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Abstract—

Modern AI applications contain computationally expensive
sections. Accelerator cards and tools like AMD Vitis HLS
leverage high-level synthesis and hardware (HW) optimiza-
tions to create custom HW designs to accelerate them.
Nevertheless, the learning curve is steep, even for those with
previous knowledge of HW design, due to the complexity
of the optimization techniques and limited information on
their interactions and HW effects. This paper quantitatively
analyzes the interactions of optimization techniques after
reverse engineering Vitis’ optimization directives, both in
isolation and in pairs. Over 150 experiments were conducted
to investigate three distinct goals: assessing pragma behavior
and the rules governing pragma application and optimiza-
tions, modeling Vitis HLS latency estimates, and evaluating
the impact of optimizations on design space exploration,
specifically area and latency. These experiments involve dif-
ferent combinations and placements of optimizations in the
loop and function hierarchy of the test bench. Our findings
offer guidance on using Vitis pragmas and identify promising
configurations for optimizing latency and area.

Index Terms—HLS, Xilinx, Vitis, Alveo, acceleration, optimiza-
tion, tutorial

I. INTRODUCTION

EXECUTING certain algorithms, in disciplines such
as artificial intelligence (e.g., neural networks); fi-

nance (e.g., Monte Carlo simulations); or physics (e.g.,
weather-forecasting algorithms), on a CPU is computa-
tionally expensive. Applications in other fields of study,
such as health systems (magnetic-resonance imaging) or
defense systems (anti-ballistic missiles) need a real-time
response, and significant CPU resources. Implementing
the compute-intensive tasks of these software (SW) ap-
plications with purpose-built hardware (HW) circuits run-
ning on FPGA-based accelerators improves performance
and saves manufacturing costs compared to application-
specific integrated circuit (ASIC)-based accelerators. This
can be achieved by: 1) Describing HW with a HW de-
scription language (HDL) such as VHDL or Verilog. 2) De-
scribing the behavior of tasks through code in high-level
programming languages, such as C/C++, and using high-
-level synthesis (HLS) tools to get register transfer level
(RTL) descriptions of the most computationally expensive
sections in the high-level code.
Vitis HLS is an AMD-Xilinx-developed tool that helps im-
plement high-level C/C++ computationally expensive algo-

rithms in HW. It synthesizes C/C++ function specifications
(kernels) into RTL code, implemented on an FPGA through
the back-end design flow. Kernels are synthesizable C/C++
top-level functions defined within the body of the clause
extern "C{ }" and work as accelerating engines.

To implement optimal RTL code, C/C++ code must follow
the recommended coding style for synthesis [1]. Moreover,
Vitis offers performance optimizations that enhance la-
tency and initiation interval (II) in the synthesized HW.
The most important are pipelining, flattening, and un-
rolling [2]. Both Vitis HLS settings and the developer guide
these optimizations. While Vitis HLS settings configure
automatic optimizations, developers can use explicit syn-
thesis directives [2], [3] to arrange specific optimizations:

1) Commands in scripting files using the Vitis-supported
tool command language (Tcl). They help explore dif-
ferent solutions to a problem with Vitis HLS.

2) HLS pragmas embedded in C/C++ kernel source code
guide RTL code optimizations. They are preferred for
developing accelerated applications with Vitis and
should replace Tcl directives in the final project.

Although AMD-Xilinx user guides explain optimization
results in small-scale use cases, a comprehensive case
study on the effects of the optimizations is lacking, leaving
many details unclear. This study analyzes optimization
techniques and their interplay, focusing on the behavior
of Vitis HLS algorithms and their impact on area and
latency. The area analysis covers flip-flops (FFs), lookup
tables (LUTs), and digital signal processing units (DSPs).

Concerning Vitis HLS algorithms, the goals are to reveal
the default optimizations, the precedence among opti-
mizations, developer-guided and automatic, and compat-
ibility when used together.

Providing in-depth knowledge on implementing the HLS
methodology and optimizing with Vitis HLS will enhance
process productivity and shorten the design cycle. There-
fore, instead of a conceptual study, our goal is to provide
practical guidelines to help designers, with limited exper-
tise in HLS, master optimization techniques using this tool.

Regarding the optimization effects on area and latency, the
objectives are to uncover the outcome of single optimiza-
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tions in isolation, combined impact of optimizations, and
rationale behind the transformations’ effects.

The paper analyzes the synthesis results of a C/C++ loop
nest. This structure enables evaluating performance op-
timizations and comparing their effects at different loop
levels. Moreover, the straightforward computation in the
innermost loop clarifies the differences in area and latency
among optimization configurations, a.k.a. setups.

The remainder of this paper is structured as follows. Sec-
tion II analyzes the state-of-the-art in HLS-optimizations
interplay, Section III presents the architecture of AMD-
Xilinx Alveo accelerator cards, Section IV explains Xilinx
design flows and kernel execution modes, Section V de-
scribes Vitis-HLS performance optimizations, Section VI
describes a kernel, Section VII describes pragmas’ behavior
in isolation and in pairs, Section VIII models Vitis-HLS
loop and function latencies, Section IX evaluates HLS-
optimization impact, and Section X concludes.

II. STATE OF THE ART
Besides Vitis by AMD-Xilinx, other HLS tools [4] include
Catapult by Siemens, Symphony C by Synopsys, HDL
Coder by MathWorks, or Stratus HLS by Cadence Design
Systems. They accept code in various high-level program-
ming languages, respectively, C++ and SystemC; C/C++;
MATLAB; and C++ and System C. Although they use sim-
ilar optimization techniques, these techniques and their
results depend on the target device, which is an AMD-
Xilinx-made Alveo card in our case.

[5] addressed the interdependency between two HLS opti-
mizations: multidimensional memory partition and loop-
unrolling. Its authors focus on reducing the area, in
designs with this memory partition‘. This partition type
can cause bank switching, which leads to area overhead.
Unrolling the loops that access memory can eliminate
bank switching and optimize the area.

Another study, [6], developed a tool to help designers
find high-performance synthesis directive configurations
within minutes under given resource constraints. The au-
thors researched the interaction effects of different direc-
tives, performing performance and area trade-off analysis.

The authors of [7] applied Bayesian optimization to prune
the HLS-transformations design space retaining those
that balance low latency and efficient use of HW. They
built a framework for iterative search among optimization
setups, bypassing time-consuming simulation, synthesis,
and place-and-route stages. The framework takes high-
level code as input and outputs RTL implementations.

Another paper, [8], proposed a framework for DSE of opti-
mization configurations in HLS. Typically, loops with vari-
able bounds are challenging to optimize with pipelining or
unrolling. These pragmas lead to variable HW underuse,
making performance estimation hard and estimates of
loop-latency ranges relatively broad. The authors propose

source code transformations to address HW underutiliza-
tion and present a model to estimate area and latency.
Finally, in [9], the authors explored several HLS solutions
to accelerate the K-NN machine learning algorithm with
Vivado HLS. They analyzed the interaction effects of the
most relevant HLS optimizations; they concluded that only
a subset can offer the same acceleration as using all of
them. A different study, [10], optimized HLS directives
through sequential model-based optimization (SMBO)
methods, such as Bayesian optimization. SMBO helps
optimize computationally expensive functions. Therefore,
this strategy is effective due to the complex interaction
effects on area and latency among directives, the high cost
of evaluating specific optimization configurations, and the
large design space exploration (DSE).

