
1

Enhancing Delay-driven LUT Mapping with
Boolean Decomposition

Alessandro Tempia Calvino, Graduate Student Member, IEEE, Giovanni De Micheli, Life Fellow, IEEE
Alan Mishchenko, Senior Member, IEEE and Robert Brayton, Life Fellow, IEEE

Abstract—Ashenhurst-Curtis decomposition (ACD) is a decom-
position technique used, in particular, to map combinational logic
into lookup tables (LUTs) structures when synthesizing hardware
designs. However, available implementations of ACD suffer from
excessive complexity, search-space restrictions, and slow run time,
which limit their applicability and scalability. This paper presents
a novel fast and versatile technique of ACD suitable for delay
optimization. We use this new formulation to compute two-level
decompositions into a variable number of LUTs and enhance
delay-driven LUT mapping by performing ACD on the fly.
Compared to state-of-the-art technology mapping, experiments
on heavily optimized benchmarks demonstrate an average delay
improvement of 12.39%, and area reduction of 2.20% with
affordable run time. Additionally, our method improves 4 of the
best delay results in the EPFL synthesis competition without
employing design-space exploration techniques. Moreover, we
use the new formulation to compute exact decompositions into
fixed LUT cascade structures of two LUTs, which have efficient
implementations in the architecture of AMD FPGAs. Compared
to the state-of-the-art method, this new formulation leads to an
average reduction of 6.22% in delay, 3.82% in area, and 3.09%
in edge count for better run time.

Index Terms—Logic synthesis, Boolean decomposition, tech-
nology mapping, FPGA

I. INTRODUCTION

F IELD-Programmable Gate Arrays (FPGAs) are inte-
grated circuits with configurable logic blocks and pro-

grammable interconnects. Unlike application-specific inte-
grated circuits (ASICs), which are designed for a specific
application and have a fixed configuration, FPGAs can be
programmed many times, which comes at the cost of lower
power-performance-area (PPA). FPGAs are widely used for
rapid prototyping, in low-volume applications, and for hard-
ware acceleration of specific tasks.

Logic synthesis for hardware designs intended to run on
FPGAs shares similarities with those for ASICs, but the
target primitive is a k-input look-up-table (LUT), capable of
implementing any Boolean function up to k inputs. Specifi-
cally, this paper focuses on mapping technology-independent
combinational logic into networks composed of k-LUTs.

State-of-the-art technology mapping into LUTs is performed
through local substitutions applied to an initial graph represen-

This research was supported in part by the SNF grant “Supercool: Design
methods and tools for superconducting electronics”, 200021 1920981, in part
by the SRC contract 3173.001 “Standardizing Boolean transforms to improve
quality and runtime of CAD tools”, and in part by Synopsys Inc.

Alessandro Tempia Calvino and Giovanni De Micheli are with the
Integrated Systems Laboratory, EPFL, 1015 Lausanne, Switzerland. Alan
Mishchenko and Robert Brayton are with the Department of EECS, University
of California, Berkeley, USA.

tation, called the subject graph. The drawback of this approach
is that the technology-independent optimization step and the
technology mapping step are separated. Consequently, the
impact of optimization on the quality of the final LUT network
is hard to predict before mapping. Delay-optimal mapping for
a fixed subject graph is feasible in polynomial time [1]. Area-
optimal mapping is NP-hard [2]. Specifically, the structure of
the subject graph highly influences the mapping quality. This
is known as structural bias. To mitigate structural bias, the
known methods compute structural choices for the subject
graph and use them during mapping [3], [4], or collapse
and decompose parts of the graph during mapping [5]–[7].
However, exact area and delay optimization during LUT map-
ping remain NP-hard [8], [9]. In this work, we use Boolean
decomposition to enhance delay-driven LUT mapping.

On another note, the performance of modern FPGAs is
limited by programmable interconnect. Specifically, the inter-
connect delay can be up to 5 times the intrinsic delay of a LUT
because wires are routed through multiple switch boxes and
routing channels. One solution adopted by FPGA vendors is
to supplement programmable interconnect with non-routable
connections between LUTs, creating LUT structures such as
LUT cascades [10]. However, existing placement algorithms
struggle to effectively utilize these connections because this
requires introducing LUT structures after LUT mapping. Al-
ternatively, Boolean decomposition has emerged as an efficient
way of generating LUT structures during mapping [11].

The Ashenhurst-Curtis decomposition (ACD) [12], [13],
also known as Roth-Karp decomposition [14], is a powerful
technique to decompose a Boolean function into a set of sub-
functions and a composition function with reduced support.
ACD finds applications in logic optimization and technology
mapping. The traditional formulation of ACD breaks the input
variables into two groups: the bound set (BS) and the free set
(FS). Other approaches to ACD [15] allow for a shared set (SS)
when some functions in terms of the BS variables are buffers.
The larger the SS size, the fewer sub-functions are required.
For instance, Figure 1 shows an ACD of a function with BS,
FS, and SS, resulting in three 5-input LUTs. Conventional
methods leverage binary decision diagrams (BDDs) [16] to
perform ACD [15], [17], [18]. More recent approaches use
truth tables for functions up to 11 or 16 inputs [11], [19].

This paper has two main contributions. First, we revisit the
formulation of ACD with SS to enhance its computationally
efficiency in LUT mappers and post-mapping resynthesis
engines performing delay optimization. Our algorithm is truth-
table-based and flexible in the number of FS, BS, and SS

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

2

Bound set Shared set Free set

L1

L2 L3

x0x1x2x3x4 x0x1x2x3 x5 x6x7

Fig. 1. ACD of an 8-input Boolean function into three 5-input LUTs with a
5-variable bound set (BS), a 1-variable shared set (SS), and a 2-variable free
set (FS).

variables, and in the number of BS functions. Our ACD runs
up to 2x faster, compared to [11], and up to 80x faster,
compared to [19], when performing decompositions into the
LUT structure ”66” composed of two 6-LUTs. Furthermore,
the proposed method finds considerably more solutions, which
translates into better quality. Second, we use ACD for the
delay optimization of LUT networks. The idea is to compute
functional decompositions using timing-critical variables in
the FS and the rest of the variables in the BS and SS. This
method is more general than cofactoring w.r.t. late arriving
variables using Shannon expansion [20] and leads to improved
quality of results. We integrate our ACD into the state-of-the-
art LUT mapper for delay optimization. To our knowledge,
this is the first practical and scalable work that uses ACD
for delay-driven LUT mapping. Moreover, we utilize our new
ACD approach to optimally map logic into LUT structures
implementable using non-routable connections.

We experimentally evaluate the use of ACD for LUT map-
ping by comparing the results with state-of-the-art methods:

1) We show that the proposed ACD method has a higher
decomposition success ratio, up to 32.58% more than
state-of-the-art with a competitive run time.

2) We demonstrate that mapping with ACD can efficiently
mitigate the structural bias and considerably reduce the
delay. We compare the traditional LUT mapper in ABC,
the LUT-structure mapper in ABC, and the proposed
mapper with integrated ACD. We show that mapping with
ACD notably outperforms the other mappers in delay by
7.52% on average, also when using structural choices [4].
Moreover, we show that an additional mapping round
using the network obtained by ACD as a structural choice
can further improve the delay, compared to the baseline,
by 12.39%, with a surprising area reduction of 2.20%.

