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Abstract—Advancements in robotic systems hold significant
promise for enhancing spinal interventions. Despite this po-
tential, the integration of robotic platforms in spine surgeries
remains limited to only a few procedures. This paper presents
a variable impedance control scheme within a shared-control
framework to enhance haptic feedback during spinal surgeries.
The system allows surgeons to guide the robot while dynamically
adjusting stiffness based on contact forces and human intent,
using electromyography signals. This adaptive control offers
real-time guidance during interactions with different materials,
serving as a safety measure to safeguard delicate structures
encountered during surgical maneuvers. The system comprises
a 7-DoF robotic manipulator with a 6-axis force/torque sensor
and an 8-channel EMG sensor. Technical validation and a user
study assessed performance compared to constant parameter
(CIC) and linear variable (LVIC) impedance control methods.
Results showed reduced contact force (−5.065±1.45 N vs CIC’s
−13.72 ± 6.52 N and LVIC’s −8.73 ± 2.41 N ) and in-contact
displacement (0.0074 ± 0.0018 m vs CIC’s 0.019 ± 0.0068 m
and LVIC’s 0.0125 ± 0.0028 m), when interacting with delicate
materials, minimizing the risk to critical anatomical structures.
Additionally, a user survey confirmed that the proposed system
improved haptic perception and control while preventing unde-
sired movements during interactions with various tissues and
structures.

Index Terms—Medical Robotics, Human-Robot Interaction
and Collaboration, Haptics, Impedance Control, Spinal Surgery

I. INTRODUCTION

OVER the last decades, significant advancements have
been made in integrating robotic systems into surgical

procedures, leading to a rapidly evolving field known as phys-
ical Human-Robot Interaction pHRI in medical operations.
pHRI allows surgeons to guide robots directly with physical
contact and has the potential to revolutionize healthcare deliv-
ery. By assisting in intricate and delicate operations, surgical
robots can reduce the risk of human error while enhancing
precision and improving overall surgical outcomes. Haptic
feedback plays an important role in realizing these advance-
ments, ensuring that the surgeon’s haptic interactions are both
intuitive and precise, ultimately enhancing the overall medical
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experience. Furthermore, these systems have the potential to
shorten the overall duration of surgeries and alleviate the
mental and physical workload of surgeons [1].

In the realm of robotic surgery, admittance/impedance con-
trol is a commonly used control scheme in pHRI tasks [2].
The primary objective of impedance control is to regulate
the interaction between the robot and its environment by
regulating the robot’s stiffness, damping, and inertia. By
modifying these parameters, the robot can appropriately re-
spond to external forces based on the specific task [3].
Numerous studies have explored adaptive impedance control
in pHRI, ranging from fixed impedance models to dynamic,
state-dependent, and time-varying control strategies. Fixed
impedance control often falls short when adapting to hu-
man intentions in real-time, making it essential to adjust
the robot’s parameters dynamically. These adaptations can be
based on collaborative task objectives and human physical
behavior, enhancing the haptic connection between human and
robot for smoother interactions. The selection of appropriate
impedance parameters is critical for ensuring system stability
and effective human-robot collaboration, allowing the robot
to track human movements accurately while minimizing re-
sistive forces. Various control strategies have been developed
to account for human intentions during robot interaction,
dynamically adjusting the robot’s control parameters based
on the operator’s inferred intentions. Some approaches link
human intention with the robot’s velocity. [4] employs variable
admittance control to enhance the intuitiveness of the robotic
system. The admittance parameters are adjusted in response
to inferred human intentions categorized into actions such
as ”accelerate” or ”stop,” based on velocity and acceleration
direction. Similarly, [5] utilizes variable impedance control,
continuously modulating impedance parameters according to
the operator’s behavior inferred from the end-effector’s veloc-
ity. By real-time adjustments to damping based on velocity, the
system enhances responsiveness, ensuring smooth transitions
during both fast and slow movements. A distinct variation
of variable admittance control adjusts damping based on the
power transmitted from the human operator to the robot [6].
Here, forces exerted at the robot’s handles are continuously
measured using two 6D force/torque sensors, with real-time
feedback adaptively rendering the target impedance model.
This approach aims to reduce the physical effort required
by the operator, especially during tasks involving large or
heavy objects. Other methods infer human intention through
force/torque (F/T) sensors attached to the end-effector of the
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robotic manipulator, capturing operator-applied forces in real-
time. In [7], a variable admittance controller was introduced
to balance accuracy and compliance in a cooperative micro-
manipulator. The system adjusts robot behavior based on the
operator’s intentions inferred through forces measured by an
F/T sensor, ensuring both precision and compliance during
different operational phases. In [8], a multilayer feedforward
neural network integrates both the robot’s Cartesian velocity
and the force exerted by the operator to dynamically adjust
virtual damping in the admittance controller, optimizing the
robot’s real-time response to operator actions. Meanwhile,
[9] proposes a strategy for orthopedic procedures, where
a dynamic reference point connected to the robot’s end-
effector by a virtual spring enhances the operator’s control
ability, facilitating precise interaction during complex tasks.
Additionally, [10] introduces a target admittance model for
hands-on procedures, enforcing a remote center of motion
(RCM) constraint to ensure stable robot movement even
under varying operator forces. The human force is measured
with an F/T sensor at the end-effector, maintaining system
passivity and operator safety throughout procedures. While
these approaches effectively utilize force sensor data to es-
timate human intention, they rely exclusively on F/T sensors
attached to the end-effector of the robot limiting their ability
to differentiate between human-generated and environmental
forces. This lack of distinction is particularly critical in
tasks requiring high precision and adaptability, especially in
dynamic environments with varying mechanical properties.
In robotic surgery, various strategies have been developed
to adapt robot behavior based on human sensorimotor in-
formation, allowing real-time adjustments according to the
surgeon’s actions throughout different stages of a procedure.
By incorporating EMG signals, it becomes feasible to infer
human effort and dynamically adjust control parameters, en-
abling the system to better understand the operator’s physical
state and intentions. This approach not only provides precise
control by distinguishing between human and environmental
forces but also enhances the robot’s capacity to adapt to
complex, variable environments, which is especially crucial
in surgical tasks. In [11], a variable admittance controller
leverages the coactivation level of arm muscles, measured via
EMG signals, to switch between predefined damping values.
This facilitates either precise or effortless cooperation based
on estimated arm stiffness derived from muscle activation.
In [12], a variable impedance control strategy for bilateral
teleoperation systems adjusts the robot’s impedance in real-
time according to the operator’s sEMG signals, employing
a classifier to interpret varying impedance states based on
EMG features, thus allowing the robot to reflect the operator’s
changing arm dynamics. In [13], hand stiffness is estimated
from EMG signals to optimize the robot’s motion trajectory
using a B-spline-based approach, translating the operator’s
muscle stiffness into precision adjustments for trajectory op-
timization. Despite their implementations, these approaches
focus solely on human-generated forces, particularly through
EMG-based stiffness estimation, without addressing the role of
environmental forces. In complex interactions with varying ex-
ternal materials, such as those encountered in robotic surgery,

