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Abstract—A novel self-adaptive denoising method utilizing opti-
mized empirical wavelet transform (EWT) is proposed to enhance
the sensitivity of partial discharge (PD) fluorescence fiber sensors.
The optimized EWT enhances the spectrum segmentation capabil-
ity of conventional EWT via spectral kurtosis (SK). The SK at the
optimal window length of noisy PD fluorescence signal is calculated
to determine compact support of the Fourier spectrum for subse-
quent signal decomposition. Frequency components with SK value
over the statistic threshold are used to rebuild the PD fluorescence
signal. Subsequently, residual noise in the reconstructed signal is
removed through adaptive wavelet threshold denoising. To evaluate
the performance of the proposed method in denoising numerically
simulated and experimentally obtained noisy PD fluorescence sig-
nals, outcomes are compared to those of the novel adaptive en-
semble empirical mode decomposition (NAEEMD) method, EWT
method, EWT joint with kurtogram (KEWT) method, and cor-
relation spectral negentropy (CSNE)-based method. Quantitative
metrics and running time are used to assess denoising performance
and execution efficiency, respectively. Simulated and experimental
results demonstrate that the proposed method possesses a superior
noise reduction effect compared to the other four methods while
restoring the detail of the PD fluorescence signal flooded by serious
noise and consuming reduced computational cost.

Index Terms—Fluorescence fiber sensors, partial discharge
detection, signal denoising, empirical wavelet transform (EWT),
spectral kurtosis (SK).

I. INTRODUCTION

PARTIAL discharge (PD) detection is one of the efficient
ways to assess insulation conditions of high-voltage appa-

ratus, which can ensure their normal operation [1], [2]. There
have been several PD detection methods that are widely utilized
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[3], [4], [5], [6], including the pulse current method, ultrahigh-
frequency method, acoustic emission method, and optical detec-
tion method. It is challenging to detect PD signals by utilizing
conventional electrical methods, since many types of noises
from the field environment, such as electromagnetic interference
(EMI) and radio, etc., may be coupled with detection results, re-
sulting in inaccuracy of PD detection [7]. Fortunately, the optical
detection method based on fluorescence fiber sensors is capable
of isolating most of the noise, due to insulation and immunity
to the EMI of optical fibers [8], [9], [10]. Although the signals
of fluorescence fiber sensors are immune to direct electrical and
acoustic interference, they are still impacted by white noise from
the photoelectric conversion of photomultiplier tubes (PMT),
resulting in limited sensitivity or accuracy of fluorescence fiber
sensors. Therefore, noise suppression of PD fluorescence signals
is conducive to further application of fluorescence fiber sensors
in the realm of PD detection.

Despite tremendous research efforts in signal decomposition-
based PD signal denoising methods of conventional electrical
sensors, there has been minimal published research on the noise
reduction of PD fluorescence fiber sensors. Fluorescence PD
signals can be denoised in analogous ways to PD signals from
electrical sensors because they are somewhat similar to each
other. Wavelet transform (WT) is one of the most widely em-
ployed methods for PD signal denoising [11], [12], due to the
properties of multi-scale time-frequency analysis [13]. However,
a major obstacle that restricts the practical application of WT is
the requirement to manually select basis functions and decom-
position levels. To adaptively decompose signals, the empirical
mode decomposition (EMD) method has been proposed for PD
signal denoising [14], [15]. Without the need for predefined
basis functions and decomposition levels, EMD decomposes
noisy PD signals into a set of intrinsic mode functions in order.
Nevertheless, it is worth noting that EMD is vulnerable to
modal mixing issues, as well as lacking mathematical theory.
Various EMD-based variants of the methods [16], [17], [18] have
addressed the modal mixing issue, the majority of which employ
the noise-assisted approach. Due to multiple additions of white
noise, these variant EMD-based methods suffer from residual-
assisted noise impact as well as a considerably higher com-
putational cost problem. Empirical wavelet transform (EWT)
is an adaptive data-driven signal decomposition approach that
integrates properties of EMD and WT while overcoming their
issues [19]. Some researchers [20], [21] applied EWT to remove
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white noise from noisy PD signals, and the results demon-
strate that these EWT-based methods have excellent anti-modal
mixing properties and denoising performance. Yet, since the
spectrum division approach of EWT is dependent on local
minima, noise will alter their distribution [22], resulting in the
decomposition of redundant mode components and significant
calculation cost.

