proposes
an improved algorithm, Multi Channels for IR images YOLO
(MCIR-YOLO), designed for multi-band near-IR datasets,
based on enhancements to YOLOv5s [19], [20]. YOLOv5s has
exhibited exceptional object detection performance, coupled
with the advantage of being a lightweight model, making it
suitable for deployment in embedded platforms and therefore
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serves as the baseline model for our study. Considering the lim-
ited distinguishing features of white pills in visible light images,
we collected near-IR images of white pills across six bands
(1400-1650 nm) by using a short-wave IR camera, to constitute
the dataset. Prior to training, the dataset underwent preprocess-
ing techniques such as contrast enhancement to augment the IR
features of pill images, thereby facilitating the acquisition of
more informative data. We improved upon conventional multi-
modal fusion methods [21], [22], [23] and devised a multi-level
feature fusion module tailored specifically for six channels.
Furthermore, drawing inspiration from the auxiliary detection
branch in YOLOv7 [24], [25], we conducted re-fusion of feature
information with varying levels of importance across three dif-
ferent positions, enabling the calculation of a novel branch loss to
optimize the final loss output. Finally, we applied a dual attention
module at the location where the detection head features are
transmitted, focusing on the most critical information of the
pills to be detected while attenuating the influence of irrelevant
background information. Experimental results demonstrate that
the incorporation of these methods enhances the classification
of white round pills, thereby improving detection precision and
yielding promising outcomes. This approach holds potential as
a promising avenue for future research in the field of white pill
recognition.

The main contributions of this study are summarized as fol-
lows:

1) This paper proposes an IR six-band image object detection
method for classifying white round pills. We construct a
dataset of IR images of pills with six IR bands (range
from 1400 nm to 1650 nm, with 50 nm interval). Multi-
band IR pill images provide more feature information,
significantly improving the accuracy of identifying white
pills.

2) In response to the features of IR images of white circu-
lar pills, we propose the Multi Channels for IR images
(MCIR) Fusion model to perform multi-level feature fu-
sion by gradually increasing fusion levels at four different
positions. This approach effectively preserves the char-
acteristics of the IR images and significantly improves
detection accuracy.

3) To further optimize detection efficiency, an IR-Image
Auxiliary Detection Branch (IADB) was introduced
into the model. This branch independently calculates
losses to optimize the overall model loss output. Ad-
ditionally, a dual IR Attention (IRA) mechanism was
designed at the detection head position. IRA scales
and optimizes features based on the required infor-
mation for IR image detection. These two improve-
ments effectively enhanced the accuracy of the model’s
detection.

The MCIR-YOLO model, designed specifically based on
the characteristics of white pills, incorporates three innovative
model optimizations, effectively enhancing target detection per-
formance for this type of pill. Compared to the currently popular
YOLO series object detection models, our model exhibits a
notable leading advantage, particularly in terms of recognition
accuracy.

II. RELATED WORK

This section commences with an overview of the current
research status regarding traditional pill classification, followed
by a discussion on the pertinent applications of IR datasets
in object detection. Subsequently, various representative opti-
mization models or preprocessing approaches are examined.
Finally, an analysis is conducted to compare the advantages and
disadvantages of three fusion schemes in multimodal fusion:
pixel fusion, decision fusion, and feature fusion. Additionally,
a distinction is made between single-level feature fusion and
multi-level feature fusion within the context of feature fusion.

A. Traditional Pill Classification Research

The traditional method for pill classification detection pri-
marily relies on distinguishing pills based on their color, shape,
and imprinted features, often coupled with CNN models for
classification and recognition [26]. Due to substantial objective
differences in such characteristics, certain distinctions can also
be made by visual observation. In real-world scenarios of pill
classification, the quantity of pills to be classified is typically
substantial. Addressing the inevitable issue of pills adhering to-
gether, Kwon et al. [27] proposed an improved model integrating
the Mask R-CNN algorithm, which effectively segments mul-
tiple adhered pills and enhances the efficiency of classification
and recognition. Thi et al. [28] proposed a pill defect recognition
model using Gaussian filtering and smoothing techniques as
preprocessing methods, coupled with the YOLOv3 model. Their
study demonstrated that the YOLO model, when appropriately
preprocessed, could effectively identify pill datasets.

Due to the uniform color and shape, traditional CNN models
and visual observation struggle to effectively identify white
round pills. In light of this, we propose the MCIR-YOLO model,
which is tailored for more accurate and efficient classification
and recognition of various types of the pills.