Fig. 1. A. Side (left) and top (right) views of the vertebral structure.
B. Example of spinal deformities requiring pedicle subtraction osteotomy
(PSO). C. Bone resection area (left) and improved spinal curvature following
osteotomy closure (right).

this omission can hinder optimal performance. None of these
methods consider the mechanical properties of the surrounding
environment, which are essential for dynamically adjusting the
robot’s compliance to ensure both stability and adaptability
in real-world applications. Furthermore, these studies do not
establish a direct relationship between EMG signals and the
force exerted by the user. In contrast, our paper introduces a
novel approach that simultaneously accounts for both human
and environmental forces. By considering the mechanical
properties of materials in contact with the manipulator, the
system dynamically adjusts the robot’s compliance, ensuring
stability and adaptability in challenging real-world scenarios,
particularly in spinal surgery. Additionally, there remains a
gap in the literature addressing the specific challenges of
spinal surgical procedures, which require precise and stable
interaction with diverse tissue types.

Currently, the application of pHRI in spinal surgery is
limited to a small number of specialized procedures, such
as pedicle screw placement, where robots have shown ef-
fective assistance [14] [15] [16]. However, many complex
procedures, including osteotomy, continue to be performed
manually using traditional surgical instruments like bone saws,
osteotomes, and drills. Vertebral osteotomy, in particular, is a
surgical intervention aimed at correcting spinal deformities or
improving alignment [17] (Figure 1-B). It typically involves
the removal of the posterior elements of the vertebra, along
with portions of the vertebral body and pedicles (Figure 1-
C). Throughout the cutting and shaping of the bone, surgeons
interact with a variety of surrounding tissues, necessitating
precise manipulation and careful handling of different materi-
als, including bone, ligaments, and delicate neural structures,
to ensure successful outcomes while minimizing the risk of
damage to critical anatomical components. In fact, due to the
proximity of delicate structures such as the spinal cord and
nerves (Figure 1-A), vertebral osteotomy requires a skilled

This article has been accepted for publication in IEEE Transactions on Haptics. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TOH.2024.3524023

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



3

and experienced surgical team to avoid serious complications,
including paralysis [18]. These factors can significantly impact
the complexity and duration of the procedure. Additionally, the
high level of precision and safety measures required during the
surgery can cause significant mental workload and stress for
the surgeon. Surgeons also face challenges related to visibility
and the dynamic nature of the surgical environment. To
mitigate these challenges, intraoperative imaging techniques
such as fluoroscopy or intraoperative CT scans are often used
to monitor the surgery’s status and ensure precision and safety.
Nevertheless, these techniques can be time-consuming, expose
patients and surgical staff to radiation, and may not offer real-
time, high-resolution 3D visualization.

Therefore, the introduction of a robotic system could en-
hance accuracy, minimize complications, and lower the mental
workload for the surgical team. By assisting with critical
tasks, robotic systems can help prevent inadvertent damage
to surrounding structures, ultimately improving patient out-
comes. This work aims to enhance the capabilities of robotic
systems for spinal surgical applications, specifically in ver-
tebral osteotomy procedures. We developed a shared control
robotic platform that allows users to manipulate the robot with
minimal impedance, while it autonomously adjusts rigidity
based on contact forces and the operator’s EMG signals,
modulated by degrees of cocontraction. This collaborative
framework allows the surgeon to remain in direct control,
which is more suited to open spinal surgeries like vertebral
osteotomy, where real-time manual adjustments and precise
interactions with exposed anatomical structures are critical.
This adaptive approach provides real-time guidance to users
during interactions with different materials, acting as a safety
measure to protect delicate structures encountered during
surgical maneuvers. The human and environmental forces are
decoupled by placing the force sensor beyond the point of
human interaction with the robot. This enables the sensor to
measure external environmental forces while differentiating
between the forces exerted by the human and those arising
from contact with the environment. Additionally, we ensure
system stability through the implementation of a passivity
filter, which effectively regulates variations in impedance
parameters. The system also generates position feedback upon
detecting proximity to critical structures It is worth noting
that the proposed variable impedance control algorithm is not
specifically optimized for the drilling phase of the osteotomy
procedure. As a result, it doesn’t directly manage the transition
between hard and soft tissues. Instead, its primary function is
to assist the surgeon by delivering kinesthetic haptic feedback
during contact with various materials, thereby improving the
overall interaction experience. The contributions of this study
can be summarized as follows:

1) Robotic Assistance in Spinal Surgeries: We explore
the integration of robotic platforms to support spinal
procedures, considering the mechanical characteristics
of the vertebra and its adjacent structures in our control
strategy development.