3) We present 4 new best results in the EPFL competition.
These results have been obtained using delay-oriented
mapping with ACD and without employing design-space
exploration (DSE) methods. Hence, we expect even better
results by using LUT mapping with ACD in a DSE tool.

4) We use this new ACD formulation to compute mappings
into LUT structures composed of 2 LUTs with a non-
routable connection between them. Compared to the state-
of-the-art approach [11], our method reduces the average
delay, area, and edge count by 6.22%, 3.82%, and 3.09%,

x2 x1 x0 f

0 0 0 1
0 0 1 0
0 1 0 1
0 1 1 0
1 0 0 1
1 0 1 1
1 1 0 0
1 1 1 1

f = 10110101

fx̄1x̄2

fx1x̄2

fx̄1x2

fx1x2

x0 ↔ x2 x0 x1 x2 f

0 0 0 1
0 0 1 1
0 1 0 1
0 1 1 0
1 0 0 0
1 0 1 1
1 1 0 0
1 1 1 1

f = 0xA7

fx̄0x̄1

fx̄0x1

fx0x̄1

fx0x1

Fig. 2. Truth table representations and their encoding, cofactor extraction w.r.t.
the two most significant variables, and variable swapping of x0 with x2.

respectively, with better run time. In particular, this new
formulation is exact, i.e., it always guarantees a solution
for functions decomposable into 2 LUTs.

This paper is organized as follows. Section II provides
the necessary background on logic networks, Boolean de-
composition, and technology mapping. Section III introduces
previous works on Boolean decomposition and LUT mapping.
Section IV presents our ACD approach and its properties.
Section V-B describes the integration of ACD into a LUT
mapper for performance improvement. Section VI discusses
the usage of our ACD formulation to leverage non-routable
connections. Section VII presents experimental results and
their interpretation. Finally, Section VIII concludes the paper.

II. PRELIMINARIES

This section introduces the basic notations and background
related to logic networks, decomposition, and LUT mapping.

A. Definitions

A Boolean function is a mapping from a k-dimensional
Boolean space into a 1-dimensional one: {0, 1}k → {0, 1}.

A truth table representation of a k-input Boolean function
f : {0, 1}k → {0, 1} can be encoded as a bit string b =
bl−1 . . . b0, i.e., a sequence of bits, of length l = 2k. A bit
bi ∈ {0, 1} at position 0 ≤ i < l is equal to the value taken
by f under the input assignment a⃗ = (a0, . . . , ak−1) where

2k−1 · ak−1 + · · ·+ 20 · a0 = i. (1)

The positive cofactor of a Boolean function f with respect
to a variable xi, represented as fxi

, is the Boolean function
obtained by setting xi = 1. Similarly, the negative cofactor
fx̄i

is the Boolean function obtained by setting xi = 0.
It is common to refer to the leftmost input column of a truth

table as the most significant variable (ak−1) and the rightmost
input column as the least significant variable (a0). A swap of
two variables alters the truth table by exchanging the location
of the corresponding two-variable cofactors.

Figure 2 depicts two truth tables represented as bit strings,
one in binary and one in hexadecimal. Notably, the rightmost
truth table can be derived from the leftmost one by swapping
variables x0 and x2. Marked next to both truth tables are the
cofactors with respect to two most significant variables.

A completely specified Boolean function f essentially de-
pends on a variable v if there exists an input combination,

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

3

such that the value of the function changes when the variable
is toggled (∂f∂v = 1). The support of f is the set of all variables
on which function f essentially depends. The supports of two
functions are disjoint if they do not have shared variables.
A set of functions is disjoint if their supports are pair-wise
disjoint.

A binary decision diagram (BDD) [16] is a logic representa-
tion based on the if-then-else operator. Each node in a BDD is
associated with a variable and implements a cofactoring step.
The root of a BDD is a node representing the given function,
and the leaves are constant functions true and false. Each node
is connected to two other nodes whose functions represent
cofactors of the given function. The term BDD typically refers
to reduced ordered BDD (ROBDD), which is a canonical
representation for a given variable order and a set of reduction
rules.

A Boolean network is modeled as a directed acyclic
graph (DAG) having nodes associated with Boolean functions.
The sources of the graph are the primary inputs (PIs), the sinks
are the primary outputs (POs). For any node n, the fanins of
n is a set of nodes driving n, i.e. nodes that have an outgoing
edge towards n. Similarly, the fanouts of n is a set of nodes
driven by node n, i.e., nodes that have an incoming edge
from n. A k-LUT network is a Boolean network composed
of k-input lookup tables (k-LUTs), capable of realizing any
k-input Boolean function. An and-inverter graph (AIG) [21] is
a Boolean network where nodes are 2-input ANDs and edges
may implement inverters.

A cut C in a Boolean network is a pair (n, K), where n is
the node, called root, and K is a set of nodes, called leaves,
such that 1) every path from any PI to node n passes through
at least one leaf and 2) for each leaf v ∈ K, there is at least
one path from a PI to n going through v and not through
another leaf. The size of a cut is the number of its leaves. A
cut is k-feasible if its size does not exceed k.

B. Boolean decomposition
Boolean decomposition refers to the process of break-

ing down a Boolean function into simpler components.
Boolean decomposition produces a Boolean network with POs
functionally equivalent to the original function. The most
generic decomposition is the Ashenhurst-Curtis decomposi-
tion (ACD) [12]–[14]. The ACD of a single-output Boolean
function f can be expressed as follows:

f(x⃗bs, x⃗ss, x⃗fs) = g(⃗h(x⃗bs, x⃗ss), x⃗ss, x⃗fs), (2)

where x⃗bs is the bound set (BS), x⃗ss is shared set (SS),
and x⃗fs is the free set (FS). These sets are disjoint variable
subsets, which together form the support of f . The function
h⃗ may be multiple output with the number of outputs less
than the BS size. The single-output functions in h⃗ are referred
to as BS functions. The function g is referred to as the
composition function. When decomposing into k-LUTs, the
composition function is typically chosen to fit into one k-
input LUT. Figure 1 shows an ACD of an 8-input function
into three 5-input LUTs with a 5-variable BS, a 1-variable
SS, and a 2-variable FS. The decomposition generates two BS
functions (L2, L3) and a composition function (L1).

The disjoint-support decomposition (DSD) [22] is a decom-
position where the set of nodes have disjoint support. Hence,
the Boolean network generated from DSD is always a tree.
ACD generates a DSD decomposition when x⃗ss = ∅ and BS
functions have disjoint support.

The Shannon decomposition is a Boolean decomposition
based on the Shannon expansion:

f = xfx + x̄fx̄. (3)

The result of applying the Shannon decomposition to all
variables and merging identical cofactors, is a BDD.