B. Infrared Datasets for Object Detection

The advantage of IR images lies in their ability to provide
richer information. In the field of object recognition and de-
tection, integrating them with multimodal fusion schemes can
yield improved detection performance, especially in challenging
scenarios where object recognition is difficult. IR datasets are
widely utilized in the domain of object detection. Popular public
datasets include the FLIR dataset [29], the KAIST Multimodal
dataset [30], the NIR dataset [31], etc.

Despite the aforementioned prominent advantages, IR
datasets exhibit certain limitations and issues in object detection
due to their inherent characteristics. To address the commonly
encountered issue of low resolution in IR datasets, Zhou et al.
[32] proposed an IR image enhancement algorithm for detecting
low-resolution IR images. This approach optimizes the focus on
detected targets and enhances the efficiency of feature fusion. In
response to the limitations posed by conducting single-modal
target detection independently on IR datasets, Yu et al. [33]
proposed a multi-band IR image synchronous fusion method.
This approach achieves synchronous fusion and noise reduction
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optimization at the detail level, effectively mitigating the im-
pact of noise on the fusion results. To solve the issue of poor
target recognition caused by insufficient IR image contrast in
IR datasets, Zha et al. [34] proposed a model that combines the
YOLO model with Canny edge detection and Gabor filtering.
This model is supplemented by preprocessing techniques such
as local contrast multi-scale enhancement, non-local methods,
and contrast-limited adaptive histogram equalization. These ap-
proaches effectively enhance the accuracy and robustness of
detection.

Drawing on the prominent advantages and objective limita-
tions of IR datasets in the field of object detection, this paper
proposes a feature fusion algorithm for IR multi-band data (six
bands). Through preprocessing methods such as contrast en-
hancement, and further incorporating tailored loss optimization
and attention mechanisms designed for IR datasets into the
model, it achieves improved performance in pill detection.

C. Multimodal Fusion

Currently, multimodal fusion algorithms have been widely
and profoundly applied in various practical scenarios of object
detection. For instance, in medical imaging for lesion detection
and diagnosis [35], small target identification in remote sensing
[36], road condition recognition for autonomous driving vehicles
[37], and pedestrian detection in street scenes [38], etc.

Research in multimodal fusion, particularly in the domain
of multispectral information fusion, primarily focuses on fusion
methodologies. These fusion schemes can be systematically cat-
egorized into three main types: pixel-level fusion[39], feature-
level fusion [40], and decision-level fusion [41]. Pixel-level
fusion emphasizes the direct fusion of data from different sensors
or modalities at the pixel level. After extracting feature infor-
mation from multispectral images, the fusion typically occurs at
the head of the model’s image information input. Pixel values
from different sources are merged using pixel-level weighting or
fusion rules to reconstruct the fused image, which is then used
as input for the model [42]; Decision-level fusion integrates data
from different modalities or sensors at the decision level, which
involves combining the decision results from different modal-
ities or sensors to derive the final outcome [43]; Feature-level
fusion refers to the fusion of data at the level of feature represen-
tation. Furthermore, feature fusion can be further subdivided into
single-level fusion and multi-level fusion. Single-level fusion
primarily involves the fusion of data from different modalities at
a single position during the overall fusion stage [44]. Multi-level
fusion involves the gradual fusion of multimodal data informa-
tion at multiple levels or stages. Overall, each fusion step builds
upon the previous one by integrating data at a higher level of
abstraction [45].

Through the comparison of various fusion methods, multi-
level feature-level fusion aligns more closely with the require-
ment to retain additional information features from multispectral
IR images of pills. Therefore, this paper proposes the MCIR-
Fusion method based on multi-level feature-level fusion. By
incrementally fusing features over four fusion levels, MCIR-
Fusion attains a greater degree of detail in capturing feature

Fig. 1. The reflectivity of eight types of pills in the 1400-1700 nm infrared
wavelength range.

information from different spectral bands of IR images, thereby
enhancing the model’s detection accuracy.

III. PROPOSED METHOD

To verify whether there are indeed differences in the IR images
of eight different pills at various IR wavelengths used in the
experiment, we tested the reflectance curves of these eight pills
under IR light illumination. The penetration capabilities of IR
mean that the reflected light can contain deeper information
about the ingredients from inside pills than that of the visible
light. In our approach, we have selected the 1400-1700 nm range,
as the reflectance differentiation between 800 and 1400 nm
are relatively smaller. As illustrated in Fig. 1, the reflectance
of different types of pills varies significantly across different
wavelength bands. This variation in reflectance across bands
indicates that the characteristic information of tablets presented
in infrared images differs depending on the wavelength. This
finding further substantiates the feasibility of using infrared
images from different wavelength bands to create a multispectral
dataset, which effectively meets the need for distinguishing the
characteristics of white pills.