III. ALVEO CARDS DESCRIPTION
Alveo™ accelerator cards help achieve higher perfor-
mance, accelerating CPU-intensive algorithms [11]. They
are designed for host connectivity and heterogeneous sys-
tems. Figure 1 presents the main modules each Alveo card
includes [12]: an FPGA; off-chip high-bandwidth memory
(HBM) banks (global memory); and a high-bandwidth
PCIe Gen3x16 link connecting to the host.
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connectivity
board

management clkreset
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PCIe
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kernelBRAM URAM

on-chip local
 memory

m_aximemory
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Fig. 1: Block diagram of the modules on an Alveo card.

The FPGA of Alveo cards is empty before loading any target
platform. The target platform is the initial HW design
(firmware) implemented at system boot time [13], on the
FPGA to set up the cards for a particular use [2]. It de-
fines FPGA attributes with a partitioned HW configuration
[14] comprising two regions [12], [13], [15]: (a) a user
partition (dynamic logic region) with the reconfigurable
FPGA resources still available after implementing the shell
partition; and (b) a shell partition (target platform) with
fixed logic for basic infrastructure, such as PCIe con-
nectivity and board management, to operate the FPGA
and to transfer data to and from the dynamic region.
This partitioning enables dynamic region updates while
essential infrastructure services remain operational [14].
Data transfers between the host and kernels occur through
global memory. The host accesses global-HBM data via a
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connection that crosses the card’s PCIe interface, shell par-
tition, and memory subsystem within the user partition,
while kernels use their memory-mapped Master-Advanced
eXtensible Interfaces (M_AXI) and the memory subsystem.
The shell partition HW enables an Alveo card and its host
to connect without developer intervention.

IV. VITIS DESIGN FLOWS AND KERNEL EXECUTIONMODES
Vitis supports three design flows. Two are for acceleration
cards: Vivado IP and Vitis kernel flow, respectively, for
RTL designers and SW developers. The other one is the
Embedded System–design flow.
This work examines the Vitis kernel flow, in which Vitis
builds an FPGA binary file to program logic elements in
the user partition of the target platform. This file defines
the local memory topology, kernels, clocking data, and
kernel connectivity [13], using AXI4 M_AXI interfaces,
which connect kernels to off-chip HBM banks through
read and write channels [2].
Depending on execution mode, Alveo cards’ FPGA kernels
can be SW-controlled, allowing host applications to inter-
act with them, or data-driven (free-running). The latter
starts automatically and only stalls when no input data is
available in the streams they read. SW-controllable kernels
can be either user-managed, suitable for the Vivado IP
design flow, or Xilinx RunTime (XRT) managed, a type of
user-managed kernel tailored for the Vitis design flow.

V. OPTIMIZATIONS IN HIGH-LEVEL SYNTHESIS
HLS performance optimizations accelerate the compute-
intensive sections of C/C++ code with parallel execu-
tion. Execution parallelism inherent in HW accelerates SW
with equivalent functionality running on general-purpose
processors. Optimized HW should maximize concurrency,
overall throughput (rate of data processing) [12], and
minimize latency (cycles to produce data from input) [16].
To accomplish the acceleration goal, developer-guided
optimization pragmas should generate optimized HW as
shown in Figure 2. It implements three main paralleliza-
tion techniques supported by Vitis HLS. These techniques
guide the synthesis of C/C++ kernel functions in gener-
ating optimal RTL code that parallelizes HW execution as
much as possible. The techniques are pipelining, which
enables execution concurrency with different operations,
each with a different dataset; unrolling, which represents
pure parallelism and replicates a loop’s body to run all its
operations on multiple data simultaneously; and dataflow,
which decouples the execution of sequentially linked HW
modules that have data dependencies on their immediate
predecessors. The overall parallelization results from the
combined effect of these techniques.
The techniques can be classified as macro-level architec-
tural optimization, improving concurrency or parallelism
among tasks implemented as C/C++ functions, or fine-
grained micro-level architectural optimization, optimizing
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Fig. 2: Types of HW parallelism. bl ocki j is the j-th HW
copy of the body of the unrolled loop of the ith task of
a dataflow region. CU is the control unit with a counter
required by the loop of t aski before unrolling.

the performance of functions and their operations [2].
Both depend on sufficient HW resources for synthesis.

A macro-level architectural optimization is task dataflow
(dataflow pipelining). It exploits coarse-grain parallelism
[17], enabling task-level pipelining. It follows the producer-
consumer design pattern, identifying sequential tasks,
stages, or C/C++ functions within a top-level function.
They can execute concurrently to boost kernel throughput,
even if not in parallel. This pattern connects consec-
utive producer and consumer functions with streaming
data channels, either a first-in-first-out buffer (FIFO) or a
ping-pong RAM buffer (PIPO). Each producer sequentially
stores data elements in its output channel, which the
consumer retrieves. If the data is consumed in the same
order, an on-chip local-memory FIFO buffer can link both
functions, allowing data flow between them. FIFO buffers
streamline the critical data path by eliminating the need
for index computation to access RAMs. However, when
a producer and its consumer of a dataflow region do not
produce and consume data in the same order, the top-level
function design cannot link the tasks via FIFOs; instead,
it needs ping-pong RAM buffers.

This technique overlaps the execution of functions local
to the kernel, increasing concurrency. In addition, it de-
couples the execution of tasks with different throughput
rates, reducing function starvation. Typically, the latency
of the design decreases, and its throughput increases [2].

Additionally, Vitis HLS supports another macro-level ar-
chitecture optimization, input/output burst data transfer,
which is inferred automatically from the C/C++ code. It
accesses multiple consecutive off-chip memory locations
with a single request, optimizing latency and increasing
memory bandwidth. Kernels should access consecutive
memory locations in this way to minimize the burden-
some global memory access overhead. Figure 3 depicts a
kernel using the recommended load-compute-store design
pattern, which enables the dataflow optimization and
eases the burst inference. This design pattern isolates
read memory access, computing work, and write memory
access, respectively, in the three different functions, load,
compute, and store, of the load-compute-store standard
architecture defined in [12]. The task compute can also
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consist of consecutive calls to smaller functions (com-
pute0, ..., computeN ), forming a task chain in a dataflow
region accordingly. The kernel calls these functions in the
order already mentioned to enable these optimizations.
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Fig. 3: Load-compute-store design pattern.

Six fine-grained, micro-architectural optimizations en-
hance kernel latency or throughput at the function level:
two for for loops (flattening and unrolling), one for
for loops and functions (pipelining), and three for func-
tions (inlining, instantiation, and allocation). Except for
allocation, they can be described as C/C++ source code
modifications; however, they do not alter the code. They
ensure that HLS generates optimized HW equivalent to
that produced for the modified input code. According to
[1], [2], [12], these optimizations operate as follows.