2) Human-in-the-loop: The adaptive strategy incorporates
a human-in-the-loop concept by considering both the

user’s intentions and the real-time force feedback at the
end-effector.

3) Usability Evaluation: We conduct a user study to evalu-
ate the effectiveness of our proposed method, comparing
it to conventional impedance control strategies.

The paper is structured as follows: the proposed vari-
able impedance control strategy with the stability analysis
is reported in Section II. Additionally, in this section, the
estimation of the human intention from the EMG signal is
presented. Section III illustrates the experimental setup whose
results are discussed in Section IV. Finally, limitation and
conclusions are reported in Section V and VI, respectively.

II. METHODS

A. Impedance Control

The main idea behind impedance control is to modulate
the impedance of the system in response to external forces
or motions. By adjusting the impedance parameters, namely
stiffness, and damping, the desired interaction with the envi-
ronment can be achieved. For a robotic manipulator with n-
joints operating in an m-dimensional task space, the desired
impedance control interaction model can be represented as a
mass-spring-damper model between the robot and the environ-
ment:

M¨̃x+D˙̃x+Kx̃ = Fext (1)

where M, D, and K ∈ Rm×m are the positive definite inertial,
damping, and stiffness matrices, respectively. x̃, ˙̃x, ¨̃x,∈ Rm,
are the position, velocity and acceleration error in Cartesian
space, respectively. Fext ∈ Rm represents the total external
force exerted on the robot’s end-effector, encompassing both
the human-applied forces and the interaction forces with the
environment.

B. Variable Impedance Control

In this study, a variable impedance control was developed
as shown in Figure 2. The proposed adaptive strategy en-
ables real-time adjustment of the stiffness matrix, K, in the
impedance controller, considering both the user’s intention,
Fh, and the measured force on the end-effector, Fee. The
damping term, D, is indirectly determined by maintaining a
constant damping ratio, ξ, such that D(t) = 2ξ

√
MK(t).

Thus, changes in the damping matrix are directly dependent
on variations in the stiffness matrix. In our framework, two
key assumptions were made: first, the mass matrix M is
considered constant [19] [20], and second, both the stiffness
matrix K and the damping matrix D are assumed to be
diagonal. Moreover, this study focuses on forces acting along
the vertical axis (z-axis) of the end-effector, as they have
greater significance in osteotomy procedures while keeping
the stiffness variation constant for the other two axes. As a
result, we employ a simplified notation where the variables are
specific to the z-axis (e.g., zs and Feez ). This simplification
allows equation (1) to be expressed as:

mz
¨̃z + dz(t) ˙̃z + kz(t)z̃ = Fext,z (2)
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Fig. 2. Scheme of the adaptive impedance control law with safety position feedback: the Cartesian position error, x̃, is calculated by subtracting the current
Cartesian pose imposed by the human, x and the safety position feedback xs, generated by multiplying Fee and the gain matrix P .
This error is multiplied by a variable stiffness matrix K, controlled by an adaptive law which receives the human estimated
force, Fh, derived from an EMG signal and the contact force measured by the force sensor, Fee, as inputs. Fee is measured

from the force Fr that the robot exerts on the environment. The current Cartesian velocity, ẋ, is used to compute the
damping term D(Dn, ẋ), where Dn is the normalized damping matrix. The torque command in the joint space τcmd is
generated by using the Jacobian pseudo-inverse J−1

pin and summing the inertial term fd(q, q̇, q̈). q, q̇, q̈ are the vectors of
robot joint position, velocity, and acceleration, respectively.

The stiffness parameter, kz , is modulated using the following
formula:

kz(t) = k0 + γ(t)(k1 − k0) (3)

where k1 and k0 are the limits of range within which the
stiffness parameter is allowed to change; the variable gain,
γ(t), 0 ≤ γ(t) ≤ 1 ∀t, is a function of both the user’s
estimated force Fh and the measured force on the end-effector,
denoted as Feez :

γ = γ(Fh, Feez ) (4)

To ensure the desired stiffness behavior in various scenarios,
two different γ profiles were developed. The first profile,
denoted as γ1, is specifically designed for interactions with
materials that have a high Young’s modulus, such as bone.
In this case, γ1 approaches zero, which results in a low
stiffness value kz that is close to the initial stiffness k0. This
low-stiffness setting promotes a compliant behavior, which is
crucial for safely interacting with rigid tissues. Conversely,
the second profile, denoted as γ2, is activated when the robot
comes into contact with softer materials characterized by a
lower Young’s modulus. In this scenario, γ2 approaches one,
leading to an increase in the stiffness value kz . This higher
stiffness setting constrains the robot’s motion, ensuring precise
control during interactions with delicate structures, thereby
reducing the risk of damage. The two γ profiles are reported
below:

γ1(Fh, Feez ) =
β|Feez |

β|Feez |+ | |Feez |+ Fh|
(5a)

γ2(Fh, Feez ) =

1
β |Feez |

1
β |Feez |+ | |Feez | − Fh|

(5b)

with β being a user-chosen tunable parameter. To differentiate
between environments characterized by high or low Young’s
modulus, two conditions were considered: the contact force,
Feez , and the response of materials to applied forces, ∆z .
When a material with a high Young’s modulus is subjected to
forces, a high force is recorded, indicating that the material
remains undamaged. In contrast, a material with a low Young’s
modulus starts to deform, resulting in a lower contact force. To

Algorithm 1 Conceptual algorithm of the switching strategy
1: No contact
2: γ(t) = γ1(t)
3: while |Feez | > 0 (Contact detected) do
4: Compute displacement from the contact point
5: if |∆z > zthresh| and |Feez | < Fthresh (Detected

contact with delicate structure) then
6: γ(t) = γ2(t)
7: zs = ρFeez

8: else
9: γ(t) = γ1(t)

10: zs = 0
11: end if
12: end while

capture this distinction, a displacement threshold zthresh and
a force threshold Fthresh were defined. If the displacement
of the robot exceeded zthresh and the contact force was
smaller than Fthresh, it indicated that the robot was in contact
with a material characterized by a low Young’s modulus.
Consequently, the γ2 profile was activated in such cases.