Spectral kurtosis (SK) is a statistics tool that can identify the
presence of a transitory signal as well as the band in which the
signal appears [23], [24]. SK values should ideally be zero at
these frequencies where Gaussian noise exists and an extremely
positive value at frequencies where transitory signals appear.
Therefore, SK can be utilized to detect signal frequency bound-
aries and thus address issues of EWT.

In this paper, an optimized noise reduction method of PD
fluorescence fiber sensors is proposed to overcome the spec-
trum segmentation drawbacks of conventional EWT. Firstly,
the optimized EWT introduces SK to determine compact sup-
ports of the Fourier spectrum of PD fluorescence signal, which
can significantly reduce redundant mode components division.
Subsequently, adaptive wavelet threshold denoising is used to
eliminate residual noise in the reconstructed signal, so as to
obtain a denoised PD fluorescence signal. The proposed method
is validated through numerically simulated and experimentally
obtained PD fluorescence signal, and it is further analyzed in
comparison with the novel adaptive ensemble EMD (NAEEMD)
method, EWT method, EWT joint with kurtogram (KEWT)
method, and correlation spectral negentropy (CSNE)-based
method, which demonstrates its denoising effectiveness in fluo-
rescence fiber sensors.

II. PRINCIPLE OF THE PROPOSED METHOD

A. Spectral Kurtosis (SK)

Based on the Wold-Cramér decomposition theory, SK can be
determined by energy-normalized fourth-order spectral cumu-
lant [23]

Kx (f) =

〈
|H (k, f)|4

〉
〈
|H (k, f)|2

〉2 − 2, f �= 0, (1)

where H(k, f) is complex envelope of non-stationary process x(k)
at frequency f, <·> denotes the temporal average operator.

Short-time Fourier transform (STFT) is commonly used to
estimate SK values. However, the window length Nw utilized in
STFT has a significant impact on this STFT-based SK estimation
approach [23]. As a result, selecting the appropriate window
length Nw to maximize SK values is critical. To obtain the
optimal window length N ∗

w, SK calculation for all potential
window lengths needs to be performed, which is computation-
ally expensive. Fortunately, a fast kurtogram (FK) can quickly
determine the kurtosis of each frequency sub-band. The principle
of FK is based on a 1/3-binary tree of filter bank structure. A
detailed process is available in [25]. The maximum kurtosis
value in the kurtogram can be used to find the optimal window
length N ∗

w.
Since the optimal window length N ∗

w has been identified,
SK values of noisy PD fluorescence signal are estimated using
the STFT-based approach. To further clarify frequency regions

where the PD fluorescence signal is located, it is essential to
compare SK values with a statistic threshold sα, which is defined
as [26]

sα = Φ−1 (α)
2√
M
, (2)

where Φ−1(α) is the quantile function of standard normal dis-
tribution, α is the confidence level used to evaluate whether the
signal is non-stationary or stationary, and M is the number of
elements along the time axis in H(k, f). Frequency components
with SK values greater than threshold sα are referred to as the
PD fluorescence signal, while those with SK values less than
threshold sα belong to Gaussian noise. Consequently, SK is
capable of being used to identify the frequency band where the
PD fluorescence signal is located.

B. Empirical Wavelet Transform (EWT)

The principle of EWT is to construct N filter banks (one
lowpass and N-1 bandpass filters) to extract intrinsic mode
components with compact support from the Fourier spectrum
of the signal [19]. As a result, the EWT procedure contains
two critical steps: segmenting the signal Fourier spectrum and
constructing matching wavelet filters to process the signal.

Assuming that the Fourier spectrum [0, π] is continuously
split into N segments, the boundary limits of each segment
are denoted as ωn (where ω0 = 0, and ωN = π). Each seg-
ment is represented as Λn = [ωn-1, ωn], viz. ∪N

n=1Λn = [0, π].
Subsequently, filter banks are defined on each Λn utilizing the
idea of Littlewood-Paley and Meyer’s wavelets. The empirical
scaling function φ̂1(ω) and empirical wavelet function ψ̂n(ω)
are expressed as follows, respectively [19]:

φ̂1 (ω)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1 if |ω| ≤ (1− γ)ω1

cos
[
π
2β
(

1
2γω1

(|ω| − (1− γ)ω1)
)]

if (1− γ)ω1 ≤ |ω| ≤ (1 + γ)ω1

0 otherwise,

(3)