C. FPGA technology mapping

LUT mapping is the process of expressing a Boolean
network in terms of k-input lookup tables (k-LUTs). Before
mapping, the network is represented as a k-bounded Boolean
network called the subject graph, which contains nodes with
a maximum fanin size of k. The AIG is the most common
subject graph representation. The subject graph is transformed
into a mapped network by applying local substitutions to
sections of the circuit defined by cuts computed using cut enu-
meration [23]. A LUT mapper computes a mapping solution,
called cover, by selecting a subset of the cuts that cover the
subject graph while minimizing a cost function. State-of-the-
art LUT mappers compute cuts and refine the cover in several
mapping passes using heuristics based on delay, area, and edge
count. For further details on LUT mapping, refer to [24].

III. RELATED WORK

A. Boolean decomposition

Traditionally, Boolean decomposition is implemented using
BDDs [15], [17], [18], [25], derived by applying the Shannon
decomposition to all variables in a given order and using
reduction rules. Typically, multiple variable orderings are
explored to find a partition of variables into bound set (BS)
and free set (FS) and perform a support-reducing ACD [18].
However, algorithms that perform ACD suffer from slow run
time and poor performance on large functions. To enhance
efficiency, conventional methods often restrict decomposition
to a limited set of primitives, such as 2-input operators and
multiplexers [26], [27], and compute only disjoint support
decompositions [22], [28].

Recent advancements have leveraged truth tables for ACD
up to 16 variables, either by replicating variable re-ordering
and size minimization of BDDs without explicitly constructing
one or by computing a DSD that minimizes the required
number of LUTs. Specifically, in [11], the authors use DSD
and a heuristic variable re-ordering to find an ACD into a
structure of 2 or 3 LUTs with non-routable connections. This
method limits the shared set to at most one variable. In [19],
the authors use ACD in post-mapping resynthesis when logic
cones composed of several LUTs are collapsed into single-
output Boolean functions and re-expressed using fewer LUTs
by DSD and the Shannon expansion.

In this work, we address the limitations of previous ACDs.
Our method is based on truth tables and does not have
limitations on the number of LUTs and the size of SS. It

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

4

produces better quality of results and runs up to 2x faster
than other more constrained implementations in ABC [11].
Moreover, our ACD does not rely on BDD heuristics or DSD
with primitives but performs a more complete search.

B. LUT mapping

State-of-the-art LUT mapping for FPGAs relies on cut
enumeration [23] followed by graph covering [1], [24]. Depth-
optimal mapping for a k-bounded network is solvable in
polynomial time [1], while area-optimal mapping is proven to
be NP-hard [2]. The structure of the subject graph influences
the structure of the mapped network to a large extent. This is
known as structural bias. Mitigating structural bias is essential
to improve the mapping quality.

Several methods derive an LUT network by applying flavors
of Boolean decomposition to the BDD of the original func-
tion [7], [18], [29]. Despite having a lower structural bias,
these approaches are run-time intensive and limited to small
functions, for which BDDs can be constructed. In practice,
they rarely work for functions with more than 16 inputs.

To scalably reduce structural bias, previous work adopted
different techniques. In [3], [4], structural bias is reduced
by accumulating structural choices for the subject graph and
using them during mapping. In [5], [6], [11], decomposition
into k-LUTs is performed during technology mapping. In
particular, the method in [11] integrates ACD into k-LUT map-
ping to map logic into non-routable LUT structures composed
of 2 or 3 LUTs. The approach extracts combinational logic
cones with more than k inputs and decomposes them on the
fly.

In this work, we perform on-the-fly decomposition similar
to [11] but with two main differences. First, we utilize a more
flexible and expressive ACD formulation. Second, our method
can be customized for delay minimization.

IV. IMPROVEMENTS TO ACD

This section discusses a fast and versatile truth-table-based
implementation of ACD with shared set for single-output
functions. We propose several enhancements that make ACD
readily applicable in LUT mappers and resynthesis methods.
Figure 3 illustrates the ACD computation. The BS, SS, FS, and
the number of BS functions used are flexible and determined
during the decomposition. The composition function (L1) is
implemented as a multiplexer controlled by the outputs of the
BS functions and the shared set. The FS functions, FS (gi),
drive the data inputs of the multiplexer. These functions
become part of the composition function.

In this section, we first review the properties of the proposed
ACD, showing that it is as generic as the original definition
in [12]–[14] (Section IV-A). Then, we show how to efficiently
check the existence of a feasible ACD and divide variables into
three sets: FS, BS, and SS (Section IV-B). Next, we show how
to compute the decomposition while minimizing the number
of BS functions and their support (Section IV-C). Finally,
we discuss an alternative method to maximize the number of
variables in the shared set (Section IV-D).

00 01 10 11

f

L1

Bound set Shared set Free set

L2

g0 g1 g2 g3

Fig. 3. Illustrating the AC decomposition of a Boolean function.

A. Properties of ACD

First, we formalize the definition of ACD and discuss its
properties. Given the ACD shown in Figure 3 and the disjoint
sets of variables x⃗bs, x⃗ss, x⃗fs, we name

h⃗(x⃗bs, x⃗ss) = (h0(x⃗bs, x⃗ss), . . . , hv−1(x⃗bs, x⃗ss)) (4)

the set of bound set functions of size |⃗h| = v. In Figure 3, h⃗
has size v = 1 and is represented by L2. In Figure 1, h⃗ has
size v = 2 and is represented by L2 and L3. An ACD can be
expressed by Equation 2. In Figure 3, L1 implements function
g as a multiplexer with M select lines connected to functions
in h⃗ and variables in x⃗ss, such that M = v + |x⃗ss|. An input
assignment to the select lines of g selects a function gi(x⃗fs)
where 0 ≤ i < 2M .

We demonstrate that our ACD decomposition is generic and
includes other formulations, such as the Shannon decomposi-
tion. Let us represent the function g as a ROBDD ordered with
variables h⃗ and x⃗ss located close to the root, while variables
x⃗fs are found close to the leaves. Let us draw a cut line in
the ROBDD, such that nodes are partitioned into two disjoint
sections: one dependent on h⃗ ∪ x⃗ss variables (denoted by α),
and one dependent on x⃗fs variables (denoted by β). In our
decomposition, α is implemented by the multiplexer of g, and
β is implemented by the FS functions gi. In particular, the
number of nodes in β at the interface of the cut is equivalent to
the number of unique gi functions. Notably, we can extract β
by drawing a cut in the ROBDD of f , with x⃗fs variables close
to the leaves, separating x⃗fs from x⃗bs ∪ x⃗ss (see, e.g., [29],
[30]).

Since in our representation of ACD function g implements
a partitioned BDD, g is functionally complete, and ACD
can implement any decomposable function. Moreover, the
Shannon expansion (Equation 3) where x is a control input
of the multiplexer, can be represented by ACD as follows:

f = fxfx̄1 + fxf̄x̄x+ f̄xfx̄x̄+ f̄xf̄x̄0, (5)

where x is a FS variable, fx and fx̄ are BS functions, and FS
functions gi are 1, x, x̄, and 0.