Moreover, to prevent unintended damage to delicate struc-
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tures, the robotic system is needed to counteract the user’s
movements. This is achieved by generating an additional po-
sition command, zs, which adjusts the end-effector’s position
based on the external force sensed at the robot’s end-effector.
Specifically, the feedback position zs is proportional to the
contact force Feez :

zs = ρFeez (6)

ρ is a constant scalar gain obtained from the gain matrix P ,
shown in Figure 2, as the relation involved only the z-axis.
The purpose of this additional feedback is prevent excessive
force on soft tissues ensuring the safe completion of the task
and it is integrated by modifying the position error term. In
the absence of contact, the position error simplifies to z̃ = z.
However, when contact occurs, the error is adjusted to include
the position feedback z̃ = zs − z. This modification ensures
that the robot’s position is dynamically adjusted based on the
interaction forces. A conceptual algorithm of the switching
strategy is reported in Algorithm 1.

Finally, to ensure the stability of the system with variable
impedance parameters, the methodology proposed in [21] was
adopted in this study, where the γ profile was shaped to ensure
passivity at every time instant. By adjusting the γ profile
according to [21], stability was maintained in the presence
of variable impedance control, ensuring a safe and reliable
operation of the control system. The proof of stability is
reported in the Appendix.

The filter’s action is shown in Figure 3 where the robot was
moved up and down three times, making contact during each
cycle of motion with a soft material (PU).

Fig. 3. Top Left: Position of the robot during the experiment, with red-filled
circles indicating the contact points. Bottom Left: Forces recorded by the
sensor and the human-applied force. Right: Original stiffness values compared
to the ones filtered by the passivity filter

Furthermore, the system’s stability in the presence of ad-
ditional position feedback, zs, was validated using Lyapunov
theory [22]. Employing the Lyapunov storage function V =
1
2 z̃

T z̃, we ascertain the system’s passivity by examining the
derivative, V̇ . If V̇ = z̃T ˙̃z, is negative, the system maintains
passivity. The error, z̃, represents the difference between the
current position, z, and the safety position feedback, zs, which

is proportional to the force Feez . Substituting this error, we
obtain:

V̇ = z̃T (ρ ˙Feez − ż) (7)

To ensure system stability, the feedback gain ρ must be
selected such that the rate of change of the feedback force
˙Feez and the velocity ż satisfy the stability condition derived

from the Lyapunov framework. Specifically, ρ must ensure
that the Lyapunov function derivative V̇ remains non-positive,
thereby guaranteeing energy dissipation and system stability.

To achieve this, ρ is bounded by considering the relationship
between the robot’s velocity and the rate of change of the
contact force:

ρ <
ż
˙Feez

,

where ż represents the robot’s velocity and ˙Feez the rate of
change of the measured force. This condition ensures that
the system dissipates energy and avoids instability caused by
excessive force feedback.

C. Human Force Estimation from EMG

In this section, the process of human force estimation is
discussed. The goal was to build a model that could accurately
map the EMG signals into an interaction force vector Fh:

Fh = Φ(EMG) (8)

where EMG represents the output signals from 8 EMG
channels. Specifically, the model predicts one scalar value
that represents the overall force contribution from the muscles,
based on the EMG channels as input. The raw EMG signal
was first preprocessed: a full-wave rectification was applied to
convert the signal into its absolute value. Next, a Butterworth
low-pass filter with a cutoff frequency of 5 Hz was utilized
to extract the envelope of the original signal. A schematic
representation of the EMG signal processing phases is shown
in Figure 4. For training the model, a dataset consisting

Fig. 4. EMG Signal Processing: Muscle signals are sampled at a rate of 200
Hz. Full-wave rectification is applied, followed by envelope extraction at 5
Hz to obtain the smoothed signal.

of approximately 14,000 data points was collected using 8
EMG sensors placed on the forearm of four different users.
This approach was intended to ensure a diverse range of
signal data. The users manipulated the end effector of the
robot in all directions while keeping the elbow in a fixed
position [23]. Throughout the motion, the EMG signals and
the force measured by the force sensor on the end-effector
were recorded. The dataset was divided into a training set
(80 %) and a testing set (20 %). A normalization process
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was employed on the training set, scaling the data relative
to its maximum values. Participants were instructed to execute
maximal voluntary contractions (MVCs) by exerting their peak
force on the robot’s end effector. The MVCs served as a
normalization benchmark for the force signals, ensuring that
all recorded data were standardized to a range between 0 and 1.
This normalization was similarly applied to the EMG signals.
Next, a linear regression was used to weigh the contributions
of each EMG channel. Four channels were selected for further
use based on their higher relevance in capturing meaningful
data. This allowed us to identify the channels that provided
the most significant information for our task. In fact, with 8
available EMG channels, not all provide equally useful data
[24]. By focusing on the most relevant channels, we were able
to reduce the impact of signal instability and cross-talk from
less relevant muscles. The processed data was then used to
train a neural network, consisting of two Long-Short Term
Memory (LSTM) layers, one dropout layer, two dense layers
with 64 and 32 units, and one final dense layer with one unit
and a sigmoid activation function. Optimal hyperparameters
were identified through a comprehensive search for the best
hyperparameters. The model was trained for 500 epochs and
the Adam optimizer was used. The Mean Squared Error
(MSE) and the Root MSE (RMSE) was used to evaluate the
performance of the network. The RMSE was normalized by
the range of the observed values, enhancing its effectiveness
in providing an error measure relative to the variability present
in the ground truth data.