ψ̂n (ω)=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

1 if (1 + γ)ωn ≤ |ω| ≤ (1− γ)ωn+1

cos
[
π
2β
(

1
2γωn+1

(|ω| − (1− γ)ωn+1)
)]

if (1− γ)ωn+1 ≤ |ω| ≤ (1 + γ)ωn+1

sin
[
π
2β
(

1
2γωn

(|ω| − (1− γ)ωn)
)]

if (1− γ)ωn ≤ |ω| ≤ (1 + γ)ωn

0 otherwise,

(4)

where γ < minn(
ωn+1−ωn

ωn+1+ωn
) and auxiliary function β(x) is de-

fined as

β (m) =

⎧⎨
⎩
0 if m ≤ 0
m4
(
35− 84m+ 70m2 − 20m3

)
if 0 ≤ m ≤ 1

1 if m ≥ 1.
(5)

Therefore, the original signal x(t) is reconstructed as

x (t) = F−1

[
Ŵ ε

f (0, ω) · φ̂1 (ω) +
N−1∑
n=1

Ŵ ε
f (n, ω) · ψ̂n (ω)

]
,

(6)
where Ŵ ε

f (0, ω) and Ŵ ε
f (n, ω) are the Fourier transform of

approximation coefficients and detail coefficients, respectively,
and F−1[·] represents the inverse Fourier transform operator.
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Fig. 1. Comparison of the adaptive wavelet threshold function with the hard
and soft threshold functions.

C. Adaptive Wavelet Threshold Denoising

Noise information in the noisy fluorescence signal cannot
be completely eliminated after EWT decomposition and re-
construction. Given the subsequent necessity to calculate the
PD quantity using the waveform integration approach, residual
noise can impair the accuracy of the calculation [6], [27]. Thus,
an appropriate wavelet threshold function is essential in the
noise reduction process. Hard and soft threshold functions are
the ones that are most frequently employed [28]. However, the
hard threshold function is discontinuous, resulting in a certain
fluctuation of the denoised signal. While the soft threshold
function is continuous in contrast to the hard threshold function,
it introduces deviations in signal reconstruction. To address
the current shortcomings, a novel wavelet threshold function
is introduced in this paper, which is based on the hard and soft
threshold functions. This threshold function is shown as follows:

w′ (k) =

{
w (k)− λ4

2·(w(k))3
, |w (k)| > λ

sgn(w(k))·(w(k))4

2·λ3 , |w (k)| ≤ λ,
(7)

where sgn(·) represents the sign function operator, and λ is the
wavelet threshold. The adaptive threshold function is contrasted
with the hard and soft threshold functions, as depicted in Fig. 1.
It is obvious that the adaptive wavelet threshold function is
continuous, thus avoiding signal fluctuations. Meanwhile, when
|w(k)| is greater than λ, the deviation between w′(k) and w(k)
diminishes as w(k) increases, which enhances the accuracy of
signal reconstruction.

In addition, the selection of wavelet threshold λ is also quite
crucial. Borrowed from the idea of median absolute deviation in
outlier detection [29], the vast majority of time domain points
in the noisy PD fluorescence signal can be deemed as noise,
whereas a small percentage of points are the PD fluorescence
signal, i.e., outliers. Hence, wavelet threshold λ is defined as
follows [30]:

λ = 2.5 ·MAD + med (X) , (8)

MAD = 1.4826 · med (|X − med (X)|) , (9)

where X represents the original observation, and med(·) denotes
the median operator.

Fig. 2. Flowchart of the proposed method.

D. The Proposed Method

To obviate inappropriate segmentation in conventional EWT,
the optimized EWT based on SK segmentation is proposed. The
main procedures of the proposed denoising method are depicted
in Fig. 2.

1) Determine the optimal window length N ∗
w by calculating

the FK of the noisy PD fluorescence signal x(n). Subse-
quently, calculate the SK of the noisy PD fluorescence
signal at N ∗

w.
2) Find frequency components with SK values greater than

threshold sα, which are considered as the PD fluores-
cence signal. Especially, employ the endpoints of these
frequency components as boundaries. Split the Fourier
spectrum using boundaries based on SK values.

3) Decompose the noisy PD fluorescence signal utilizing
filter banks based on the empirical scale function and
empirical wavelet function. Select frequency components
with SK values over the statistic threshold sα for EWT
reconstruction.