A. Loop Flattening
It removes the parent loop of a nested child loop, increas-
ing the child iterations to compensate. Moreover, flattening
a structure of more than two consecutive, flattenable
nested loops eliminates the ancestors of the innermost
loop and leaves a single loop with as many iterations as
the product of the number of iterations of each loop. The
optimization’s fundamentals lie in the HW implementation
of a loop. Each loop is controlled by a control unit (CU)
implemented as a finite-state machine (FSM). Therefore,
flattening a parent loop simplifies the nest’s CU by elim-
inating the parent loop’s FSM. This saves two cycles per
parent loop iteration: one cycle to move execution from
the FSM of the parent to that of its child right before the
beginning of the first iteration of the child and one cycle
to move it back to the parent’s FSM right after the last
iteration of the child. Therefore, this saving equals twice
the loop bound of the flattened parent in cyles. It also
reduces the circuit area devoted to CUs. However, only
perfect and semi-perfect loop nests are flattenable. The
bounds of semi-perfect loop nests are constant except for
the bound of the outermost loop, whereas perfect loops do
not have any variable bound. Yet both types have all their
code within the innermost loop. Flattening is disabled by
default1 and can be activated or deactivated with #pragma
HLS loop_flatten and #pragma HLS loop_flatten off, respectively.

B. Loop Unrolling
It partially (i.e., only some iterations) or completely elimi-
nates a loop by replicating the loop body’s RTL code based

1In the absence of loop pipelining.

on the unrolling factor, uf. Figure 4 illustrates this. If there
are no dependencies among the copies, loop unrolling
enables true parallelism in HW, i.e., each iteration can run
in parallel on a different HW. This decreases loop latency.
Consequently, the throughput increases, and the function
containing the unrolled loop requires a higher Input/Out-
put bandwidth2 to handle the higher data-processing rate.
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are M iterations: each calculates one output value in three cycles,
and the loop variable i ∈ [1,2,3, . . . , M ].
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3 ⌉×3−2].

Fig. 4: The effect of unrolling.

Unrolling is disabled by default.1 #pragma HLS unroll factor
=uf enables this optimization, with uf being an integer
unrolling factor. It must satisfy 1 < uf ≤ TC, with TC being
the loop trip count. For uf = TC, HLS performs complete
unrolling, whereas for uf < TC, it unrolls the loop partially.

C. Loop and Function Pipelining

It optimizes HW that implements a body loop or a function
[1]. In C/C++, consecutive loop iterations or function calls
start only the previous one has finished. The minimum
time between two back-to-back executions is the initia-
tion interval (II), which equals iteration or function calls
latency in C/C++. Pipelining reduces II while preserving
the latency by scheduling the sequence of operations into
consecutive stages with pipelining registers between them.
Hence, each stage runs concurrently with data from subse-
quent loop iterations or function calls [2], which start with-
out waiting for the previous one to finish. Thus, pipelining
reduces II and optimizes throughput but does not improve

2If the loop accesses array data, memory partition might be necessary
to reach the required I/O bandwidth.
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latency [18], [19]. II reduction is limited by dependencies
among operations in different stages, particularly feedback
between loop iterations or function calls. Pipelining aims
for the lowest II within clock constraints unless an II is
specififed. However, if set, HLS prioritizes reaching that II
over clock constraints. The HLS pragma statement #pragma
HLS pipeline ii=<int> controls this optimization.
When applied in a loop nest, it triggers three optimizations
in sequence according to HLS build logs: (1) unrolling
all the loops downward, (2) flattening loops upward until
reaching a non-flattenable loop, and (3) pipelining the
loop with the pipelining pragma. The order between
pipelining-triggered unrolling and flattening does not af-
fect the HW result because they target different loops. Flat-
tening eliminates the idle cycles between the consecutive
executions of the pipelined loop nested under other loops.
This optimization is enabled by default for loops (auto-
pipelining) when no pipelining pragma is provided to
guide HLS. To disable auto-pipelining:
1) Update the default HLS settings by setting the pa-

rameter pipeline_loops of the Vitis HLS configuration
command to zero and pass a Tcl script with this
setting at the call to the compile command. This
disables default auto-pipelining for all kernel codes.

2) Include the pragma #pragma HLS pipeline off within a
specific nested loop to disable auto-pipelining for all
the loops in the nest.

If pipeline_loops is above 0, auto-pipelining should pipeline
loops with a TC above this parameter. It works as a
pipelining threshold above which HLS pipelines a loop.

D. Function Inlining
It replaces function calls with their logic, by default for
small functions. This can be disabled with #pragma HLS inline
off. Inlining is non-recursive, affecting only the function
with the pragma, unless specified with the option recursive
. In HW, inlining eliminates the associated RTL module.

E. Function Instantiation
It creates function instances for the given input param-
eters. The clause #pragma HLS FUNCTION_INSTANTIATE variable
=k in the function body instantiates the parameter k,
producing a customized RTL module for each value passed
to the instantiated input port. Fewer remaining inputs after
instantiation result in a smaller instance’s implementation
area, improving latency and throughput. By default, func-
tion instantiation is disabled.

F. Function Allocation
Finally, allocation limits the number of RTL instances for
an operator or function. Developers set this limit, forcing
shared utilization when the C/C++ code uses the function
or operator more times than the threshold. This technique
optimizes area but might worsen performance.

VI. KERNEL DESCRIPTION
Our kernel design simplifies the analysis of key HW opti-
mizations by using a simple critical data path. The com-
putations of our kernel involve four for loops perfectly
nested, f0 (outermost), f1, f2, and f3 (innermost), with TC
two, three, six, and nine, respectively, and a straightforward
HW implementation of the innermost loop’s body. The
core of the computation is acc+= l a×l b+C×lc×ld , where
la, lb, lc, and ld are the i-th 32-bit integer elements of
four different input vectors, respectively; C is an integer
constant; and, acc is a 64-bit integer accumulator defined
and initialized in the outermost loop with the value zero.
The kernel has four input streams, local_a, local_b, local_c,
and local_d, for the four input vectors, respectively; and an
output stream, local_result_g, for the output vector. Right
before the computation, the innermost loop reads the four
input elements in parallel, each from a different stream.
The innermost loop also sends, via a stream, the values of
the accumulator calculated at the end of the execution
of each iteration of the outermost loop. These values
constitute the kernel output. Figure 5 below presents the
core of computation’s HW implementation.
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C
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x

x
ld x

+ +

FIFO buffers

FIFO buffer
local_a
local_b

local_c
local_d

local_g

core of computation

acc

Fig. 5: HW implementation of the core of computation.

Figure 6 illustrates the kernel organization, which slightly
varies the standard load-compute-store architecture. It
calls five functions: load, preprocess, compute, postpro-
cess, and store in this order. Preprocess and postprocess
convert the kernel I/O’s wide data width to the narrower
data width of compute’s data path. Global memory ac-
cesses are 512 bits wide to maximize their throughput.
#pragma HLS dataflow schedules the five functions to run
concurrently and builds FIFO channels for the local hls
:: stream variables connecting consecutive functions.
Each I/O port of the kernel is linked to a different HBM
global-memory bank through an M_AXI adapter dedicated
to this bank and its corresponding FIFO queue.
The function load reads host data elements from the accel-
erator’s global memory, with burst transfers. The function
preprocess unpacks input data read by load. The function
compute processes output vector elements using the pre-
process-unpacked data. The function postprocess packages
the output elements. The function store saves the output
vector to global memory, using burst transfers. Below are
some clarifications regarding the burst transfers, prepro-
cessing, and postprocessing. For input burst transfers, this
design aggregates 16 32-bit memory accesses into 512-bit
memory accesses via a separate M_AXI adapter for each
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Fig. 6: Kernel organization.

kernel input port. A shared M_AXI adapter for multiple
kernel input ports would prevent load from parallelizing a
burst read from each input source. Output burst transfers
aggregate eight 64-bit memory accesses into a single 512-
bit memory access via the output M_AXI adapter.
Both preprocess and postprocess have a two-level nested
loop each; the outer iterates over 512-bit data packages,
and the inner over 16 32-bit data elements.