Referring to the model architecture depicted in Fig. 2, we
propose the following new contributions based on the origi-
nal YOLO algorithm framework. Firstly, based on the varying
reflection effects of the target pharmaceuticals under differ-
ent spectral bands, we assembled a dataset of six-channel IR
images. Leveraging the advantages of multimodal fusion in
target detection, we evaluated the strengths and weaknesses
of various fusion schemes and selected the multi-level feature
fusion approach with the most optimal fusion effect to merge the
multi-channel IR images. Furthermore, we introduce an image
enhancement detection branch based on the detection character-
istics of the IR dataset. This detection branch extracts three sets
of features with different scales from three different locations
of the detection backbone. After fusion and computation, inde-
pendent losses are obtained for each branch. After fusion and
computation, independent losses are obtained for each branch.
These independent losses, along with the backbone loss, are
then proportionally combined to optimize the model loss output.
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Fig. 2. Overall structure of MCIR-YOLO object detection network.

Finally, we incorporate two attention mechanisms at the head
position of the original architecture. These attention mechanisms
enhance the detection efficiency and accuracy by amplifying
relevant IR feature information through mean calculation and
tensor scaling.

A. Multimodal Fusion of Multi-band Infrared Images

The detection of white round pills has long been a chal-
lenging task in the field of pill detection due to their highly
similar features such as color, shape, and size. It is widely
recognized that the more information the detection model col-
lects about the target objects, the higher the discriminability
and detection accuracy will be. Therefore, providing the de-
tection model with more information about the pills is crucial
for addressing this detection challenge. According to the IR
spectral reflection detection results of the tested pills under
different spectral bands of IR light as shown in Fig. 1, it can
be observed that there are significant differences in the pills’
absorption capabilities of IR light within the wavelength range
of 1400 nm to 1650 nm. The IR imaging information collected
from the pills under different spectral bands of IR light sources
varies considerably. Multimodal fusion aims to gather more
information by integrating image data from different modali-
ties. Traditional multimodal fusion often involves combining
visible light images with IR images or visible light images with
thermal imaging, among others. Our proposed MCIR-Fusion
module integrates IR images from different IR bands, offering
greater diversity in imaging information across the scale of IR
images.

Currently, three widely used fusion mechanisms are pixel-
level fusion, feature-level fusion, and decision-level fusion. Each
of these fusion schemes has its advantages and disadvantages.
In brief, pixel-level fusion mainly focuses on pixel-level op-
erations, this fusion scheme primarily emphasizes preserving
the original image features and may not meet the requirement

for extracting deeper IR features in pill detection. On the other
hand, decision-level fusion has lower computational efficiency,
poorer generalization, and feature expression capabilities, which
do not align well with the requirements. Based on the above
considerations, the model opts for feature-level fusion for mul-
timodal fusion. This choice aims to maximize computational
efficiency and achieve optimal recognition results while ensur-
ing the most comprehensive retention of IR image features.
Taking into account the differences in information provided
by each IR band image, our MCIR-Fusion module employs
a feature concatenation fusion method to integrate the infor-
mation from all bands, enabling the model to comprehensively
learn from the characteristics of each band. As illustrated in
Fig. 3(a), the six IR images are initially grouped based on
the characteristic differences in imaging at different IR bands.
These are categorized into a set of relatively proximate near-IR
bands, including 1400 nm, 1450 nm, and 1500 nm, and a set of
relatively distant near-IR bands, comprising 1550 nm, 1600 nm,
and 1650 nm. Then, a multi-level feature fusion operation is
conducted on the two bands of the spectrum. Following the input
of the images, they undergo the first round of feature fusion after
passing through two CBS modules. After passing through the
MCIR-Fusion module, the IR image information from all bands
is concatenated. Following this, the fused information undergoes
a segmentation process before being returned to the original two
branches.

Subsequently, after passing through each CBS module, the
MCIR-Fusion module fusion operation is performed once. This
process is repeated three times, and at the same time, feature
information is output to the neck after each iteration.

The detailed structure of the MCIR-Fusion module is il-
lustrated in Fig. 3(b). After the input of the short and long
wavelength-band groups of IR images, they are divided into
main branches and fusion branches. The main branch undergoes
one CBS convolution, reducing the number of channels to half
of the initial input, which is then directly fed into the later
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Fig. 3. (a) The structure of the MCIR-YOLO six-channel multi-level fusion. (b) Feature fusion of the MCIR-Fusion.

part awaiting fusion. Meanwhile, the fusion branches of the
low-band and high-band groups undergo a CBS convolution
simultaneously, reducing the number of channels by half for both
groups. Subsequently, a feature fusion operation is performed for
the low-band and high-band groups.