III. EXPERIMENTAL SETUP

A. Hardware Components

The experimental setup consisted of the following compo-
nents:

• KUKA Light-Weight Robot 4+ (LWR4+): The robot
is equipped with m = 7 Degrees of Freedom (DoFs)
and is controlled using the Robotic Operating System
(ROS) on Ubuntu 16.04. Communication with the robot
is established through the Fast Research Interface (FRI).
The synchronization of estimated EMG signals with
interaction forces is also managed through ROS, ensuring
accurate alignment during data collection. The impedance
controller and adaptive law are implemented in C++
and communicated with the FRI at a rate of 200 Hz.
The low control frequency remained appropriate for our
scenario, defined by slow and deliberate movements, with
velocities typically ranging from a few millimeters to tens
of millimeters per second.

• Force Sensor: a M3815C six-axis force/torque load cell
(Sunrise Instruments) is mounted on the end-effector
of the robot. The sensor provided a raw signal with a
sampling rate of 1000 Hz which was filtered with an
exponential smoothing filter:

Ffiltt = αfFrawt + (1− αf )Ffiltt−1
(9)

where Ffilt and Fraw represent the filtered and raw
force values, respectively, at time step t. The smoothing
factor αf determines the extent of the filtering and was

empirically set to 0.05 providing a balance between
effective smoothing and system responsiveness. To ob-
tain only the contribution of the environment on the
sensor readings, a compensation of the weight of the
tool mounted on the robot’s end effector was performed.
Due to the non-linear relationship with the end effec-
tor orientation, a MultiLayer Perceptron Regressor was
trained. A dataset of 14,926 data points was collected
by continuously rotating the end effector through various
configurations,specifically adjusting its roll and pitch. The
dataset was divided into a training set (70%) and a
testing set (30%). The training was performed using the
orientation of the end effector as input and the filtered
force sensor readings, Ffilt, as output. After the training,
the network was able to predict the force read by the force
sensor, Fee, without the tool’s gravity contribution at a
frequency of 100 Hz.

• EMG Sensor: a Myo Wristband, produced by Thalmic
Lab, was used as the EMG sensor. The wristband has
8 channels that capture electric signals produced by the
muscles in the forearm. The sensor transmits the raw
information over Bluetooth at 200 Hz. The final estimated
force Fh is transmitted at 100 Hz.

B. Parameters Tuning

In the control strategy, a stiffness component kz was varied
within a range of k0 = 100 N/m to k1 = 1000 N/m. Since
the strategy focuses on the z-axis, the stiffness component of
the other axes was kept constant. Specifically, kx = ky = 100
N/m, and krx = kry = krz = 300 N/m. To ensure high
precision, the damping ratio, di, was maintained at 0.8 for
all axes (x, y, z, rx, ry, rz). This choice was made to avoid
excessive compliance and high-velocity behaviors, which are
not necessary in the context of spinal surgery. Furthermore, a
weight factor β = 0.1 was selected to balance the performance
requirements of the two profiles, γ1 and γ2. This value
represents a compromise, aiming for a low γ1 at high contact
forces and a high γ2 at low contact forces. For the switching
logic, we set a force threshold of Fthresh = 15 N and a
displacement threshold of zthresh = 0.005 m. These thresh-
olds were chosen after careful empirical consideration across
various materials. Choosing a smaller threshold was deemed
unrealistic due to real-world factors such as patient movement
during procedures, including breathing, and other potential
complications that may introduce errors in tooltip position
measurements [25]. Conversely, opting for a larger threshold
could lead to unsafe procedures by permitting undesired tissue
damage before activating the safety strategy. The parameter
values are summarized in Table I.

C. Technical Validation

A technical validation was performed to test the accuracy
of the neural network in the prediction of the human force and
the stability and reliability of the control scheme. The primary
objective was to assess the system’s ability to maintain stabil-
ity during contact with various materials. The task involved
guiding the robot against a given material and maintaining
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TABLE I
CONTROL LOGIC PARAMETER

Parameter Value
k0 100 [N/m]
k1 1000 [N/m]
di 0.8
β 0.1

ztreshold 0.005 [m]
Ftreshold 15 [N]

contact with the material. To evaluate the system’s stability, the
vertical (z-axis) position of the end effector, z, was recorded to
analyze the presence of oscillations and assess the stability of
the system. No oscillations were expected as long as contact
was kept with the material. To further evaluate the reliability of
the control system and test the effectiveness of the control law,
10 repetitions of the same task were performed on different
materials. Four materials were carefully selected based on their
mechanical properties, specifically their Young’s modulus (E),
which reflects a material’s ability to deform under applied
force. The selected materials included: a polyurethane sponge
(PU) with Young’s modulus of approximately 1 − 5 MPa,
foam rubber (FR) with Young’s modulus of approximately
10− 15 MPa, a polyvinyl acetate (PVA) sponge with Young’s
modulus of approximately 20 − 30 MPa, and a polylactic
acid (PLA) vertebra phantom with Young’s modulus of ap-
proximately 5 − 10 GPa. These materials were chosen to
mimic the mechanical characteristics of vertebrae, which have
a Young’s modulus of approximately 15-20 GPa [26], and
the surrounding delicate structures with much lower values
of around 2-6 MPa [27]. Additionally, a force range from 0 to
25 N was used, based on the maximum force observed during
cortical bone cutting at low feed rates (0.05-0.5 mm/s) [28].
Throughout the experiments, the adaptive stiffness, kz , and the
generated position correction, zs, were also evaluated to test
the control system’s performance and its ability to adapt to
different material characteristics.