VII. REVERSE-ENGINEERING THE BEHAVIOR OF PRAGMAS
This section presents findings on the pragmas mentioned
in Section V, not documented in AMD/Xilinx manuals [2],
[12]. They were obtained through reverse engineering over
a hundred experiments to provide further information on
the pragma effects. They explain how Vitis HLS determines
optimizations based on C/C++ code and its pragma con-
figuration, given sufficient HW resources. Note that the
correspondence between pragma and optimization is one-
to-one for the pragmas flatten and unroll, but differs for
the pragma pipeline, which triggers three optimizations in
sequence: unrolling, flattening, and pipelining.
Two groups of experiments were conducted to study Vitis
HLS’ pragmas. The first group focused on each pragma’s
behavior, both in isolation and in combination with others.
The findings from these experiments are presented in
Sections VII-A and VII-B. These experiments are unre-
lated to those on area and latency in Section IX and
involve placing pragmas within different loops of four-
level hierarchies. The experiments implemented updates
to the kernel described in Section VI, transforming its
perfect loop nest into various loop hierarchies, including
up to four-level loop nests with different loop bounds from
those of the original kernel. Moreover, some nests were
not even semi-perfect because of sibling loops. For each
pragma and loop for pragma placement, they explored
pragma behavior under all possible configurations of these
settings: config_compile-pipeline_loops and config_unroll-
tripcount_threshold commands in HLS default settings,
nesting level of the loop; no pragma, pragma activation
or deactivation; unrolling factor; isolated or combined
pragmas; loop position in the code, relative to that of

sibling loops; number of child loops (zero, one, or multiple
child loops); several pragmas with or without overlapping
scopes and colliding effects, in the same or different loops;
and with or without sibling or cousin loops.
The second group’s experiments examined area and la-
tency in the HW design optimized with pragmas, using the
kernel from Section VI, after establishing pragma behavior.

A. Single Pragmas
We use the tag F<id> to identify our findings below, for
both Vitis 2022.2 and 2024.1 unless otherwise specified:
F1 To the best of our knowledge, results from automatic

optimizations do not differ from those observed after
embedding pragmas in the C/C++ code.

F2 HLS optimizes loop hierarchies by applying pragmas
and optimizations in this order: (1) unrolling prag-
mas; (2) flattening pragmas; (3) pipelining-triggered
optimizations: unrolling and flattening in this order;
and (4) pipelining itself.
This order remains valid regardless of whether the
pragmas disable or enable optimizations, and whether
pipelining is developer-guided with pragmas or auto-
pipeline3. Each step’s transformations inherit the hi-
erarchy left after going through the previous steps.

F3 Flattening (disabled/enabled) propagates from the
loop with the pragma, inclusively, upward in the
loop hierarchy even if it encounters non-semi-perfect
loops4. It skips such loops and continues to flatten
higher loops. The upward propagation stops when
it encounters a loop with any of these elements:
(a) a pragma loop_flatten off, or (b) descendant loops
disabling upward flattening as explained in finding F4.

F4 When a loop has multiple child loops, some might
disable flattening, while others might enable it. The
rules to determine whether the combined effect of the
child loops disables flattening upward are5: (a) Child
loops with explicit pragma loop_flatten take priority,
enabling or disabling flattening upward, and (b) The
higher a child loop is in the C/C++ code, the greater
the priority of a pragma loop_flatten (off) in this loop.

F5 Unrolling a loop does not trigger unrolling for its
descendant loops in the loop nest hierarchy.

F6 Partially unrolling a loop has the following effects if
the unrolling factor does not divide the TC, using
integer division. It replaces the loop with another
partially unrolled with a TC equaling the result of the
integer division plus one. In the last iteration, only a
portion of the replicated HW is used.

3Auto-pipeline is an algorithm that Vitis HLS launches automatically
to select a loop for pipelining.

4In Vitis 2024.1, disabling or enabling flattening propagates upward
from the loop with the pragma or its parent, respectively, but only
through semi-perfect or perfect loops.

5Vitis 2024.1 disables flattening propagation upward at sibling loops.
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F7 HLS always triggers auto-pipelining for the innermost
loop of a perfect or semi-perfect loop nest in the
absence of pragma directives that activate pipelining,
unrolling, or flattening. This contradicts [2], which
states that HLS should only pipeline the innermost
loop automatically if its bound exceeds the pipelin-
ing threshold set in Vitis HLS. Otherwise, it should
attempt to pipeline the next loop higher in the hier-
archy. This process should continue until a suitable
loop is found according to the specified criteria.

F8 Adding #pragma HLS pipeline off within any loop disables
auto-pipelining in all loops along root-to-leaf paths
traversing the loop containing this statement.6

F9 Adding #pragma HLS pipeline off within a function has no
effect if the function call is within a pipelined loop.
This behavior holds regardless of whether the loop
pipelining is developer guided or auto-pipeline.

F10 A pragma enabling pipelining takes precedence over
one disabling pipelining whenever they are in two
different loops, in the same branch.

F11 When there is a pipelined loop with at least one
sibling loop, HLS creates a non-pipelined artificial7
logic level directly above the pipelined loop.
Regardless of the presence of other pragmas, the auto-
pipeline algorithm targets the loop nest hierarchy re-
sulting from unrolling all loops containing a complete
unrolling pragma. However, given any branch from
root to leaf, auto-pipelining only applies to the branch
if none of its loops contains a pragma pipeline or
pipeline off8. It selects only one loop in the branch
for pipelining based on this priority: (1) The branch’s
deepest loop with a partial unrolling pragma; (2) The
branch’s deepest loop that meets this condition: all
its ancestors have one single child and no pragma
disabling flattening.
If no loop meets the specified conditions, the algo-
rithm recursively calls itself for the subtree rooted at
the deepest loop in the branch with a parent satisfying
this condition: having at least one descendant9 with
a pragma enabling partial unrolling or pipelining.
In the absence of HW resources to pipeline the se-
lected loop10, the auto-pipeline algorithm attempts
to pipeline the first suitable loop downward in the
loop hierarchy. If an II violation occurs, HLS does
not pipeline the selected loop. However, this violation

6In Vitis 2024.1, disabling loop pipelining with a pragma affects only
the loop containing the pragma and its ancestors.

7Artificial means the logic does not derive from a C/C++ function or
operator in the source code, unlike standard logic.

8In Vitis 2024.1, for a given branch, disabling pipelining in certain
loops allows auto-pipelining to select one from those below them.

9This condition is valid regardless of the generational distance, or the
number of hierarchical levels, between ancestor and descendant.

10HW resources alone do not guarantee loop selection by Vitis 2024.1’s
auto-pipeline; a valid II under its latency is required. Otherwise, auto-
pipeline searches for the first suitable loop downward in the hierarchy.

does not prevent the pipelining-triggered optimiza-
tions: upward flattening and downward unrolling.