To ensure that the subsequent feature maps concatenated in
the main branch preserve both the original features and the
features obtained from the fusion of the two band groups, we
subject the newly fused image obtained from the fusion branch to
segmentation processing once again. After undergoing the effect
of the separation module consisting of consecutive residual
units, the fused image is again split into two parts. The formula
for separating the feature information fused by the MCIR Fusion
module using the separation module is as follows:

SL, SH = rn(M in
L ,M in

H ) (1)

which are then separately fed into the main branches of the
low-band group and high-band group. Subsequently, they are
concatenated with the feature maps in the main branch that
retain the original information. The concatenated new feature
information undergoes a final step of transmission through the
last CBS module, completing the final stage of the process. With
this, the MCIR-Fusion module accomplishes a complete fusion
operation. The expression of the features output after fusion is
as follows:

Mout
L = (M in

L , SL),M
out
H = (M in

H , SH) (2)

B. Infrared-Image Auxiliary Detection Branch

In the realm of deep learning for object detection in IR image
datasets, the loss coefficients of the model outputs largely deter-
mine the efficacy of model learning and the quality of detection
accuracy. To ultimately optimize the learning effectiveness of the
model, we drew inspiration from the auxiliary detection branch
module of YOLOv7 and introduced the IR-Image Auxiliary
Detection Branch (IADB) for IR image enhancement. This
branch performs a new fusion and calculation of the indepen-
dently branched feature information outputs, derived from three

different positions of the backbone, each with varying levels
of feature characteristics. Subsequently, the independent branch
loss is computed, combined proportionally with the backbone
loss, and optimized to enhance the overall model loss, thereby
improving detection accuracy.

Starting from the second MCIR-Fusion module in the input
layer, for each fusion operation, feature information is outputted
to the neck layer. Specifically, three sets of feature informa-
tion are sequentially outputted after three fusion operations:
High-Level, Mid-level, and Low-Level. As each feature fusion
operation occurs, the number of channels is halved, leading
to a corresponding reduction in retained feature information.
Consequently, as the crucial contrast and resolution information
in the IR image features diminish, the accuracy of detection
naturally becomes harder to improve. To address this issue, the
introduction of the detection branch (IADB) aims to establish
an independent loss optimization scheme that runs parallel to
the main detection head. This branch is designed to effectively
enhance detection accuracy. From Fig. 3(a), it can be observed
that after the second feature fusion, we extract IR image fea-
ture information once as the low-level feature input for IADB.
Secondly, following the third fusion, it is further extracted as
the mid-level feature input. Finally, after the last feature fusion
(fourth time), it is extracted once more as the high-level feature
input.

The loss calculation of the IADB channels is illustrated in
Fig. 4, where the first cascade is performed between the inputs
at the high-level and mid-level (Fusion Output 1), followed by
the second cascade between the input at the low level (Fusion
Output 2). Fusion Output 1 and Fusion Output 2 are further
merged to produce another fusion output (Fusion Output 3),
and subsequently, Fusion Output 3 is further merged with the
input at the high position to generate another fusion output
(Fusion Output 4). The outputs of the conventional three-stage
loss computation are referred to as Fusion Output 2 (low-level
output), Fusion Output 3 (mid-level output), and Fusion Output
4 (high-level output). The loss of the backbone is finally denoted
as loss(loc), loss(obj), and loss(cls) respectively, the three also
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Fig. 4. The branch structure of IADB.

referred to as loss (Main) [13], [46], is formulated as follows:

LossMain = λloc

2∑

i=0

aiLossloc + λobj

2∑

i=0

biLossobj

+ λcls

2∑

i=0

ciLosscls (3)

The loss output of the IADB branch is obtained by further
integrating and calculating the losses of output 2, output 3, and
the output at the high position through a tertiary fusion process
based on this. This output is denoted as loss (IADB), which also
contains three parts: loss(loc2), loss(obj2), and loss(cls2), and
its expression is formulated as follows:

LossIADB = λloc2

2∑

i=0

diLossloc2 + λobj2

2∑

i=0

eiLossobj2

+ λcls2

2∑

i=0

fiLosscls2 (4)

After obtaining the main branch loss and the IADB branch
loss, they are combined and calculated according to a certain
proportion. λ(Main) and λ(IADB) are balancing coefficients
obtained during model training for the backbone and branch.
The formula for the overall loss calculation is as follows:

LossMCIR = λMainLossMain + λIADBLossIADB (5)

C. Dual IRA Attention Mechanism

The IR image dataset and the visible light dataset inherently
exhibit significant differences in feature information. To achieve
better fusion effects at the concatenation positions of the head
layer, we designed two attention mechanism modules at different
hierarchical feature concatenation positions and named them IR
Attention (IRA). The structure of this attention mechanism is
illustrated in Fig. 5. After the concatenated feature information
enters the module, it first undergoes a mean calculation, which
computes the mean along the spatial dimensions of the tensor.
Following this, based on the distinctive characteristics of the IR
images, a scaling factor is set to perform similarity scaling. The
scaled tensor then enters the final activation module (Sigmoid),

Fig. 5. The structure of dual IRA attention mechanism at the head position.