Definition 1: Variables in the SS that are not used by BS
functions are called independent shared set variables (ISS

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

5

variables). Conversely, those that are used by BS functions are
defined as dependent shared set variables (DSS variables).

According to the ACD definition in Equation 2, ISS vari-
ables would belong to the FS rather than the SS, since
they are not in the support of functions in h⃗. However,
in our decomposition, ISS variables serve as controls for a
multiplexer, while the FS variables provide support for the FS
functions, which feed into the data inputs for the multiplexer.
We demonstrate that our definition is equivalent to the original
one, i.e., if a decomposition with ISS variables in the SS exists,
it also exists with ISS variables in the FS.

Theorem 1. Let x⃗ss = x⃗iss ∪ x⃗dss be an SS defined
as the union of two disjoint sets: one of independent
(x⃗iss) and one not independent (x⃗dss) SS variables. Then,
f(x⃗bs, x⃗ss, x⃗fs) = g(⃗h(x⃗bs, x⃗dss), x⃗iss ∪ x⃗dss, x⃗fs) can be
written as g′(⃗h(x⃗bs, x⃗dss), x⃗dss, x⃗fs ∪ x⃗iss).

Proof. Let us suppose that x⃗iss contains a single variable a.
Function g is implemented as a multiplexer of M select lines
connected to h⃗, x⃗dss, and a, and 2M data inputs functions
{g0, · · · , g2M−1}. Then, each cofactor of g with respect to
h⃗ ∪ x⃗dss variables is a function in the form ġ(a, x⃗fs) = a ·
gi(x⃗fs) + ā · gj(x⃗fs) with 0 ≤ i < j ≤ 2M − 1. Since the
number of ġ cofactors cannot be larger than 2M−1, f can
be decomposed into the form f = g′(⃗h(x⃗bs, x⃗dss), x⃗dss, x⃗fs∪
{a}) with variable a in the free set. The generic case is proved
by induction. ■

Finally, we state a theorem used in Section V to conduct
the search for a feasible decomposition.

Theorem 2. If a decomposition of function f into 2 levels
of k-LUTs with P variables in the free set does not exist, f
cannot be decomposed with P ′ > P variables in the free set.

Proof. Let us suppose that a decomposition exists for P ′ > P
and does not exist for P . The decomposition with P ′ involves
at most k−P ′+1 < k−P +1 LUTs. This is a contradiction
of the principles of information theory since a decomposition
using P ′ has less information encoding than the one using
P . ■

B. Finding a feasible decomposition

After defining the properties of ACD, in this section we
present an efficient method to check the existence of a Boolean
decomposition and find an assignment of support variables
to the FS and the BS (and SS). In particular, we focus on
decomposition into a two-level k-input LUT structure. For
simplicity, in this section, we include the SS variables in
the BS.

The first step to derive a decomposition is to partition
variables into FS and BS. Given a truth table, our approach
enumerates different free sets. Let N be the number of
variables in the support of the function to decompose. Let P be
the number of variables to consider in the FS. The remaining
N − P variables are considered in the BS. The number of
different free sets is

(
N
P

)
. Regarding the choice of value P

when searching for a feasible two-level decomposition, for
an N -input function and k-input LUTs, it is convenient to

consider (N−k) variables in the FS, so that at most k variables
are considered in the BS. For instance, when N = 8 and
k = 6, we can choose P = 2 and evaluate 8 · 7/2 = 28
different 2-variable free sets.

For each FS, the truth table is transformed to have the FS
variables as the least significant ones. The variable reordering
is performed using a dedicated procedure, which swaps two
variables at a time. Note that when enumerating all the free
sets, the first FS composed of the P least significant variables
in the support of the function does not need variable swapping,
since the original truth table already reflects this order. Then,
every consecutive FS can be derived from a previous FS by
swapping one variable in x⃗fs with one in x⃗bs. The complexity
to explore all the FS is of

(
N
P

)
swap operations. Figure 2 shows

how a variable swap affects the truth table.
Each input assignment to the BS variables selects one P -

input function in terms of the FS variables. Specifically, each
P -input function is a cofactor with respect to variables in x⃗bs.
Given a truth table with this variable ordering, FS functions
are easily computed by extracting groups of 2P bits at i ·
2P offsets with i ∈ [0, 2(N−P)). Informally, FS functions are
bit-strings positioned next to each other in the bit-string of
the truth tables. Figure 2 graphically depicts the extraction of
cofactors with respect to the two most significant variables.

Example 1: Consider a 6-variable function represented in
hexadecimal as the truth table f = 0x8804800184148111.
Assume that the FS variables are the two least significant
variables and the BS variables are the four most significant
ones. The functions in terms of FS variables have truth tables
with 2P = 4 bits. There are 2(N−P) = 16 of these functions,
corresponding to hexadecimal digits in the truth table (0x8,
0x8, 0x0, 0x4, etc). △

The target function can be realized using M bound set func-
tions if the number of unique FS functions, known as column
multiplicity µ, does not exceed 2M , hence M ≥ ⌈log2(µ)⌉. If
P +M ≤ k, the composition function fits into one k-LUT.

Example 2: Continuing Example 1, there are 16 FS func-
tions, of which only 4 are unique. The FS functions are 0x8,
0x0, 0x4, and 0x1. Hence, the column multiplicity µ = 4,
which requires M = ⌈log2(4)⌉ = 2 or more BS functions.
Hence, this partition of variables into FS and BS produces
a feasible support-reducing decomposition into 4-input LUTs.
Using Figure 3, ACD assigns FS functions to gi. Then, two
BS functions of at most 4 inputs are necessary to select the
correct FS function. △

We employ the enumeration of free sets while counting the
number of unique cofactors to check if a support-reducing
decomposition exists. In practice, a sufficient condition for a
2-level decomposition to exist, is to have M + P ≤ k and
N − P ≤ k, i.e., the composition function is k-feasible, and
the number of remaining variables in the BS does not exceed
k. However, a decomposition could have N − P > k and k-
feasible BS functions, as shown in Figure 1. In this case, it is
not sufficient to partition variables into FS and BS to guarantee
a 2-level decomposition (unless there are ISS variables that can
be moved to the FS, by Theorem 1, to make N−P ≤ k true).
Consequently, each potential decomposition with N − P > k
and P + M ≤ k, similar to the one in Figure 1, must be

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

6

checked to be 2-level decomposable by computing minimal-
support BS functions as shown in Section IV-C. Due to this
additional computation, the latter ACD is often too slow to be
used in mainstream LUT mappers or resynthesis engines.

After partitioning variables into FS and BS and computing
the corresponding unique FS functions, our method uses the
techniques in Section IV-C to produce a decomposition while
minimizing the number of BS functions and their support.