B. Combinations of Pragmas
This section presents further findings on the combined
effects of pragmas. All behaviors can be explained by
referring to the findings in Section VII-A.
Below is a list of all combinations of two pragmas.

• UaP: Unrolling above (or in same loop as) Pipelining.
• UaF: Unrolling above (or in same loop as) Flattening.
• PaU: Pipelining above (or in same loop as) Unrolling.
• PaF: Pipelining above (or in same loop as) Flattening.
• FaU: Flattening above (or in same loop as) Unrolling.
• FaP: Flattening above (or in same loop as) Pipelining.
• dFaP: disabled Flattening above (or in same loop as)
Pipelining.

Combinations of higher number of pragmas are explained
by reduction to two-pragma combinations. This taxonomy
categorizes pragmas based on their position in a loop nest
hierarchy. Each combination is denoted by an acronym,
<pragma1>a<pragma2>, where F stands for flattening,
U for unrolling, and P for pipelining, and <pragma1> is
located above (in an ancestor) or in <pragma2>’s loop.
The interplay between pragmas occurs only when their
scopes overlap and their effects collide. Considering F5,
flattening eliminates loops upward, and pipelining oper-
ates both upward (applying flattening) and downward (ap-
plying unrolling once to each descendant of the pipelined
loop and regardless of generational distance), we describe
two cases for each pragma combination based on whether
the pragmas are in different or the same loop.
In UaP, if pragmas are in different loops, their scopes do
not overlap. HLS unrolls and pipelines the loops contain-
ing the corresponding pragma, respectively. It also applies
flattening to the ancestors upward, based on findings F3,
and F4. Thus, HLS creates multiple pipelined loops. If both
pragmas are in the same loop, various situations can arise:
1) If unrolling is complete, HLS should first remove the

scope of pipelining based on finding F2. However,
HLS would not be able to pipeline it afterward. Thus,
HLS fails and raises an error due to a pragma conflict
between pipelining and unrolling.

2) If unrolling is partial, HLS unrolls the loop partially,
based on finding F8, and pipelines it for any of the
following two situations: a) The loop is orphan, has
at least one child and the pipelining optimization is
guided automatically; and b) the loop has a parent.

3) If unrolling is partial and the loop is orphan, for
any of the following two situations, HLS converts the
partial unrolling pragma into a complete unrolling
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optimization: a) The loop does not have children; and
b) the loop has children, and the pipelining is guided
by pragma rather than automatically.

Whenever UaP triggers partial unrolling, HLS creates some
artificial7 logic just above the pipelined loop level. Loop
pipelining does this whenever it cannot flatten all the
loops above, up to the function level. In this case, a
partially unrolled loop between the function level and the
pipelined loop prevents the exhaustive flattening.

In UaF, if both pragmas are in the same loop and the
unrolling is complete, HLS raises a conflict error. It is illog-
ical to flatten a loop that already has a complete unrolling
pragma. The loop does not exist anymore after unrolling;
HLS applies unrolling first, before flattening. Otherwise,
if the unrolling is incomplete or above the flattening,
HLS applies flattening whenever the post-unrolling code
complies with the flattening requirements11.

The scopes of the pragmas in PaU overlap when they
are in different loops. However, the pragmas’ effects do
not collide, unless the unrolling is partial, in which case
HLS ignores it. Hence, PaU ≡ P. The pragmas of each
configuration with complete unrolling only collide if they
are in the same loop. In such a case, HLS ignores the
unrolling pragma, and applies pipelining, so PaU ≡ UaP,
and UaP’s behavior has been described above.

PaF raises a conflict according to HLS build log, if its two
pragmas are in different loops. However, the build finishes
without errors. Unexpectedly, the loop flattening pragma
is ignored, and only the pragma pipeline is applied. If
both are in the same loop, HLS resolves the conflict again,
ignoring the flattening pragma, so PaF ≡ P. Therefore,
regardless of pragma location, HLS prioritizes the last one
in the sequence based on finding F2.

In FaU, if both pragmas are in different loops, their scopes
do not overlap. Otherwise, their scopes overlap and their
effects collide. HLS raises a conflict and fails.

The scopes of the two pragmas in FaP overlap when
in different loops, but this does not lead to a collision
in their effects. Hence, FaP ≡ P. The pragmas of each
configuration only collide if they are in the same loop. In
such a case, FaP ≡ PaF ≡ P; HLS ignores the flattening
pragma, and applies pipelining. That is, HLS behaves as if
the pragmas were in different loops.

Finally, in dFaP, the scopes of disabling the flattening
pragma and pipelining-triggered flattening overlap, and
their effects collide. The recursive effect of the pipelining-
triggered flattening ends when it reaches the pragma
that disables flattening. Whereas pipelining is impossi-
ble without completely unrolling the loops nested below
the pipelined loop, disabling flattening does not prevent
pipelining. Nonetheless, it does inhibit the pipelining-

11Findings F3 and F4 in Section VII-A expose the conditions under
which flattening propagation upward halts.

triggered flattening. This behavior remains even if both
pragmas are in the same loop.

VIII. REVERSE-ENGINEERING AN ESTIMATIONMODEL OF
LOOP AND FUNCTION LATENCIES

Calculating a function’s latency is crucial for optimizing its
HW. Latency is the number of cycles needed to execute
all the loops, operations, and function calls within the
function. Similarly, loop latency is the number of cycles
required to execute all iterations.

The compute function is the core of any kernel, containing
computations. Vitis HLS estimates function latency adding
latencies of loops and child function calls. Hence, we focus
on estimating loop and function latencies.

The following latency equations below apply to any loop
type. They emerge from analyzing Vitis HLS’ Schedule
Viewer reports for dozens of experiments, varying the
kernel explained in Section VI. They changed the core
complexity (e.g., additional multiplications), calculation
order, loop hierarchy (e.g., adding sibling loops), TC per
loop, nesting functions within loops or another function,
and pipelining settings.

For a function with only a root loop (which may contain
nested loops but nothing else outside), Equation 1 esti-
mates the function’s latency, LF .

LF = L I + (L0
L − isPipe)+LO ∗ isPipe (1)

where L I represents the latency to start the execution of
a loop, L0

L the root loop’s latency, LO the latency to finish
the loop’s execution, and isPipe is a variable that indicates
whether the loop is pipelined. Note that the value of L0

L is
different if the loop is pipelined. In the case where the
loop is pipelined, (isPipe = 1), HLS schedules two sets
of operations in L I : 1) those required to start up the
loop, specifically the initialization of the loop induction
variables; and 2) those in the first cycle of the first iteration
of the loop, particularly those checking the loop index
is above the bound and incrementing the loop index.
Parallelizing these two sets is the reason for subtracting
one cycle from the loop latency L0

L .

Regarding unrolling, this optimization leaves loops with
fewer iterations, eventually eliminating them completely.
Therefore, it modifies the TC; and the loop latency, L0

L , if
there are dependencies between iterations. Equations (3)
to (5) consider both parameters.

In the case of latency of a function with a root non-
pipelined loop (isPipe = 0) and nothing else outside this
loop, LF does not include LO , and Equation (1) simplifies
to Equation (2) because (i) the execution of the initializa-
tion operations does not overlap that of the operations
of the first cycle of the first iteration of the loop, and
(ii) the scheduler knows in advance the function execution
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finishes right after the last cycle of the last iteration of the
loop because there is not parent loop above.