Fig. 6. (a) Visible Light Images of Eight Pills. (b) IR Images of Eight Pills.

where it is multiplied by the attention weights, yielding the
final output value. The attention weight eλ is set to 1× 10−4.
Regarding the placement of attention mechanisms, the first IRA
is positioned after the output of Low-level features following
the SPPF module, where it merges with Mid-level features.
The second IRA is placed after the first fusion of features,
where the information is fused with High-level features. This
setup effectively supervises a dual attention mechanism, thereby
enhancing both detection efficiency and accuracy.

IV. EXPERIMENTS AND RESULTS

A. Dataset Collection and Infrared Image Annotation

This study selected eight representative white round pills,
namely “Ivabradine”, “Propranolol”, “Vitamin C”, “ Aspirin”,
“Dexamethasone”, “Riboflavin”, “ Vitamin B6”, and “ Pred-
nisolone”. The images of the pills under visible light and IR
light at 1650 nm is depicted in Fig. 6. All eight types of pills
share the same color, which is white; they have similar shapes,
all being round; and their sizes are comparable, with diameters
ranging from 6mm to 12mm.

All the samples of white round medication used in the self-
built dataset were provided by Suzhou Science and Technology
City Hospital. The IR imaging system utilized the SW1412
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Fig. 7. Physical diagram of the system and the normalized emission spectra
of the six wavelength bands.

short-wave IR camera lens from Suzhou Zhisheng Technology
Co., Ltd. The lens has a focal length of 12mm, a minimum
object distance of 15 cm, and a resolution of 5MP. It operates in
the wavelength range of 800 nm to 1700 nm. The IR sensor em-
ployed in this study is the 640 short-wave focal plane detectors
from IR Sensor Technology (Beijing) Co., Ltd. It supports three
sampling specifications: 640 × 512, 640 × 480, and 512 × 512.
In this experiment, the sampling specification of the short-wave
focal plane detector is set to 640 × 512. The light source for the
IR spectrum consists of an IR LED ring light source. The LED
light source provides a total of six bands with peak wavelengths
at 1400 nm, 1450 nm, 1500 nm, 1550 nm, 1600 nm, and 1650 nm,
with intervals of 50 nm between adjacent bands. Fig. 7 illustrates
the entire process of acquiring multispectral infrared images of
white pills and presents the normalized spectra for six bands
using an infrared LED light source. Each band is equipped with
six LED light sources, totaling thirty-six sources. With this IR
image collection system, a total of 211 sets of IR images of pills
were acquired, with six bands per set, resulting in 1266 images
in total.

Fig. 8 displays the IR images of the pills obtained under the
IR LED light sources at six different IR bands. The grayscale
histograms of the IR images at each band exhibit slight varia-
tions, indicating the objective influence of IR light irradiation at
different bands on the imaging performance of the IR images.

B. Preprocessing of Infrared Images

Considering the performance limitations of the shortwave IR
detector used in collecting the IR image dataset, the original IR
images of white round pills are deficient in their ability to present
the pill’s characteristic information. To address this issue, we
employed the method of IR image contrast stretching [47] to
enhance the contrast of the IR images, thereby highlighting
the characteristic information of the pills in the images. This
enhancement makes it easier for algorithmic models to learn
and understand the images, ultimately improving the overall
accuracy of the algorithms. By comparing the zoomed-in images
of the same position of the pills in the two images before and
after preprocessing in Fig. 9, it is evident that the IR images of
the white round pills, after contrast enhancement preprocessing,
have been significantly improved in terms of both local details
and feature presentation.