C. Functional encoding and support minimization
Once a partition of variables into FS and BS with a feasible

decomposition is found, the BS functions are extracted by
assigning each FS function a code. Informally, an encoding
represents the assignment of FS functions to the data inputs
of the MUX of Figure 3 (e.g., the encoding of g1 is 01).
While any encoding that distinguishes FS functions is a valid
solution, a good encoding also minimizes the number of BS
functions and their support. It is crucial to find an encoding
that minimizes the support for three reasons. First, if N−P >
k, by minimizing the support, each BS function may ideally
fit into a k-LUT, allowing for a two-level decomposition.
Second, minimizing the support maximizes the shared set (an
SS variable is a BS function represented by a buffer), reducing
the number of required LUTs. Third, the number of edges is
reduced, helping routability. Finding a feasible encoding is
similar to solving constrained encoding problems [31]–[33].

An encoding assigns a code T = tM−1 . . . t0 of length
M to each of the FS function. A variable ti takes value 1,
0, or −, indicating the ON-set, OFF-set, and DC-set, respec-
tively. A minimum-length encoding is an encoding of length
M = ⌈log2(µ)⌉. An encoding is strict if a unique term T is
assigned to each FS function, resulting in a Boolean function.
An encoding is non-strict if multiple pair-wise disjoint terms
T can be assigned to each FS function, resulting in a Boolean
relation. For instance, given M = 2 and µ = 3, an assignment
“1−” to a FS function is strict, while “01 ∨ 10” is non-strict.
In this work, we only utilize strict encodings since non-strict
encodings are too many to be efficiently enumerated in a fast
ACD implementation. Moreover, experimental evaluations on
practical functions suggest that non-strict encodings do not
improve much the quality of the decomposition. For further
details on the number of possible encodings, refer to [30].

Let i-sets be the set of µ Boolean functions in terms of the
BS variables encoding FS functions using one-hot encoding.
Specifically, an i-set represents one FS function and takes
value 1 when an input assignment to the BS variables selects
the corresponding FS function.

Example 3: Using Example 2, the i-set corresponding to the
FS function 0x8 is 1100100010001000 in binary format. Note
that the truth table depends on N −P variables and has value
1 when the original function is 0x8. △

I-sets are used to derive a more compact encoding with a
two-step procedure. The first step enumerates candidate BS
functions. The second one solves a unate covering problem,
in which columns are candidate BS functions and rows are
pairs of FS functions to be distinguished.

Candidate BS functions are functions depending on BS
variables whose output can used as ti to encode FS functions.

They are enumerated by combining i-sets. To leverage all
the functional degrees of freedom of a strict encoding, i-sets
in a BS candidate can be either in the ON-set, OFF-set, or
don’t-care (DC) set. Since candidate BS functions are used as
control inputs of a multiplexer, they can distinguish elements
in the ON-set (takes value 1) against elements in the OFF-set
(takes value 0). In encoding problems, BS functions are called
dichotomies, while pairs of functions to be distinguished can
be interpreted as seed dichotomies [33]. Don’t-cares are also
important to minimize the support, which translates into fewer
LUT fanins.

Example 4: Continuing Example 3, let us consider the
candidate bound set function h that has the i-sets {0x8, 0x1}
in the ON-set, the i-set {0x4} in the OFF-set, and the i-
set {0x0} in the DC-set. Its function in the binary format
is h =11-01--110101111 where “-” is a don’t care. When
h = 1, either 0x8 or 0x1 are selected. When h = 0, 0x4 is se-
lected. The corresponding dichotomy is {{0x8, 0x1},{0x4}}.
In this case, function h distinguishes 0x8 from 0x4 and 0x1
from 0x4, covering two seed dichotomies {{0x8},{0x4}} (or
{{0x4},{0x8}}) and {{0x1},{0x4}} (or {{0x4},{0x1}}). △

A candidate BS function is generated by assigning each
i-set to the ON-set, OFF-set, or DC-set. Hence, the total
number of possible BS candidate functions is 3µ. Nonetheless,
some BS candidate functions are interchangeable, i.e., one
candidate can be obtained by swapping the ON-set and the
OFF-set of another candidate. Our enumeration removes these
symmetries. Moreover, in a minimum-length encoding, each
candidate must have at least r i-sets in the ON-set and r i-sets
in the OFF-set, where r is defined as:

r(µ) = µ− 2⌊log2(µ−1)⌋. (6)

Candidates that do not satisfy this constraint are eliminated
as they cannot encode FS functions. For instance, if µ is a
power of 2, then r = µ/2, implying that each candidate must
distinguish half of the FS functions against the other half. The
number of possible BS candidate functions is given by the
following formula depending on µ:

E(µ) = 1

2
·
µ−2r(µ)∑

i=0

(µ
i

)
·
µ−i−r(µ)∑
j=r(µ)

(
µ− i

j

) . (7)

Note that when µ is a power of 2 the number of possible BS
candidate functions reduces to

(
µ

µ/2

)
/2.

A limitation of this method is that the number of candidates
grows rapidly with increasing column multiplicity. However,
we may further reduce the number of BS candidate functions
when it is too large. In particular, for an ACD into 6-LUTs the
maximum column multiplicity to support is 16 and Equation 7
is maximized for µ = 13 with 91, 377 candidate BS functions.
To maintain a reasonable number of candidates to reduce run
time, our method does not use the DC-set for problems with
µ > 8, lowering the maximum number of candidates to 6, 435.
This choice has a marginal effect in quality. This simplification
removes the leftmost sum and fixes i = 0 in Equation 7.

Each BS candidate function is associated with a cost that
depends on the number of variables in its support. The
number of variables is computed using a special procedure that

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

7

4 3 3
C9AF 1177 2727

{{0x8}, {0x0}} 1 0 1

{{0x8}, {0x4}} 1 1 0

{{0x8}, {0x1}} 0 1 1

{{0x0}, {0x4}} 0 1 1

{{0x0}, {0x1}} 1 1 0

{{0x4}, {0x1}} 1 0 1

Fig. 4. Covering table to solve the encoding problem.

considers don’t cares. Each variable is checked individually.
If the incompletely specified BS candidate function remains
equivalent when a variable is assigned both constant 0 and
constant 1, that variable is not in the functional support and
can be removed. Then, a covering table is constructed by
having all the pairs of FS functions to be distinguished (seed
dichotomies) as rows and the BS candidates as columns. A
row-column entry (i, j) is 1 if the BS candidate function
of column j distinguishes the seed dichotomy i. A support-
minimum solution is computed by solving a minimum-cost
covering problem [33]. The solution must cover all the rows
while minimizing the cost. We use greedy covering followed
by local search to compute a minimum-cost cover. A single
iteration of greedy covering extracts one column covering the
most non-covered rows while minimizing the cost. The process
is iterated until a solution is found. Then, the solution is
iteratively improved by replacing one column with another
column having a lower cost.

Example 5: Figure 4 shows a covering table reflecting the
examples in this section. Each column is a candidate BS
function shown as a truth table in hexadecimal format on 4
variables. Each BS candidate function has a cost based on the
number of variables on its support (showed above). Each row
is a seed dichotomy. An element (i, j) in the table is 1 if the
BSj distinguishes the seed dichotomy i. The best solution with
cost 6 takes the second and third columns and leads to two
BS functions depending on 3 variables. △

Given a solution, an encoding of the FS functions is
obtained by assigning a code T = tM−1 . . . t0, in which each
signals ti corresponds to a selected BSi candidate.