D. User Study

The User Study was conducted to evaluate the efficacy
of three distinct control modes: Constant Impedance Control
(CIC), Linear Variable Impedance Control (LVIC), and the
proposed Variable Impedance Control (VIC). CIC provided
a baseline with hands-on control with constant impedance.
LVIC introduced a dynamic element where stiffness is ad-
justed linearly within the range of [100-1000] in relation to
the displacement of the end-effector after contact with the
structure. The objective was to demonstrate that the proposed
strategy could prevent users from damaging delicate materials
while still enabling effective operation on hard material. Three
different materials were used in the experiments: polyurethane
sponge (PU), PVA sponge, and the PLA vertebra phantom.
Each material was placed inside a box to limit visual feedback
on the contact surface. Participants were given specific instruc-
tions, which involved guiding the robot through the material,
applying force as though they were attempting to perforate
it, and maintaining contact for approximately 5 seconds. The
assumption was that when encountering a material, they would

exert the necessary force to achieve perforation. The task was

Fig. 5. Top left: the experimental setup for the User Study, where the user
guides the robot equipped with a force sensor against various materials placed
inside a box. In VIC mode, the user wears the MyoWristband on their forearm.
Top right: the materials used during the experiments. Bottom: specific steps
of the task.

repeated three times for each material, resulting in a total of
nine repetitions per user for all materials. The study included
10 different users, comprising 6 males and 4 females, with
an average age of 24.8 ± 2.09 years, all of whom provided
informed consent before participating. The experimental pro-
tocol was approved by the ethics committee from Politecnico
di Milano, Italy (No.2023-5069).

To validate the research hypothesis, two key parameters
were analyzed: the contact force, Feez , between the robot’s
end effector and the materials, and the displacement zd. The
displacement was calculated as the difference between the
contact point, zcontact, and the minimum point reached by the
tooltip, zmin, as follows:

zd = zcontact − zmin (10)

For each material m ∈ [1, 2, 3], the average values F̂eez and
ẑd were computed according to the following equations:

F̂m
eez =

∑r
i=1 F

i
eez

r
(11)

ẑmd =

∑r
i=1 |zid|
r

(12)

where r = 3 are the repetitions for each user. A lower contact
force Feez and a lower displacement zd were expected in
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TABLE II
QUESTIONNAIRE

Statements (S)
S1 The system was easy to use
S2 People can learn to use this system very easily
S3 It is required prior knowledge to use this system
S4 The system was subjected to inconsistency among repetitions
S5 It was easy to damage the materials
S6 I was able to distinguish the different materials
S7 The robot didn’t allow me to complete the task with some materials
S8 The task was mentally demanding

case of contact with materials with low Young’s modulus
when using the proposed strategy. In the case of contact with
materials with high Young’s modulus, a similar performance
between CIC, LVIC, and VIC modes was expected. More-
over, a questionnaire was administered to assess the users’
subjective experience during the experiment with the different
control modalities. The participants were asked to assign a
score from 0 to 5 to each of the statements. The statements
of the questionnaire are reported in Table II.

In order to assess the statistical validity of the collected
data distributions, the Kruskal-Wallis test, with statistical
significance set at 0.05 (p-value < 0.05), followed by a post-
hoc Dunn-Sidak test was performed. Figure 5 illustrates the
experimental setup employed in the User Study.

IV. RESULTS AND DISCUSSION

A. Technical Validation

The following section presents the results of the validation
experiment conducted to assess the performance of the system.
The human force prediction model has been validated on
the remaining 20% of the data. Assessment was conducted
using the Mean Squared Error (MSE), yielding a value of
0.015. Additionally, the normalized Root Mean Squared Error
(RMSE) was calculated, resulting in a value of 0.0060. The
result indicates that the network necessitates enhancement, but
it is sufficiently discerning to differentiate between moments
of high force application by the user and periods of low or no
force. Figure 6 displays the estimated human force. Peaks in
the graph correspond to instances where the user exerted force
on the robot, causing movement, while lower force readings
were recorded when the user’s hand was removed and the
robot remained stationary.

The stability of the system was evaluated by examining the
measured position of the end effector, zcurr, upon contact with
the material, as described in Section III-C. Figure 7 illustrates
the end effector’s z-axis position during three consecutive
repetitions, along with the corresponding plots of the measured
force Feez , stiffness kz , and additional position feedback zs for
comprehensive analysis. The user guides the robot along the
z-axis towards the material, establishing contact upon reaching
it. During this contact phase, the stiffness, kz , exhibits an
increase, reflecting the system’s adaptive response. Moreover,
once the displacement exceeds zthresh, the safety feedback
is activated, stabilizing the end effector’s position around the
desired point. As contact is broken, both the stiffness and
the feedback position return to their initial values. Despite

Fig. 6. Human force estimated online using the LSTM-trained model. The
predicted force varies between high and low values, reflecting the user’s
muscle activity.

the transitions between contact and no-contact phases, the
system exhibits stable behavior. The adjustments in stiffness
and feedback position return to their initial values without any
oscillatory behavior. This aligns with the stability analysis con-
ducted, which demonstrates that the control scheme effectively
handles contact transitions, ensuring safe interactions with
delicate structures. In Figure 8, the boxplot of the adaptive
stiffness of the robot and the generated position correction of
the 10 repetitions for each material are reported. An increasing
stiffness profile, kz , can be seen in the first three materials,
with an average value of 658.28 ± 221.09 N/m for PU,
624.75±227.9 N/m for the FR, and 397.5±195.85 N/m for
the PVA. The value recorded in the PVA material is smaller
than the one obtained in the other two materials but it is
compensated by a higher position correction, which reaches
an average value of 0.0339 ± 0.01 m. For PU and for FR,

Fig. 7. Response after contact with polyurethane (PU). Upper left: End-
effector z position, z. Upper right: Contact force, Feez . Lower left: Robot
stiffness, kz . Lower right: Position feedback, zs. Shaded areas indicate the
duration of contact.
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an average value of the generated position correction, zs, of
0.0182 ± 0.0053 m and 0.0267 ± 0.0083 m was recorded,
respectively. It is worth noting the relatively high standard de-
viations observed in the stiffness measurements, which can be
attributed to the low initial stiffness values at the start of each
repetition. Considering the PLA vertebra, even though it was
not possible to drill it because of the limitations of the setup,
the stiffness keeps a low value: k̂z = 140.85 ± 14.88 N/m
with a low standard deviation. The test showed that, when
contact occurred with materials prone to deformation under
low forces, the strategy ensured an increasing stiffness, kz ,
and the generation of a safety command, zs, both inside the
defined ranges.