C. Implementation Details

The model framework used in our experiments is based on
PyTorch version 2.0.1, with Python version 3.10.10, CUDA
version 11.8, using an 11th Gen Intel(R) Core (TM)i9-11900K
3.50 GHz CPU, and an NVIDIA GeForce RTX 3090 GPU. The
input image has a pixel size of 640 ∗ 512. The IR image dataset
is formatted according to the standard YOLOv5 dataset format.
The dataset consists of six bands, with 211 images per band.
Following a tenfold cross-validation scheme, 189 images are
used for training, while 22 images are allocated for validation
and testing purposes. During training, the model was trained
with a Batch Size of 2, an initial learning rate of 0.01, initial
momentum of 0.937, for a total of 300 epochs. Additionally,
data augmentation techniques such as multi-scale training, trans-
lation, horizontal flipping, mosaic, and padding were applied to
augment the dataset. However, these augmentation strategies
were disabled during the testing phase.

D. Accuracy Metrics

Precision is one of the key metrics used to evaluate the
performance of classification models. It measures the proportion
of true positive samples (TP) among all samples predicted as
positive by the model, compared to the number of false positives
(FP). The formula for precision(P) is as follows:

Precision =
TP

TP + FP
(6)

Recall, another crucial metric for evaluating classification
model performance, measures the model’s ability to correctly
identify all true positive samples, compared with the number of
false positives. The formula for recall (r) is as follows:

Recall =
TP

TP + FN
(7)

The mean average precision mAP is a comprehensive metric
to compare the effectiveness of the different methods. It cal-
culates the area enclosed by the precision-recall curve and the
coordinate axes using integral methods for all categories. The
formula for mAP is as follows:

mAP =
1

n
AP =

1

n

1

∫
0
p(r)dr (8)

The accuracy metric mentioned below, mAP0.5, refers to
the performance of the object detection model in multi-class
detection using an IoU threshold parameter of 0.5; mAP0.5:
0.95 represents the average mAP value obtained over the IoU
threshold parameter ranging from 0.5 to 0.95.

E. Ablation Study

The ablation study firstly compares the detection accuracy of
single-band and multi-band approaches, as shown in Table I,
demonstrating the rationale for selecting multi-band fusion.
Additionally, the detection results of six individual bands are
compared, revealing that the 1650 nm single band achieves the
highest classification accuracy. Consequently, all subsequent
tables compare the detection results of the 1650 nm single band
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Fig. 8. The IR images of the pills at six different bands along with their corresponding grayscale histograms.

Fig. 9. (a) The original IR images of pills and locally magnified views.
(b) The IR images of pills after contrast enhancement and locally magnified
views.

with other methods, verifying that the addition of new innova-
tions effectively enhances accuracy. The experiment compared
various fusion schemes within the multimodal fusion frame-
work, as shown in Table II, ultimately determining that the
MCIR-Fusion scheme yielded the best results. Table III demon-
strates that the inclusion of the IADB detection branch positively
enhances detection accuracy. Table IV highlights that the IRA
attention mechanism effectively improves detection accuracy.
To ensure the rigor and accuracy of the experiments, the results in
Tables III and IV are based on the previous innovation results and
integrated with the new innovative algorithms, thus proving that
the accumulation of innovations significantly enhances result
accuracy.

1) Comparison of IR Datasets Across Different Spectral
Bands: In order to evaluate the distinctions in detection out-
comes across different spectral bands of IR datasets and simul-
taneously compare the variances in detection outcomes between

TABLE I
COMPARISON OF RECOGNITION RESULTS ACROSS DIFFERENT IR CHANNELS

TABLE II
COMPARISON OF DIFFERENT FUSION METHODS
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TABLE III
IMPACT OF IADB BRANCH

TABLE IV
THE ENHANCEMENT OF IRA ATTENTION MECHANISM

single-band single-channel and six-band multi-channel datasets,
we employed our benchmark model YOLOv5s as the testing
model for comparative experiments. As shown in Table I, it
is evident from the experimental results that the most critical
metric, mAP0.5, exhibits a continuous enhancement from the
1400 nm band to the 1650 nm band. This observation broadly
aligns with the findings obtained from the spectral analysis
conducted earlier, indicating the maximal discrepancy in IR
light absorption by the medication at the 1650 nm band. Fur-
thermore, the mAP0.5 value obtained from the testing of the
three-channel IR image dataset of the short wavelength-band
group (1400 nm, 1450 nm, and 1500 nm) is 78.27%, surpassing
that of any single band within it. Similarly, the mAP0.5 value
for the high band group (1550 nm, 1600 nm, and 1650 nm) is
79.04%, corroborating this outcome. Finally, the experimental
evaluation of the model with simultaneous input of all six chan-
nels yielded an mAP0.5 value of 81.34%, significantly higher in
accuracy compared to all other single-channel and three-channel
test results. Therefore, through experimental comparisons, we
have confirmed the rationale behind employing multi-channel
IR bands for detection. Moreover, among the multiple bands,
the performance of utilizing all six bands surpasses that of using
only three bands, making it the optimal choice at present.