Example 6: Continuing Example 5, a minimum cover results
in BS0 = 0x1177, by putting 0x4 and 0x1 in the ON-set, and
BS1 = 0x2727 by putting 0x0 and 0x1 in the ON-set. Both
bound sets depend only on 3 variables. Given the BS functions,
the encoding of the FS functions assigns the following codes to
gi in Figure 3: T0x8 = 00, T0x4 = 01, T0x0 = 10, and T0x1 =
11. Finally, the composition function is computed using the
FS functions and the selected encoding, resulting in function
0x1048, in hexadecimal format. Consequently, the function has
been successfully decomposed using three 4-LUTs. The final
result of decomposition is shown in Figure 5, after minimizing
the support of BS functions. △

D. Maximizing the shared set

The number of LUTs required to implement the BS func-
tions can be minimized using the shared set. In Section IV-C,

00 01 10 11

0x27 0x17

0x8 0x4 0x0 0x1

x4 x3 x2 x5 x3 x2 x1 x0

Fig. 5. AC decomposition of the Boolean function 0x880480018414811.

we presented a generic method to find an encoding that
minimizes the LUT count and the support size. Alternatively,
to check whether a decomposition with L ∈ [0,M) single-
variable functions (or buffers) and M − L non-buffer BS
functions exists, our method may enumerate subsets of L
out of N − P variables, with a total of

(
N−P

L

)
subsets. For

each subset, the method checks if the number of unique FS
functions in each cofactor with respect to L variables does
not exceed 2M−L. If this is the case, a decomposition with L
variables in the shared set exists.

Example 7: Consider the truth table 0xffff0880ffff0000 with
P = 2 and unique FS functions 0xf, 0x0, and 0x8. Let us
check the existence for a shared set when M = 2 using L = 1.
If the most significant variable is in the SS, the truth table
is divided into two cofactors 0xffff0880 and 0xffff0000. The
number of unique FS functions in the first cofactor exceeds
22−1 = 2. Hence, the most significant variable cannot be
shared. However, the second most significant variable, with
cofactors 0xffffffff and 0x08800000, can be shared. △

V. TECHNOLOGY MAPPING WITH ACD

In this section, we leverage the Ashenhurst-Curtis decom-
position (ACD) methods described in Section IV to improve
the delay of LUT networks. ACD can be used in two ways: 1)
as part of LUT mapping, or 2) as a post-mapping resynthesis
method to compact logic and decrease the delay. In this work,
we focus on the former usage since it has more flexibility and
offers good optimization opportunities. While this work does
not cover post-mapping resynthesis, its implementation would
involve extracting cuts consisting of a few LUTs, computing
the cut function as a truth table, and finally performing ACD. If
the new implementation is better, it replaces the old one. For an
example of how this resynthesis engine could be implemented,
we refer the reader to [34]. First, this section discusses how
to perform delay-oriented functional decomposition for any
number FS variables and BS functions. Then, it describes the
integration of ACD in a technology mapper.

A. Delay-oriented ACD

Let us consider a node n in a k-LUT network and a cut C
rooted in n that contains leaves in the input sub-network of
n. Among all the leaves, some are timing-critical and some
are not. Let D be the latest arrival time of a leaf in C. We

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

8

use ACD to find an implementation that realizes the function
of cut C with delay D + 1, when |C| > k, assuming a unit-
delay model. Specifically, we put the timing-critical leaves of
C into the FS and other non-critical ones into the BS or SS.
This transformation, when applied on the critical path, may
reduce the worst delay of a LUT network.

The ACD-based transformation is performed in two steps.
First, our method verifies the existence of a delay-minimizing
decomposition. Second, if a decomposition exists, it solves the
encoding problem and returns a solution.

1) Checking the existence of a decomposition: Algorithm 1
shows the procedure evaluate used to check the existence of
an ACD. The algorithm receives the function represented as
a truth table tt of a large cut of size N where N > k. Set S
contains a list of timing-critical variables with delay D. First,
the truth table is transformed to have critical variables as the
least significant ones since they must be in the FS (at line 3).
The proposed approach limits N−P ≤ k targetting a two-level
decomposition without solving the encoding problem. Hence,
the number of variables in the FS must be at least P ≥ N−k,
and P ≥ |S| to include all the delay-critical variables (in line
6). For each FS of Pi variables, the column multiplicity value
is computed using the method described in Section IV-B, and
the smallest one is returned (at line 7). In this case, since delay-
critical variables are always part of the FS,

(
N

Pi−|S|
)

different
combinations are enumerated. If the configuration with the
smallest column multiplicity is implementable using at most
k − Pi BS functions, a delay-minimizing ACD exists. In this
case, variables in the FS have the delay increase of 1 while
other variables have the delay increase of 2 (at line 14). If, on
the other hand, a decomposition with Pi does not exist, the
function is not decomposable.

The loop in line 6 checks the existence of a decomposition
starting with a smaller value of P . Notably, if a decomposition
with P does not exist, neither does it exist with P +1, accord-
ing to Theorem 2. Then, if a decomposition exists, the loop
attempts to identify independent shared-set variables (ISS) to
add to the free set, according to Theorem 1. Specifically,
maximizing the free set to include non-critical variables has
multiple benefits. First of all, the decomposition would have
a reduced column multiplicity, which simplifies the encoding
problem. Additionally, including ISS in the FS may reduce the
required time of the associated non-critical signals, facilitating
area recovery during technology mapping.

2) Computing the decomposition: After applying evaluate,
another procedure decompose computes the actual decompo-
sition, as described in Section IV-C.

B. LUT mapping with ACD

The methods described in Section V-A have been integrated
into an LUT mapping algorithm. State-of-the-art technology
mapping typically performs delay minimization followed by
multiple iterations to recover area [24]. Each mapping iteration
computes k-feasible cuts rooted in nodes of the subject graphs
and selects one best cut for each node based on the cost
function and slack. Typically, enumerated cuts are k-feasible,
meaning they can be implemented using a k-input LUT. In

Algorithm 1: ACD evaluation
1 Input : Truth table tt, LUT size k, Late vars set S
2 Output: Propagation delay
3 reorder variables(tt, S);
4 µbest ←∞;
5 x⃗fs ← ∅;
6 for Pi ← max(num vars(tt)− k, |S|) to k − 1 do
7 {µ, x⃗′

fs} ← compute smallest multiplicity(tt, Pi, |S|);
8 if µ ≤ 2k−Pi and µ < µbest then
9 µbest ← µ;

10 x⃗fs ← x⃗′
fs;

11 continue;

12 break;

13 if µbest ̸=∞ then
14 return compute propagation delay(tt, x⃗fs);

15 return infinite propagation delay();

our implementation, cut enumeration computes large cuts up
to size k < l ≤ 11, where l is provided by the user. During
cut enumeration, the mapper computes cut functions as truth
tables. For the non-k-feasible computed cuts, the mapper uses
Algorithm 1 to check the existence of a delay-minimizing
decomposition into k-LUTs. If a decomposition does not
exist, the cut is discarded. If a decomposition exists, the cut
delay is computed using the propagation delay returned by
Algorithm 1. The area is estimated using column multiplicity.
Specifically, to have precise area information, i.e., the number
of required LUTs, ACD has to solve the encoding problem
and compute the decomposition. However, experimentally, not
running the decomposition on the fly reduces the run time
considerably with a negligible impact on the final area. The
area is estimated conservatively, neglecting the existence of a
shared set, i.e., Area = ⌈log2 µ⌉+ 1.