4) Calculate wavelet threshold λ and subsequently further
denoise the reconstructed signal by applying the adaptive
wavelet threshold denoising to obtain the denoised PD
fluorescence signal.

III. SIMULATION ANALYSIS

A. Simulated PD Fluorescence Signal

The PD detection method utilizing fluorescence fiber sensors
is based on the fluorescence intensity of PMT output. The
excitation of PD light enables many particles to initially be
excited, which causes fluorescence to be intense at first [31].
Following that, fluorescence steadily diminishes, exhibiting a



7801209 IEEE PHOTONICS JOURNAL, VOL. 16, NO. 4, AUGUST 2024

TABLE I
SIMULATED PD FLUORESCENCE PULSE PARAMETERS

Fig. 3. Simulated PD fluorescence signal: (a) Noise-free PD signal and
(b) noisy PD signal.

double-exponential decline trend. Therefore, the PD fluores-
cence signal can be evaluated by a double exponential decay
pulse, which is denoted as follows [32]:

s (t) = A ·
(
e−

1.3t
τ1 − e−

2.2t
τ2

)
, (10)

where A is the pulse amplitude, τ1 and τ2 are the attenuation
coefficients. In this paper, four PD pulses are simulated with
various parameter combinations. The specific parameters are
listed in Table I. Furthermore, the sampling frequency fs is
30 MHz. Gaussian white noise is added to the noise-free PD
fluorescence signal to achieve a signal-to-noise ratio (SNR) of
0 dB. The noise-free and noisy PD fluorescence signals are
depicted in Fig. 3.

B. Analysis of Simulation Result

Firstly, the FK of the noisy PD fluorescence signal is deter-
mined, as illustrated in Fig. 4(a). Since the kurtosis achieves its
maximum at level 4.6, the optimal window length N ∗

w is 48.
Subsequently, the SK of the noisy PD fluorescence signal is
calculated at the optimal window length N ∗

w, and the results are
presented in Fig. 4(b). The calculated threshold sα is 0.3128.
Endpoints of frequency components with SK values higher than

Fig. 4. (a) FK of the noisy PD fluorescence signal. (b) Spectrum segmentation
based on SK at the optimal window length N∗

w.

threshold sα serve as the boundaries. Consequently, the acquired
boundaries allow the Fourier spectrum to be automatically sepa-
rated into two components, one of which with SK values greater
than threshold sα represents the PD fluorescence signal and the
other the noise.

The noisy PD fluorescence signal is decomposed using filter
banks constructed with acquired boundaries and the EWT de-
composition results are depicted in Fig. 5. It is evident that the
PD fluorescence signal fundamentally exists in component C1,
while the noise is predominantly concentrated in component
C2. Since the SK values of component C1 are greater than
threshold sα, component C1 is selected for EWT reconstruction.
Subsequently, the reconstructed signal is further processed by
the adaptive wavelet threshold denoising described in Section II.
And the estimated wavelet threshold λ is 0.2081. The final de-
noised PD fluorescence signal can be obtained after the adaptive
wavelet threshold denoising.

The denoising results of the proposed method are compared
to those of the NAEEMD method [17], EWT method [20], [21],
KEWT method [33], and CSNE-based method [34], [35], in
order to validate its performance. The corresponding denoising
results are displayed in Fig. 6. Despite addressing the modal
mixing issue, the NAEEMD method and EWT method still retain
a significant amount of noise and can only hazily identify the
PD signal, which are depicted in Fig. 6(a) and (b), therefore,
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Fig. 5. EWT decomposition results with the proposed method: (a) component
C1 and (b) component C2.

their noise suppression performance is not satisfactory. The
KEWT method and CSNE-based method can effectively reduce
white noise, with the KEWT method demonstrating superior
denoising performance compared to the CSNE-based method,
as shown in Fig. 6(c) and (d), but the pulse waveform in Fig. 6(c)
exhibits a severe truncation phenomenon, which is attributed
to the determination of the starting and ending positions of
PD pulses, as well as the discontinuity of the hard threshold
function. In contrast to the previous four methods, it is shown
that the proposed method successfully suppresses noise while
preserving signal detail. Meanwhile, there is less distortion in
the waveform of the denoised PD fluorescence signal in Fig. 6(d).