2) Comparison of Different Fusion Methods: Currently,
mainstream fusion methods include pixel-level fusion mainly
conducted at the backbone level and feature-level fusion. De-
cision fusion performed at the head level is also prevalent. In
our approach, fusion occurs at the input layer, thus excluding
decision fusion. To select the most suitable fusion scheme,
comparative experiments were conducted, including pixel-level
fusion at the input position and three different single-level

Fig. 10. The ablative experiments of feature fusion methods, showcasing three
instances of unipolar feature fusion at different positions.

feature-level fusion methods at various positions. These ex-
periments were performed using a six-channel IR dataset and
compared against our proposed MCIR-Fusion, the multi-level
feature fusion approach.

The comparative results, as shown in Table II, indicate that
the MCIR-Fusion method achieved the best fusion performance.
The Precision value reached 72.07%, while the mAP0.5 and
mAP0.5:0.95 values reached 83.53% and 76.53%, respectively,
surpassing other fusion approaches by a significant margin.

In the other comparative schemes, we conducted pixel-level
fusion immediately after the first CBS convolution at the position
of the six-channel input. The IR features of the six channels
were concatenated and then inputted into the subsequent layers,
yielding an mAP0.5 value of 76.67%. Regarding feature fusion,
as illustrated in Fig. 10, three different positions were selected
for monopolar fusion comparison. The first position, chosen
identical to the pixel fusion position, achieved the highest recall
value of 90.42% among all experiments; The second position,
just before the third CBS convolution, was chosen for feature
fusion, yielding the best mAP0.5 value among the three monopo-
lar fusions conducted; The final monopolar fusion position was
selected just before the Low-Level output, and its fusion effect
was the worst among the three instances. In comparison, the
overall performance of feature-level fusion is superior to pixel-
level fusion, but the differences in results manifested at different
fusion positions are objectively present. After comprehensive
comparison of the strengths and weaknesses of various schemes,
we have chosen MCIR-Fusion, which demonstrates the highest
accuracy and is most suitable for drug detection, as the fusion
method for our model.

3) Impact of the IADB Branch: To evaluate whether the
introduced auxiliary detection branch can effectively enhance
medication detection, experiments were conducted by integrat-
ing the IADB branch into both single-channel and multi-channel
detection frameworks. As shown in Table III, the single-channel
baseline selected the 1650 nm band, which exhibited the high-
est accuracy among the six channels. Upon integration of the
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Fig. 11. Comparative analysis of the practical detection results for pill classification using different models.

branch, notable improvements were observed across all four
evaluation metrics used to assess detection performance. Specif-
ically, the mAP0.5 increased from 77.25% to 79.18% (+1.93%).
In the case of the six-channel setup, employing the most basic
cascaded fusion approach yields a result of 81.34%. However,
by solely incorporating the IADB branch on top of the cascaded
fusion, the test results improved by 2.54%. Finally, if we replace
the cascaded fusion with MCIR-Fusion and further incorporate
the IADB branch for auxiliary detection, the detection accuracy
significantly improves to 86.68%, resulting in an increase of
5.34%. In summary, whether it is a single-channel or six-channel
detection scheme, the IADB branch has objectively shown
improvements. Additionally, when combined with the MCIR-
Fusion method, superior detection results can be achieved.

4) The Enhancement of Model Accuracy By IRA: Similar
to Table III, in Table IV, we also compare the detection per-
formance of the attention module in both single-channel and
six-channel settings. In the single-channel setting of 1650 nm
IR images, there is a slight improvement in detection accuracy
when the attention mechanism is added to the detection head
position. After fusing the detection across all six channels, em-
ploying the YOLOv5s+IRA method with cascade fusion and the
addition of the attention mechanism yielded an mAP0.5 result
of 82.72%; then, by altering the fusion approach to incorporate
MCIR-Fusion followed by the addition of the attention mech-
anism, we achieved a result of 85.85%, indicating a significant
improvement in accuracy; furthermore, retaining the cascaded

fusion method but incorporating the IADB detection branch, we
achieved an output of 85.60%; Finally, by integrating all the
modules proposed in this paper, namely MCIR-Fusion method
along with IADB detection branch and the attention mechanism
at the head position (YOLOv5s+MCIR-Fusion+IADB+IRA),
we obtained the best results among all experiments, with a
Precision value of 78.05, Recall value of 85.59%, mAP0.5 value
of 89.30%, and mAP0.5:0.95% value of 80.31%.