Fig. 8. Boxplots of the variable stiffness kz (left) and safety position
correction zs (right) across all tested materials.

B. User Study

For each material, the average force and displacement
among the 10 users were computed for each modality. In
Figure 9 and 10, the boxplots of the displacement and the mea-
sured force for each material are shown. The average displace-
ment showed significant differences (p-value < 0.05) between
VIC and LVIC modes, and between VIC and CIC modes for
Material 1 and Material 2. For Material 1, VIC mode exhibited
a mean displacement of 0.0074±0.0018 m, significantly lower
than the mean displacement of 0.019± 0.0068 m observed in
CIC mode and the 0.0125± 0.0028 m recorded for the LVIC
mode. Similarly, for Material 2, VIC mode resulted in a mean
displacement of 0.0079 ± 0.0027 m, significantly lower than
the mean displacement of 0.0171 ± 0.003 m in CIC mode.
A significant difference was also found when comparing VIC
with LVIC mode which resulted in a mean displacement of
0.0134 ± 0.0033 m. These results in terms of displacement
show that the proposed strategy is able to recognize the type of
material and prevent the user from guiding the robot through
it. Significant differences were also observed in the contact
force measured on the end effector between VIC and LVIC
mode for Material 1, and between VIC and CIC modes for
Material 1 and Material 2. For Material 1, VIC maintained
a lower average force of −5.065 ± 1.45 N , compared to
CIC’s −13.72 ± 6.52 N and LVIC’s −8.73 ± 2.41 N . For
Material 2, while VIC mode exhibited an average force of
−5.65 ± 2.57 N , significantly lower than the average force
of −14.79 ± 5.15 N observed in CIC mode, the average

force obtained with the LVIC mode, −7.85 ± 4.87 N , was
comparable with the VIC. The reduced force measured in
VIC mode demonstrates the system’s ability to minimize
contact force between the tooltip and the material, effectively
reducing the risk of material damage. Results for Material
3 were not statistically significant, with a p-value > 0.05
for both displacement and force in all modalities. This was
expected since Material 3 has a high Young’s modulus, and
the proposed strategy was designed to keep the robot compliant
during contact with such materials. Therefore, the results of
the study successfully demonstrated that the proposed strategy
was effective in preventing damage to delicate materials while
still allowing for effective manipulation of materials with a
high Young’s modulus. Overall, the consistency in reduced
force and displacement with VIC across materials suggests
that this control strategy is sensitive to the type of material
being manipulated and facilitates a user-guided interaction
that minimizes the risk of damage, thereby advancing both
safety and precision in the task. Our system demonstrated
performance that is comparable to several studies in the field of
VIC, particularly in its ability to adapt to changing conditions
and minimize operational forces. While direct comparisons
between these studies and ours are challenging due to the
distinct domains, applications, requirements, and tasks, several
important parallels and insights can still be drawn. [7] and [8]
both implemented variable admittance controllers to optimize
precision and force control, similar to our focus. [7] showed
reduced operational forces during precise suturing tasks, while
[8] achieved higher accuracy with lower effort in a point-to-
point task. Despite different applications, these studies high-
light the advantages of adapting control strategies in response
to task demands, demonstrating how variable control out-
performs fixed parameters. Similarly, our VIC approach also
focused on balancing precision and force reduction. In both
systems, the variable strategy consistently demonstrated better
control and force minimization compared to fixed impedance
or admittance levels, especially in tasks that demand delicate
interaction. [12] proposed a teleoperated framework with real-
time adjustable impedance parameters, comparing it with fixed
impedance control during contact tasks involving six materials
of varying stiffness. They reported that the position devia-
tion decreased as the material became softer, with deviations
ranging from 0.41 m to 0.05 m for the stiffest (steel) and
softest (sponge) materials, respectively. This trend aligns with
our findings, where VIC was particularly effective with softer
materials, minimizing contact forces and tool displacement.
[12] also recorded lower contact forces with their approach
compared to fixed impedance settings, further reinforcing the
effectiveness of variable control for precise and safe manipu-
lation. [5] explored a variable impedance control strategy for
path-following tasks, comparing it with constant high and low
damping settings. They found that higher damping required
greater forces to be exerted on the end effector, while low
damping facilitated easier movement but resulted in reduced
accuracy. Similar to our study, their results highlighted the
balance that a variable strategy provides: better accuracy than
low damping and reduced force compared to high damping.
Our results, in line with these findings, demonstrated VIC’s
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Fig. 9. Comparison of the end effector average displacement among the
traditional strategy (CIC), the linear variable strategy (LVIC), and the proposed
strategy (VIC), for each material: material 1 (PU), material 2 (PVA), material
3 (PLA). (*, p < 0.05, **, p < 0.01)

ability to minimize contact forces and displacement, especially
with delicate materials.