The mapper uses l-feasible cuts with ACD in the delay
mapping pass, while it uses k-feasible cuts in the following
area recovery. Note that area recovery aims at improving the
solution over non-critical paths and can re-use the best cuts
from the previous passes, while assuring that the required
times are met. After the last mapping pass, a cover is generated
consisting of k- and l-feasible cuts. At this stage, the mapper
decomposes non-k-feasible cuts into k-LUTs.

VI. MAPPING INTO IN-SLICE CASCADES

As mentioned in the introduction, the delay in the mod-
ern FPGAs is often dominated by that of programmable
interconnect. To reduce the need for signal routing, one
approach modifies the FPGA architecture to include non-
routable connections between LUTs. For instance, recent
FPGAs produced by AMD have configurable logic blocks
(CLBs) divided into slices. A slice contains 8 LUTs that can
be used independently, with external routing or using internal
cascade connections [10]. Specifically, a slice LUT LUTi,
with 0 ≤ i < 8, may connect one of its 6 inputs to LUTi−1,
forming a cascade structure. An in-slice cascade connection is
10 to 40 times faster than standard interconnect, which helps
delay optimization.

Although in-slice non-routable connections are available,
LUT networks generated by the traditional LUT mapping do

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

9

not use them efficiently. This is because a placement algorithm
may fully leverage non-routable connections only for LUTs on
the critical path with one critical fanin. In practice, however,
LUTs on the critical path tend to have multiple critical fanins,
making it hard for the placement algorithm to utilize cascade
structures.

An efficient way to leverage cascade connections is to
generate mappings of LUTs into cascades during technology
mapping. LUT cascades can be generated by decomposing
large non-k-feasible functions. In the section, we use the ACD
method of Section IV to compute decompositions into specific
structures of two LUTs, called “kk” decomposition. Contrary
to previous approaches [11], our approach is not based on a
heuristic and may support more than one variable in the shared
set. Specifically, it always finds a solution if it exists.

A. ACD into two LUTs

A decomposition into two LUTs is a special type of ACD
with a single BS function and possibly multiple SS variables.
Since BS functions are limited to one, the problem has a lower
complexity than the generic case. Here we propose a dedicated
algorithm to solve this problem more efficiently.

For a truth table on N variables, a “kk” decomposition
may exist for N < 2 · k. According to Theorems 1 and 2, it
is sufficient to test the decomposition for P = N − k, when
allowing for multiple variables in the shared set. Specifically,
this is the minimum number of variables to have a k-feasible
bound set and a decomposition. Note that a decomposition
with P < N − k (or N − P > k) may exist only if there
are at least y independent variables in the shared set, such
that P + y = N − k. Since, by Theorem 1, ISS variables can
always be moved into the free set, and, by Theorem 2 a smaller
free set has more solutions than a larger one, P = N − k is
the only necessary FS size to check.

Algorithm 2 shows a sequence of steps to perform a
decomposition into two LUTs. The algorithm takes as inputs
a truth table tt, the number of its support variables N , and the
LUT size k. First, P and the permutation vector Perm are
initialized. Vector Perm is necessary to track the order of the
variables during the enumeration of combinations, compared
to the original one, and to compute the next combination.
A loop iterates on all the possible P combinations of N .
The method next combination (at line 12) computes a new
combination from the previous one by swapping one variable
in the FS with one in the BS. The returned truth table reflects
the new variable order. The column multiplicity µ is computed
for the truth table tt (at line 6). If µ = 2, a decomposition
exists with one BS function. Since the structure is limited
to one BS function, for µ > 2 the method searches for SS
variables. First, Lmin is computed to minimize the number of
shared variables. Then, the algorithm searches for a shared set
of L elements, employing the techniques of Section IV-D. The
search for a shared set is performed for Lmin ≤ L < k − P ,
which also allows for non-minimum-length encodings. If a
shared set exists, the corresponding decomposition is returned.
Otherwise, if the conditions in the for loop are not met, the
function is not decomposable into 2 LUTs.

Algorithm 2: ACD into two LUTs
1 Input : Truth table tt, number of variables N , LUT size k
2 Output: Decomposition if it exists
3 P ← N − k;
4 Perm← {0, 1, 2, . . . , N − 1};
5 for

(
N
P

)
iterations do

6 µ← compute multiplicity(tt, P);
7 Lmin ← ⌈log2 µ⌉ − 1; ▷ Required variables in SS
8 if P + Lmin < k then
9 x⃗ss ← compute shared set(tt, N , P , k, Lmin);

10 if P + |x⃗ss| < k then
11 return decompose(tt, N , P , k, Perm, x⃗ss);

12 tt← next combination(tt, N , P , Perm);

13 return not decomposable;

In case of an implementation constraining the maximum
number of variables in the SS, Algorithm 2 is modified to ad-
ditionally explore different sizes P , similarly to Algorithm 1.
This is because Theorem 2 is not valid when limiting the
maximum number of BS functions and SS variables because it
constraints the maximum value of encoding M . Hence, when
⌈log2(µ)⌉ > Mmax there might be ISS variables to include in
the FS to make ⌈log2(µ′)⌉ ≤ Mmax.

B. Mapping into LUT structures

We follow the method proposed in [11] for mapping into
LUT structures. Specifically, the LUT mapper performs cut
enumeration using cuts up to size l with k < l ≤ 2×k, derives
their functions as truth tables, and checks if the functions
are decomposable into a “kk” structure. If a function is
decomposable, the area and delay are assigned based on a
given LUT library. If the function is not decomposable, the
cut is ignored. An LUT library specifies the area and delay of
an LUT based on its size. Similarly to Section V-B, the mapper
begins by minimizing delay, followed by several iterations of
area recovery. Contrarily to Section V-B, the mapper uses ACD
decomposition of l-feasible cuts during all mapping iterations.

VII. EXPERIMENTS

This section presents an experimental evaluation of the pro-
posed LUT mapping with ACD. First, we evaluate the ACD-
based algorithms proposed in this paper on practical func-
tions extracted from open-sources hardware designs. Then, we
evaluate ACD in the context of delay-driven LUT mapping.
Finally, we present the results of mapping into LUT cascade
structures. While the experiments are reported for 6-input
LUTs, similar improvements have been obtained also for 4-
input LUTs.

The proposed methods have been implemented and are
available in the open-source logic synthesis framework
ABC [35]. For our experiments, we use the EPFL com-
binational benchmark suite [36] containing several circuits
provided as and-inverter graphs (AIGs). The baseline has
been obtained using the following script “dfraig; resyn;
resyn2; resyn2rs; if -y -K 6; resyn2rs;” in
ABC, which perform a high-effort size and depth AIG op-
timization. In particular, it combines SAT sweeping [37],

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

10

TABLE I
DECOMPOSITION SUCCESS RATIO INTO TWO 6-LUTS FOR PRACTICAL FUNCTIONS USING DIFFERENT ACD METHODS.