F. Qualitative Analysis

Fig. 11 illustrates the visual detection results of our MCIR-
YOLO model compared to three other models, YOLOv5s,
YOLOv7, at four different positions of medication. The red
ellipses indicate instances where detection errors or confusion
occurred. From the figure, it can be observed that MCIR-YOLO
exhibits significantly fewer detection errors or confusion on
white round pills compared to the other two models. Therefore,
making targeted improvements based on the IR image character-
istics of white round pills on the traditional YOLO model holds
certain value and significance

The detection results of eight medications using the MCIR-
YOLO model proposed in this paper are compared with the base-
line model YOLOv5s in both single-channel and six-channel
testing environments. As shown in Fig. 12, it is evident that
the MCIR-YOLO model achieved significant improvements in
detection accuracy.
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Fig. 12. Comparison of the detection accuracy of the MCIR-YOLO model and the YOLOv5s model using single-channel (1650 nm) and six-channel IR images.

TABLE V
COMPARISON BETWEEN TEN MODELS IN SINGLE-CHANNEL AND SIX-CHANNEL SCENARIOS

Table V summarizes and synthesizes the recognition perfor-
mance of ten different YOLO models (YOLOv3, YOLOv4,
YOLOv5s, YOLOv5m, YOLOv5l, YOLOv5x, YOLOv7,
YOLO-FIRI [48], YOLO-CIR [32]) and the proposed model
(MCIR-YOLO) on our self-collected IR pill image dataset, both
for single-channel (1650 nm) and six-channel scenarios. The ta-
ble displays the mAP0.5 detection results for eight types of pills:
“Ivabradine”, “Propranolol”, “Vitamin C”, “Aspirin”, “Dexam-
ethasone”, “Riboflavin”, “Vitamin B6”, and “Prednisolone”.

Similarly, the results also present the metrics of Precision,
mAP0.5, and mAP0.5:0.95, which collectively evaluate the over-
all detection performance.

From the comparison of single-channel testing, it is evident
from the experiments that our new model achieved an mAP0.5
value improvement of 2.6% in overall performance. For indi-
vidual types of medication, the MCIR-YOLO model achieved
varying degrees of enhancement in accuracy for “Prednisolone”,
“Vitamin C”, “Aspirin”, “Vitamin B6”. In the comparison of
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multi-channel testing, due to the incorporation of six different IR
bands and the MCIR-Fusion method, our model demonstrated
better performance in multimodal fusion experiments compared
to single-modal detection. Overall, the MCIR-YOLO model
achieved first place in Precision, mAP0.5, and mAP0.5:0.95
among the eight comparative models, with respective leads of
2.3%, 4.6%, and 4.0%. Breaking down by individual medica-
tions, while maintaining the lead in “Prednisolone”, “Vitamin
C”, “Aspirin”, “Vitamin B6”, the model also made advance-
ments in “Dexamethasone”.

From the detection results presented by the eight different
medications, “Ivabradine”, “Prednisolone”, and “Aspirin” con-
sistently achieved outstanding mAP0.5 scores exceeding 90%
across all ten models. The detection results of the other five
traditional models fluctuated considerably, but they achieved
significant improvements to varying degrees after incorporating
the MCIR-Fusion method, IADB branch, and dual IRA attention
mechanism at the head position. However, for instance, the
detection mAP0.5 accuracy of “Vitamin B6” still has not sur-
passed the threshold of 70%, indicating that further improvement
is needed in the detection accuracy of challenging-to-identify
medications.

V. CONCLUSION

This paper presents an object detection algorithm with multi-
band image fusion, named MCIR-YOLO, for classifying and
detecting white pills by using six-band IR images. First of
all, the refined model incorporates a multi-level feature fusion
technique. This method effectively amalgamated scale-specific
feature information from the six IR modalities. Secondly, we in-
troduced an image auxiliary detection branch, which optimized
the main loss results through the calculation of independent
branch losses. Finally, we designed two attention mechanism
modules, significantly enhancing the IR feature information
at the detection head position, thereby greatly improving the
detection accuracy of white pills.

The MCIR-YOLO model utilized in the study achieved an
mAP0.5 value of 89.30% on the self-built dataset using six-
channel IR images. This represents an improvement of 7.96%
over the baseline model YOLOv5s in six-channel detection,
and a notable enhancement of 12.05% over the best-performing
single-channel detection. The prediction accuracy should be
further increased by additional IR bands. The impressive perfor-
mance of the MCIR-YOLO model paves the way for valuable
directions in the classification, recognition, and detection of
white pills in the medical field. Simultaneously, it offers a novel
approach for the multi-channel fusion of different IR spectral
images.
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