To quantify the noise reduction performance of the proposed
method, several evaluation metrics are introduced, including
root-mean-square error (RMSE), normalized correlation coef-
ficient (NCC), and SNR [20]:

RMSE =

√√√√ 1

Nlen

Nlen∑
k=1

[y (k)− s (k)]2, (11)

NCC=

∑Nlen
k=1 s (k) · y (k)√[∑Nlen

k=1 s(k)
2
]
·
[∑Nlen

k=1 y(k)
2
] , (12)

SNR = 10log10

( ∑Nlen
k=1 s(k)

2∑Nlen
k=1 [y (k)− s (k)]2

)
, (13)

where s and y are the noise-free and denoised PD fluorescence
signals, respectively, and Nlen is the length of these signals. In
general, superior noise reduction performance is indicated by
higher NCC and SNR values, as well as lower RMSE values.

The evaluation metrics of various denoising methods with dif-
ferent SNR0 are listed in Table II. All the computation involved
in this paper is executed on an Intel Core processor (i7-8700 @
3.2 GHz) employing Matlab R2022b. The NAEEMD method
performs better at high SNR0, but not as well as the other
methods at low SNR0. The denoising performance of the KEWT
method outperforms the EWT method, especially in low SNR0

scenarios. The CSNE-based method exhibits prominent denois-
ing effectiveness at high SNR0, but its performance deteriorates
compared to KEWT at low SNR0. Given the lower RMSE,
higher NCC, and higher SNR values of the proposed method, it is
obvious that this proposed method has less waveform distortion
and surpasses the competition in terms of denoising capability.
Meanwhile, the denoising results of the proposed method are
still significant even with a low SNR0 (SNR0 = −5 dB),
proving its adaptability to harsher environments. Furthermore,
the NAEEMD method requires a considerable amount of compu-
tational time, since it decomposes the signals by superimposing
multiple times auxiliary white noise, which is not conducive
to the real-time processing of fluorescence signals. Due to the
fine segmentation being performed, the EWT method is still
time-consuming, but the processing time is less than that of
the NAEEMD method. The calculation time of the proposed
method is comparable to that of the KEWT method and relatively
short. Hence, this proposed method has the virtue of providing
a superior denoising effect while still being computationally
efficient.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Experimental Setup

To verify the noise reduction effect of the proposed method,
an actual PD fluorescence signal with noise is acquired in the
laboratory. In our previous work [6], the PD experimental mea-
surement platform has been constructed, as illustrated in Fig. 7.
A power-frequency transformer with a maximum voltage of 50
kV serves as the high-voltage source. The protective resistance
has a resistive value of 5 kΩ and the voltage divider has a
voltage ratio of 1000:1. Corona discharge is produced utiliz-
ing a needle-plate model, which is placed in an opaque black
plexiglass tank. The homemade cerium and terbium co-doped
silica fiber (CTDSF) [6], [36] sensor is placed in the tank and
connected to PMT (H10722-210, Hamamatsu Photonics, Japan)
via silica transmission fiber. The CTDSF sensor absorbs the PD
light (mainly between 210 and 400 nm) and converts it to visible
light, which is transmitted via transmission fiber to the PMT
for detection. Subsequently, the high-speed digital oscilloscope
(MSO8204, Rigol, China) with a sampling rate of 50 MSa/s is
utilized to acquire the PMT output signals.

B. Results and Discussion

The measured noisy PD fluorescence signal acquired by the
CTDSF sensor is shown in Fig. 8. It is obvious that the PD
fluorescence signal is severely hampered by the intense back-
ground noise present in the environment. The FK and SK of the
measured noisy PD fluorescence signal are depicted in Fig. 9.
The optimal window lengthN ∗

w and statistic threshold sα are 96
and 0.2793, respectively. Therefore, two compact supports of the
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Fig. 6. Denoising results of the simulated signal with different methods with SNR0 = 0 dB (a) NAEEMD, (b) EWT, (c) KEWT, (d) CSNE, and (e) proposed
method.

TABLE II
EVALUATION METRICS COMPARISON OF VARIOUS DENOISING METHODS WITH DIFFERENT SNR0



HU et al.: NOISE REDUCTION METHOD FOR PD FLUORESCENCE FIBER 7801209

Fig. 7. Experimental setup utilizing the CTDSF sensor for PD fluorescence
detection.

Fig. 8. The measured noisy PD fluorescence signal.

Fig. 9. (a) FK of the measured noisy PD fluorescence signal. (b) SK of the
measured noisy PD fluorescence signal at Nw = 96.