LF = L I +L0
L (2)

For the root of a loop nest, Equation (3) calculates its
latency. It assumes that the superscripts indicate the loop
position in a nest of K loops, with i = 0 for the root and
k−1 for the innermost loop. Equation (3) should be applied
to all loops up to the penultimate one inclusive.

Li
L = TC i × (Li

I +Li+1
L +Li

O) (3)

where Li
L , T C i , Li

I , and Li
O represent the latency, trip count,

the cycle to start the child loop execution, and the cycle to
move the execution back to the parent, respectively. Li+1

L
is the child loop latency.

For the innermost loop in a nest hierarchy, i.e., i = k −1,
Equation (4) calculates its latency, representing the most
general case of the latency of a single loop.

Lk−1
L = (TC k−1 −1)× I I k−1 + (I Lk−1 −1)+M k−1 (4)

I L stands for loop iteration latency and is the latency of the
first iteration’s operations required to start the pipeline. M
matches the number of cycles from cycle zero of each it-
eration of the pipelined loop to cycle N−1 inclusive, being
N the cycle with the operation calculating the increment
of one of the canonicalized induction variables of the opti-
mized loop. Vitis HLS adds a canonical induction variable
to each loop flattened on top of the pipelined loop. The
canonicalized induction variable for cycle N corresponds
to this loop: the outermost of all those flattened on top of
the loop HLS will pipeline afterward. According to [20],
canonicalization modifies loop induction variables and
their calculations to ease analysis and transformations.

In the case of the latency of the non-pipelined innermost
loop of a nest hierarchy, I I = I L and M = 1, so that
Equation (4) can be written as Equation (5).

Lk−1
L = T C k−1 × I Lk−1 (5)

IX. IMPACT OF OPTIMIZATION CONFIGURATIONS ON DSE
This section discusses the impact of HLS optimizations
on the latency and area of our kernel’s compute function
(Section VI). Three experiment types reveal this impact:
(i) baseline experiment, without optimization, i.e., with
pragmas disabling HLS auto-pipeline, setting the reference
performance; (ii) experiments to evaluate the performance
improvement of a single atomic pragma in isolation from
others; and (iii) experiments to evaluate the effects of
non-atomic optimizations or the interplay of several prag-
mas. They aim to explore the design space by evaluating
different pragma locations and combinations, including

non-atomic optimizations, such as pipelining; their objec-
tive is not to support the findings and latency estimation
model presented in Sections VII and VIII, respectively. The
worst negative slack of the baseline kernel is +0.055 ns
and +0.032 ns, respectively, in Vivado 2022.2 and 2024.1.
The 41.82% decrease is consistent with a more pessimistic
model12

Anyway, in all cases below, our kernel is built with Vi-
tis 2022.2, target frequency 300 MHz, the platform xil-
inx_u50_gen3x16_xdma_5_202210_1 and trip counts TC 0 =
2, TC 1 = 3, TC 2 = 6, and T C 3 = 9.

A. Baseline testbench
The baseline experiment disables all optimizations and
does not encapsulate the core of computation within a
function call. Table I presents the results. The latency
of function compute, LF , is 2357 cycles. Since it is not
pipelined, the initiation interval equals the latency. The
calculations below, using Equations (2) to (5), are based
on values in Table I.

L3
L = T C 3 × I L3 = 9×7 = 63

L2
L = T C 2 × (L2

I +L3
L +L2

O) = 6× (1+63+1) = 390

L1
L = T C 1 × (L1

I +L2
L +L1

O) = 3× (1+390+1) = 1176

L0
L = T C 0 × (L0

I +L1
L +L0

O) = 2× (1176+2) = 2356

LF = (L0
I +L0

L) = 1+2356 = 2357 cycles

TABLE I: Latency and hardware resources without opti-
mizations. IL stands for iteration latency, II for initializa-
tion interval, and FF, LUT and DSP is the number of FPGA
flip-flops, look-up tables (LUT), and DSPs, respectively.

Function
Loop

Latency
(cycles)

IL
(cycles)

II
(cycles) FF LUT DSP

LF 2357 - 2357 1013 562 7
f0 2356 1178 -
f1 1176 392 -
f2 390 65 -
f3 63 7 -

The core of computation uses seven DSPs: three for l a×lb,
one for C × lc, and three for the product of C × lc and ld .

B. Flattening in Isolation
Table II summarizes the result of flattening at different
loop nest levels. Flattening simplifies the loop’s CU logic,
reducing FFs while increasing LUTs. Deeper isolated flat-
tening13 within the nest hierarchy results in lower latency
and a smaller increase in the total number of LUTs, though
the reduction in FFs becomes less significant. Flattening
multiple loops does not compromise FF reduction com-
pared to flattening a single loop (f0). Nonetheless, most
configurations increase LUTs to a greater extent, except

12Vitis 2023.2+ HLS updated the scheduler’s timing model to match
Vivado timing predictions, resulting in a more pessimistic delay model.

13Enabling flattening in just one loop is possible by deactivating its
upward effect with the pragma loop_flatten off in the parent loop.
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for the one that flattens f1 and f2, which offers the best
trade-off between latency and area.

TABLE II: Latency and hardware resources under isolated
flattening at different loop nest levels. HLS only flattens
the selected loops13. The column "Flattened Loops" lists
eliminated loops in parentheses. All loops in parentheses
are replaced by a single loop, and the loops in boldface
contain the flattening pragma. On the right-hand side of
the arrow are the resulting loops. The new loop’s name
is not representative of the names assigned by Vitis; their
purpose is to identify that they are new inferred loops.

Flattened
Loops

Latency
(cycles) FF LUT DSP

none (baseline) 2357 1013 562 7
(f0, f1) → f01 2353 854 609 7
(f1, f2) → f12 2345 958 584 7
(f2, f3) → f23 2285 959 578 7
(f0, f1, f2) → f012 2341 865 659 7
(f0, f1), (f2, f3) → f01, f23 2281 864 635 7
(f1, f2, f3) → f123 2273 857 586 7
(f0, f1, f2, f3)→ f0123 2269 878 700 7

C. Unrolling and Disabling Auto-Pipelining
Table III shows the effects of unrolling at different levels
in a loop nest and disabling auto-pipelining. It confirms
that the more loops HLS unrolls, the lower latency the
result has. Furthermore, the deeper the unrolled loops
were within the hierarchy, the lower latency and more
area the result had: Unrolling the whole innermost loop
achieved the best latency optimization yet also increased
area the most, compared to unrolling any other loop. The
same effect was noticeable in the other combinations.

TABLE III: Latency and hardware resources after complete-
unrolling at different levels of a loop nest. All experiments
unroll only the selected loops and disable auto-pipelining.

Unrolled Loops Latency
(cycles) FF LUT DSP

none (baseline) 2357 1013 562 7
f0 2354 942 760 7
f1 2133 1241 871 7
f2 2045 1331 1192 7
f3 629 2519 1240 20
f0+f1 2130 1270 1348 7
f0+f2 2042 1930 2091 7
f1+f2 2001 1716 2412 7
f0+f3 626 2753 1768 20
f1+f3 597 2956 2115 20
f2+f3 383 3733 3204 20
f0+f1+f2 1998 2516 4579 7
f1+f2+f3 341 6555 8075 20
f0+f1+f2+f3 331 11006 15433 20

Elements of each input vector enter the computation core
sequentially due to the FIFOs structure linking preprocess
and compute. This results in sequential execution despite
unrolling. Execution parallelism would be possible if the
input channels allowed multiple consecutive elements of

each input vector to enter compute in parallel as a vector
dataset. Moreover, increasing execution parallelism for dif-
ferent input elements of each input vector is more feasible
by unrolling only the innermost loop rather than a higher-
level loop. Doing the latter would cause this: HLS would
try to parallelize the execution of operations that might
work on data from different datasets, which did not reach
compute in parallel. Those operations might involve input
elements so distant in the input sequence that they belong
to different datasets, making parallelization infeasible.