In Figure 11, the results of the questionnaire are presented.
The statistical analysis yielded both non-significant and sig-
nificant results for various statements, shedding light on user
perceptions and experiences of the two control strategies under
examination. The analysis showed non-significant results (p-
value > 0.05) for statements S1, S2, S3, S4, and S8, indicating
that the proposed VIC strategy was comparable to the CIC
and LVIC in terms of usability, absence of inconsistency,
and mental workload. The control strategies demonstrated
similarities in key aspects. Participants found VIC, LVIC, and
CIC to be equally easy to use (S1), suggesting that the VIC
strategy did not introduce additional complexity compared
to the traditional approach. Users reported similar ease of
learning for both strategies (S2), implying that they were
equally intuitive and user-friendly and that no steep learning
curve was associated with either strategy. Additionally, there
was no significant difference in the need for prior knowledge
(S3), and both control strategies exhibited consistency among
repetitions (S4). Significant results (p-value < 0.05) were
observed for statements S5, S6, and S7, unveiling distinctions
in user experiences. Users found it easier to damage materials
with CIC and LVIC (S5), indicating that VIC might be
considered less likely to cause damage. Users also reported
that it was easier to distinguish materials even without visual
feedback in VIC mode (S6), suggesting that the strategy
effectively simulated a rigid behavior upon contact with a
soft material. Finally, users felt the inability to complete the
assigned task more often in VIC mode (S7), suggesting that
the strategy successfully prevented movement along the z-axis
when necessary. This indicates that VIC was more limiting in
allowing users to complete the task with certain materials,
potentially due to differences in adaptability to various mate-
rials or overall performance. In summary, the questionnaire

Fig. 10. Comparison of the end effector contact force among the traditional
strategy (CIC), the linear variable strategy (LVIC), and the proposed strategy
(VIC), for each material: material 1 (PU), material 2 (PVA), material 3 (PLA).
(*, p < 0.05, **, p < 0.01)

results highlight significant differences in user perceptions
and experiences between the control strategies, particularly in
terms of material damage prevention, material differentiation,
and task completion. These insights provide valuable guidance
for choosing the most suitable control strategy and emphasize
the importance of user feedback in optimizing the design and
performance of robotic systems.

Fig. 11. Barplot displaying the questionnaire results. The x-axis represents the
statements (S). The y-axis shows the mean score for each question, averaged
across all participants.

V. LIMITATIONS

The main limitation of this study is its applicability in a
real surgical scenario since the analysis should be performed
with a robot equipped with a real surgical instrument. The
inclusion of a drill would introduce challenges such as large
vibrations which can potentially lead to instability and off-axis
forces. Addressing these issues remains crucial for advancing
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this early-stage concept into a practical and effective surgical
instrument. Additionally, the proposed solution should be
extended to include other axes beyond the simple axial one
considered. Another significant limitation is the variability in
the EMG-based model’s performance across users with differ-
ent muscle strengths. While the LSTM network effectively dis-
tinguished between high and low force moments, it struggled
to differentiate among varying force levels applied by different
users, indicating an area for future improvement. To enhance
generalization, we plan to incorporate higher-quality EMG
sensors and place electrodes on the shoulder to capture signals
from multiple muscles involved in arm motion. Increasing the
number of users in our training dataset will also help better
account for variations in muscle strength. Furthermore, the use
of different soft materials (PU, PVA) in the experiments did
not accurately simulate the properties of the spinal cord and
blood vessels. Therefore, future experiments should aim for
a more realistic experimental setup to enhance the fidelity of
the results. Finally, future work should explore the inclusion of
ungrounded structures, as this was not addressed in the current
study.

VI. CONCLUSION

In this study, an adaptive impedance controller was de-
veloped to allow the recognition of different types of ma-
terials. The proposed control strategy strived to replicate
the haptic sensations that surgeons traditionally rely on for
precise manipulation by changing the stiffness of the robot
in real-time. This adjustment was based on the contact force
between the robot tooltip and the environment and on the
human estimated force, obtained from the EMG signals of
the user’s arm. Moreover, a safety position command was
generated when contact was made with delicate materials.
Results showed that the proposed strategy successfully in-
creases the stiffness of the robot when contact is made with
delicate materials without causing end effector oscillations,
and reduces the risk of damaging such materials, in terms
of end effector contact force and displacement, compared
to a constant and a variable impedance control strategy. In
conclusion, the proposed variable impedance control scheme
proved to be a promising approach to improve the safety and
precision of spinal surgeries by aligning with the surgeon’s
haptic perceptions during interactions with various tissues and
structures.

APPENDIX
PROOF OF STABILITY

To ensure the stability of the system with variable
impedance parameters, a passivity filter was introduced.
Specifically, stability is ensured if the following passivity
conditions hold:

0 ≤ K − Ḋ

0 ≤ 2DM−1(K − Ḋ)− K̇ + D̈
(13)

Given diagonal matrices, and focusing solely on the z-axis,
the conditions of equation 13 can be simplified to:

ḋz − kz ≤ 0

k̇z +
2

mz
dz ḋz − d̈z −

2

mz
kzdz ≤ 0

To satisfy these constraints, a rate-of-change limit on the
variable gain γ is derived, ensuring passivity. This is expressed
as:

γ̇ ≤ 2(d0δk + k0δd)γ + 2δkδdγ2 + 2k0d0
δk + 2d0δd+ 2δd2γ

≜ h1(γ)

where δk = k1 − k0, as previously defined; d0 = 2ξ
√
k0,

and δd = 2ξ(
√
k1 −

√
k0). Moreover, when δd ̸= 0, another

passivity condition applies:

γ̇ ≤ δk

δd
γ +

k0
δd

≜ h2(γ)

To ensure that the system remains passive and stable as the
desired stiffness γ increases, a passivity filter is introduced
to regulate the rate of stiffness change γ̇. The passivity filter
takes as input the desired γi profile and generates an output
γ̇i that guarantees system passivity:

γ̇ = min(h1(γ), h2(γ), β(γ̄ − γ))

Here, β represents the gain of the filter, ensuring the
smoothness of γi adjustments.
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