TABLE III
EVALUATION METRICS COMPARISON OF THE MEASURED NOISY PD

FLUORESCENCE SIGNAL

signal spectrum can be obtained after spectrum segmentation
based on SK. The denoised PD fluorescence signal is then
acquired via the optimized EWT and adaptive wavelet threshold
denoising.

The above denoising methods are still employed to process the
measured noisy PD fluorescence signal in order to compare the
denoising performance, and the denoising results are depicted
in Fig. 10. All these denoising methods can identify the PD
fluorescence signal. The NAEEMD, EWT, and CSNE-based
method can all extract fluorescence signals, with the EWT
and CSNE-based method demonstrating better performance,
however, all these three methods still retain significant amounts
of noise, thus making them unsuitable for handling weak PD
signals. Meanwhile, the denoised PD signal processed by the
KEWT method suffers from severe waveform distortion because
the noise interferes with the judgment of the end position of the
PD pulse. Notably, the proposed method recovers the PD fluores-
cence signal somewhat better than the other four methods, which
helps with further PD localization or pattern identification.

Since the noise-free PD fluorescence signal cannot be ob-
tained in the practical detection, the evaluation metrics described
above are not applicable to the measured noisy PD fluorescence
signal. Consequently, the noise reduction ratio (NRR) is intro-
duced to evaluate the denoising performance of the measured
PD fluorescence signal, which is defined as [37]

NRR = 10 · (lg σ2
1 − lg σ2

2

)
, (14)

whereσ2
1 andσ2

2 are the variance of the noisy signal and denoised
signal, respectively. A higher NRR value is typically associated
with better denoising performance. However, whenσ2

2 is close to
0, it will incorrectly indicate the denoising result. Therefore, in
order to characterize the denoising effect of the measured signal,
the statistical consistency level (SCL) and NRR are coupled in
this paper, which is defined as [38]

SCL = kstest2 [Re (F (x− y)) , Im (F (x− y))] , (15)

where x and y are the noisy signal and denoised signal, re-
spectively, F(·) denotes the fast Fourier transform operator,
Re(·) and Im(·) represent the real part and imaginary part of
complex numbers, and kstest2(·) is the Kolmogorov Smirnov
test operator. It can be seen that the denoising result improves
with increasing SCL.

The NRR and SCL metrics and execution time comparison of
the measured noisy PD fluorescence signal are listed in Table III.
Despite having the highest NRR, the denoising effect of the
KEWT method is not satisfactory. Therefore, focusing solely on
the NRR metric is insufficient for the measured PD fluorescence
signal. By comparing the NRR and SCL metrics, the proposed
method achieves a maximum SCL of 0.6497 while maintaining
a significant NRR of 6.0829, which indicates its better noise
suppression effect. In addition, the KEWT and proposed method
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Fig. 10. Denoising results of the measured noisy PD fluorescence signal with different methods. (a) NAEEMD, (b) EWT, (c) KEWT, (d) CSNE, and (e) proposed
method.

have relatively low execution time when compared to the other
three methods. It can be observed that the proposed method can
work well on the measured PD fluorescence signal with CTDSF
sensors.

V. CONCLUSION

The present research proposes a self-adaptive noise reduction
method for PD fluorescence fiber sensors based on optimized
EWT and adaptive wavelet threshold denoising. Firstly, the
optimized EWT improves the Fourier spectrum division effi-
ciency of conventional EWT by utilizing the SK at the optimal
window length, which significantly reduces the computational
cost of the algorithm. The reconstructed signal is obtained
using compact supports with SK values greater than the statistic
threshold, thus removing the majority of the noise. Secondly,
the adaptive wavelet threshold denoising is exploited to suppress
the remaining noise in the reconstructed signal. The denoising
results of the proposed method are analyzed for numerically
simulated and experimentally obtained PD fluorescence signals,

which demonstrates that the proposed method is capable of
accurately extracting PD fluorescence signals and suppressing
noise. Furthermore, the proposed method’s denoising results
are compared qualitatively and quantitatively to those of the
other four denoising methods (NAEEMD, EWT, KEWT, and
CSNE-based method), revealing that the proposed method has a
low computational cost and outperforms the other four methods
in terms of noise suppression and signal detail maintenance. The
usage of the proposed method is promising for broadening ap-
plications of fluorescence fiber sensors in the PD detection field.
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