Unrolling the innermost loop increased the number of
DSPs: HLS implemented the products in the computation
core with 20 DSPs. Otherwise, HLS used only 7 DSPs. Thus,
parallelizing the execution of the products for consecutive
vector elements consumed more DSPs than the baseline.
Despite expectations, loop unrolling did not always repli-
cate the HW of the loop body.

There was some replication in FFs and LUTs when un-
rolling only ancestor loops, but the number of DSPs
remained unchanged, indicating HLS reused the HW of
the unrolled loops body. For this reason, unrolling did not
work as expected in the aforementioned experiments.

To determine the optimality of default Vitis HLS behaviors,
the following paragraphs evaluate the effects of non-
atomic optimizations and pragma directive combinations.

D. Pipelining and Pipelining-Triggered Flattening

Pipelining the innermost loop achieved the best latency
among the experiments that pipelined only one loop,
as shown in Table IV. This setup’s area was the most
optimized, even though its latency did not improve sign-
ficantly. Table IV also presents the results of dFaP. The
deeper the pipelining, the greater the impact of pipelining-
triggered upward flattening on latency improvement, com-
pared to pipelining without the corresponding flattening14.
This makes sense; the deeper the pipelined loop, the
more ancestor loops HLS can flatten. Vitis HLS’s auto-
pipeline default behavior in perfect or semi-perfect loop
nests suggests that pipelining the innermost loop offers the
best trade-off between performance and area. However, it
is unclear if this holds without the performance boost of
pipelining-triggered flattening. We propose setup dFaP15

to test this. Pipelining the outermost loop improved la-
tency the most in this setup. However, it significantly
increased the area; higher pipelining within the nest un-
rolled more loops. Moreover, the substantial area increase
prevents this alternative from being considered, despite
the latency improvement. Hence, this setup is incomplete,
and combining it with other techniques is necessary. For
example, to allow tuples of multiple input elements of
each input vector to enter the kernel in parallel. The
best compromise between area and latency among the

14The experiments without flattening disable it with a pragma.
15dFaP disables flattening in an ancestor loop of the target loop of

pipelining or in the same one.
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mentioned experiments is pipelining the innermost loop,
without an abnormal area increase. Table IV shows this.
TABLE IV: Latency and hardware resources compar-
ing standard pipelining vs. dFaP, i.e., without auto-
flattening14. Latency Reduction compares flattened and
unflattened scenarios. The last row equals auto-pipelining.

Flattened
Loops

Pipeline
Loop

Latency
(cycles)

Latency
Reduction FF LUT DSP

enabled f0 334 7103 8249 26
dFaP f1 351 4870 3680 31enabled 335 5% 4872 3678
dFaP f2 407 3833 1729 34enabled 342 16% 3785 1812
dFaP f3 737 1245 744 7enabled 332 55% 1071 849

E. Unrolling-Triggered Flattening
Next, we evaluate whether it would make sense for Vitis
HLS to support an unrolling-triggered flattening. This
means automatic flattening after insertion of an unrolling
pragma, with both pragmas in different loops, auto-
pipeline disabled, and complete unrolling. This configura-
tion, labeled FaU, barely changed latency and the number
of FFs or LUTs, as shown in Table V.
Flattening did not enhance the parallelization effects of
unrolling because it occurred post-unrolling, in accor-
dance with finding F2. A hypothetical flattening before
unrolling would synthesize HW from a loop with a higher
TC, enabling greater unwinding and parallelization.

TABLE V: Comparison of latency and HW resources for
complete unrolling vs. FaU evaluated across all flattening
combinations in loops above the unrolled one(s) . Flat-
tening a single loop is achieved using combinations of
pragmas that enable or disable flattening. The loop’s tag
next to the configuration acronym indicates the flattened
loops. All configurations include one pragma disabling
pipelining, in any loop above those unrolled.

Unrolled
Loops

Flattened
Loops

Latency
(cycles) FF LUT DSP

f2 none 2045 1331 1192 7
FaU: (f0, f1) 2041 1332 1254 7

f3
none 629 2519 1240 20
FaU: (f0, f1) 625 2428 1297 20
FaU: (f1, f2) 617 2415 1229 20
FaU: (f0, f1, f2) 613 2437 1329 20

f2+f3 none 383 3733 3204 20
FaU: (f0, f1) 379 3732 3240 20

F. Pipelining-Triggered Optimization: Flattening vs. Un-
rolling
We propose testing whether replacing pipelining-triggered
flattening with pipelining-triggered unrolling improves re-
sults. This configuration, similar to UaP with complete
unrolling and both pragmas in different loops, disables

flattening above the pipelined loop. Table VI shows no
latency improvement over standard pipelining, as compute
does not receive multiple input vector elements in parallel.

TABLE VI: Comparison of latency and hardware resources
of UaP plus disabling pipelining-triggered flattening vs.
P (first row in table, which coincides with last row in
Table IV). In all scenarios, pipelining is applied in the
innermost loop, f3. The loop’s tag next to the configuration
acronym indicates the loops where unrolling is applied.

Unrolled
Loops

Flattened
Loops

Latency
(cycles) FF LUT DSP

none yes 332 1071 849 7
UaP: f0

no

698 1594 1265 7
UaP: f1 705 2319 1663 7
UaP: f2 695 3683 2808 7
UaP: f0+f1 690 3336 2831 7
UaP: f1+f2 685 9112 6951 7
UaP: f0+f1+f2 684 17722 13535 7

G. Encapsulating Loops in a Function
The experiments evaluate configurations that replace the
innermost loop body with a function call (encapsulation).
Table VII summarizes the results, denoted by IDs with the
suffix E followed by a number.
We focus on the most effective configuration identified for
the case without function encapsulation, i.e., pipelining
the innermost loop (experiment E1). It worsened latency
from 2357 to 3005 cycles (a 27 % increase) due to a 9-
cycle latency of innermost loop iterations, 2 cycles more
than the baseline’s latency. Transitioning execution into
and out of this non-pipelined module takes one cycle each.
It also increased the number of DSPs, FFs, and LUTs by
0 %, 3 %, and 14 %, respectively, compared to the baseline.
This area increase results from invoking a function, which
adds a new RTL module with its corresponding FSM.
HLS could not reduce latency below six cycles because
of a carried dependence constraint between consecutive
function calls. Each call takes the value calculated by the
previous call. Hence, eliminating function encapsulation
or function inlining might eliminate these constraints and
improve the latency after pipelining. Data dependencies
between successive calls at the same hierarchy level would
enable this improvement. Our example shows this.
Experiments E2 to E9 show the combined effects of
different pragmas, including function instantiation. They
aim to identify pragma combinations that achieve HW
replication of the computation core and increase HW
parallelism without pipelining or auto-pipelining.
Instantiating the function without enabling unrolling did
not create different instances, as illustrated in E2; area and
latency were unchanged. Additionally, E3 shows that allo-
cating multiple functions without unrolling the innermost
loop was also insufficient. Even though this test slightly
increased the number of FFs, this did not indicate HW
replication. Latency remained virtually unchanged.
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Unrolling a loop that calls a function eliminated the loop
without instantiation, allocation, or inlining pragmas, as
shown in E4. Latency decreased slightly, and the number
of FFs and LUTs barely increased. Despite unrolling, HLS
did not replicate the RTL function module for each call.
This required either instantiation or allocation pragmas.
Unrolling the innermost loop and function inlining, E5,
did increase the area significantly. Inlining eliminated the
function, allowing HLS to replicate the HW implementing
the function’s code, the core of computation. Aditionally,
unrolling noticeably decreased the latency.
E6 unrolls the innermost loop and instantiates a function
parameter, whose value varies with each innermost loop
iteration. HLS created different function copies, each op-
timized for its respective call. Although latency improved
visibly, the number of FFs and LUTs increased significantly.
E7 to E9 evaluate configurations with unrolling and allo-
cation, varying the number of allocated instances (L). They
evaluate the effect of allocation limits on HW replication.
The improvement remained consistent regardless of the
limit. However, the area increased based on the allocation
limit. When L=2, HLS created an additional HW function
with the area increase shown in E7. When L = 5, E8, and
L = 9, E9, HLS created four and eight additional functions,
respectively, compared to L = 2. Compared to the baseline,
the area growth for L = 5 and L = 9 was approximately
four and eight times that of L = 2, respectively. Moreover,
the increase in DSPs matched the number of additional
function copies excluding the original one. Hence, lower
instantiation limits result in fewer function copies. Addi-
tionally, the evident area increase with allocation limits of
two or more indicates that HLS optimizations produced
multiple function copies, one for each function call.
In summary, inlining offered the best performance-area
trade-off among the configurations in Table VII.

TABLE VII: Latency and area in setups with unrolling,
function allocation and instantiation (no pipelining).

ID

U
nr
ol
le
d
Lo
op

Al
lo
ca
ti
on

In
lin
e

In
st
an
ti
at
io
n

Re
pl
ic
at
io
n

La
te
nc
y
(c
yc
le
s)

FF LUT DSP

E1
- no no

no no 3005 1046 643 7
E2 yes 0% 0% 0% 0%
E3 L=9 no no 1% 1% 0% 0%
E4

f3

no
no no no -12% 1% 15% 0%

E5 yes yes -79% 141% 93% 186%
E6 no yes yes -23% 269% 355% 0%
E7 L=2

no no yes
-12% 86% 83% 100%

E8 L=5 -12% 340% 281% 400%
E9 L=9 -12% 674% 536% 800%

Figure 7 shows HW resources, measured using the number
of FFs of the implementation as a proxy, vs. the per-

formance, measured as the circuit latency in cycles for
the 43 experiments in Tables II to VI. It distinguishes the
results per table along with the Pareto front. Three non-
dominated implementations in the Pareto front achieve
the best design based on these metrics (sorted from
the highest number of FFs to the lowest): (1) unrolling
f0+f1+f2+f3 in Table III, (2) pipelining f3 in Table IV,
and (3) unrolling f1+f2+f3 in Table III. It also illustrates
that although there is not a significant variation among
latencies in the experiments in Table VI, there is a clear
difference in their number of FFs. This observation applies
to the experiments in Table IV as well, except for the
penultimate experiment of this table. On the other hand,
the optimizations in Table III and Table V present variance
in the number of FFs and circuit performance. Finally, the
experiments in Table II show marginal variation in circuit
performance but are the best in HW resources, as stated
in the following paragraph regarding Figure 8. Based on
these results, unrolling or auto-pipelining achieves the best
trade-off between latency and number of FFs.

Fig. 7: FFs vs. Circuit latency for all experiments.

Figure 8 shows the number of LUTs vs. the number of
FFs. The linear regression analysis (r 2 = 0.73) indicates
that FFs mostly explain the variation in LUTs. Neverthe-
less, the variation in the number of LUTs for a given
number of FFs suggests potential for DSE to optimize
circuit resources. There are six non-dominated designs
(sorted from the highest number of LUTs to the lowest):
(1) baseline, (2) flatten (f2, f3), (3) flatten (f1, f2), (4) flatten
(f1, f2, f3), (5) flatten (f0, f1) (all of them in Table II), and
(6) unroll f1+f2+f3. Flattening different loops achieves the
best HW resource efficiency, although the optimal number
of flattened loops should be determined empirically. All
other optimizations focus on improving circuit latency,
which in turn increases resource use.

X. CONCLUSIONS
Custom hardware (HW) accelerators, designed using high-
level synthesis (HLS) methodologies, can accelerate com-
putationally expensive sections of software applications.
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Fig. 8: Number of LUTs vs. Number of FFs for all the
experiments. The color bar represents latency in cycles.

Mastery of the implementation of the HLS methodology
and optimizations in the tool Vitis HLS improves process
productivity and shortens the design cycle.

We evaluated 150+ setups to understand pragma applica-
tion and interactions, model Vitis HLS’ latency estimation,
and measure their impact on latency and area.

These pragmas guide RTL generation using three paral-
lelization techniques: unrolling, pipelining, and dataflow.
Ideally, the C/C++ coding style aligns with Xilinx recom-
mendations, with perfect or semi-perfect loops, and no
interloop dependencies. In this scenario, a unique pragma
scenario provides the best results. Otherwise, designers
can combine pragmas to achieve optimal HW design.

The default pipelining behavior, auto-pipelining, achieves
the best balance between performance and area. Never-
theless, unrolling the innermost loops is the second-best
approach, after pipelining. On the other hand, loop flat-
tening optimizes resources and marginally reduces latency.

Nevertheless, for a given code, multiple implementations
can exist with up to two metrics fixed and still a significant
variance in the third. Hence, implementations with the
same latency can have different numbers of LUTs or FFs,
with up to 2× variance in HW resources. Likewise, multiple
latencies can exist for a given number of FFs or LUTs, with
some implementations having up to 2.5× more LUTs than
others with the same FFs and similar latencies. Hence,
decreasing FFs usually tends to reduce LUTs and vice
versa due to their correlation. However, there are still
different implementations with the same number of FFs
and a significant variability in LUTs. This variability of one
metric, even preserving the other two, requires DSE for
optimal implementation; designers should not settle for
the first candidates that optimize only one figure of merit.

Decreasing design area can indirectly improve perfor-
mance for multi-kernel applications by allowing more

kernels in the FPGA, thus minimizing reconfigurations.
All in all, pipelining the innermost loop, as suggested in the
Xilinx user guides, and avoiding function encapsulation of-
fers the best compromise between area and performance.
Future research could develop a tool for automatic DSE
and address why unrolling non-innermost loops in a
perfect loop did not replicate DSP slices.

XI. DATA AVAILABILITY
The benchmarks used in this paper will be accessible after
emailing any of the following authors: jkoronis@ucm.es or
ogarnica@ucm.es. Access to the data will be granted to
researchers from public research institutions (universities
and research institutes) upon commitment to reference
the data.
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