ACD type 7 vars (41071) 8 vars (107466) 9 vars (195602) 10 vars (313649) 11 vars (404991)
Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s) Success (%) Time(s)

S66 [11] 84.18% 0.60 69.24% 2.57 52.13% 4.99 37.36% 6.99 19.14% 9.79
lutpack [19] 98.34% 20.39 83.47% 64.37 69.92% 154.38 48.95% 334.79 26.87% 897.55
J66 1-SS 97.30% 0.28 82.23% 1.41 74.24% 4.20 63.06% 9.39 32.88% 16.43
J66 M-SS 99.82% 0.30 92.94% 3.08 84.71% 9.92 63.06% 9.73 32.88% 16.58

scripts for delay-oriented AIG optimization [21], and lazy
man’s logic synthesis [38], which is the most aggressive
depth minimization for AIGs in ABC. The experiments have
been conducted on an Intel i5 quad-core 2GHz on MacOS.
The results have been verified using combinational equivalent
checkering in ABC.

We extended the LUT mapper if (and &if) in ABC to per-
form ACD, as discussed in Sections V and VI. The following
commands are used in the experiments:

• dch (-f): computes structural choices used to mitigate
the structural bias [4], where -f stands for “fast”;

• if -K 6: performs delay-oriented technology mapping
with choices into 6-LUTs using 6-feasible cuts;

• if -s -S 66 -K 8: performs delay-oriented tech-
nology mapping using 8-feasible cuts and decomposes
logic for minimal delay into two 6-LUTs using a SAT-
based formulation;

• if -Z 6 -K 8: performs technology mapping into 6-
LUTs using the proposed delay-oriented implementation
of ACD described in Section V on 8-feasible cuts;

• if -S 66: performs technology mapping based on a
given LUT library and packs logic into a structure com-
posed of two 6-LUTs using the ACD method from [11];

• if -J 66: performs technology mapping based on a
given LUT library and packs logic into a structure com-
posed of two 6-LUTs using the ACD method described
in Section VI;

• st: derives an AIG from an LUT network.

A. Decomposition success rate

In this experiment, we evaluate the performance of ACD
in decomposing functions by comparing it against other im-
plementations of Boolean decomposition in ABC. Specif-
ically, we test the number of functions that can be suc-
cessfully decomposed and the run time needed. We run
this experiment on practical functions, i.e., functions col-
lected in hardware designs and benchmarks, which in-
clude fully-decomposable, partially-decomposable, and non-
decomposable functions. Practical functions tend to be much
less than all possible functions since designs are never com-
pletely random. We extract practical functions from the EPFL
benchmarks [36] by recording all the functions encountered
during cut enumeration in a technology mapper. Since the
number of practical functions can be large, we classify them
into NPN -equivalence classes employing the heuristic sifting
algorithm [39].

Table I shows the percentage of decomposable functions
and the run time for different methods and support sizes.

For instance, the first column contains results for decom-
posing practical 7-input functions, where (41071) indicates
the number of unique functions collected after computing
NPN canonical forms. Each row of the table shows one ACD
method. The first row S66 presents the state-of-the-art method
in [11] to decompose into a LUT structure composed of two
6-LUTs. Note that S66 supports no more than one variable
in the shared set. The next approach lutpack [19]1 performs
a heuristic ACD using DSD and the Shannon expansion,
supporting up to 3 variables in the shared set. Finally, we
present two variants of the decomposition method into LUT
structures composed of two 6-LUTs described in Section VI,
denoted J66. J66 1-SS uses up to one variable in the SS to
better compare against S66. Meanwhile, J66 M-SS has no
restrictions on the number of SS variables.

Table I shows that the approaches described in this paper
outperform state-of-the-art. In particular, J66 1-SS has a sig-
nificantly better success rate in all columns and better run
time up to 9-input functions, compared to S66. Notably, while
searching for a decomposition with the same characteristics,
J66 1-SS always finds a solution if it exists (under the 1-SS
limitation), while S66 does not always find it because it uses
heuristics. This leads to an improvement in success rate that
peaks at 25.7%. This table shows the potential of the methods
proposed in this work, which can outperform state-of-the-art
in quality and run time. J66 M-SS further improves the results
for functions between 7 and 9 inputs, with an improvement
that peaks at 32.58%, compared to S66.

Regarding the run time, while Table I shows that S66
is generally faster than J66, J66 is, on average, faster for
decomposable functions and considerably slower for non-
decomposable ones. In fact, J66 enumerates all the possible
free sets to find a solution if it exists, while S66 limits the
exploration to a smaller subspace.

B. Decomposition success rate for delay optimization

We extend the previous experiment to evaluate delay min-
imization using the proposed ACD methods. This experiment
tests the success rate of a delay-minimal decomposition for
practical functions given delay-critical variables required to be
in the free set. Informally, for delay-critical variables with de-
lay D, this experiment checks the existence of a decomposition
with delay D + 1. The other variables are considered to have
delay D − 1. We only consider J66 M-SS and generic ACD
since other known methods do not perform delay minimization

1We modified lutpack in ABC to perform only the decomposition required
by the experiment without the overhead of the resynthesis engine.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

11

TABLE II
DECOMPOSITION SUCCESS RATIO INTO 2 LEVELS OF 6-LUTS FOR

PRACTICAL FUNCTIONS GIVEN LATE ARRIVING VARIABLES.

N late ACD type 7 vars 8 vars 9 vars 10 vars 11 vars

0
lutpack [19] 99.01% 88.25% 84.65% 75.25% 26.87%
J66 M-SS 99.82% 92.94% 84.71% 63.06% 32.88%
Generic 100.00% 100.00% 98.05% 90.20% 32.88%

1 J66 M-SS 96.59% 79.60% 61.51% 37.35% 16.54%
Generic 100.00% 100.00% 97.57% 83.23% 16.54%

2 J66 M-SS 86.22% 59.78% 39.28% 23.74% 10.95%
Generic 100.00% 100.00% 94.19% 66.56% 10.95%

3 J66 M-SS 65.11% 36.37% 21.25% 13.78% 6.96%
Generic 93.78% 86.03% 76.82% 44.51% 6.96%

4 J66 M-SS 36.96% 17.00% 8.62% 7.21% 4.43%
Generic 54.55% 40.42% 25.45% 23.70% 4.43%

5 J66 M-SS 14.52% 5.42% 2.96% 2.84% 2.61%
Generic 14.52% 5.42% 2.96% 2.84% 2.61%

using input arrival times. We show lutpack [19] only for the
first row to perform a 2-level decomposition, without limiting
the number of LUTs. For each function, we randomly generate
up to 10 unique sets of delay-critical variables and test the
decomposition for each one of them.

Table II shows the success rate of decomposing practical
functions based on the number of delay-critical variables,
shown in column “N late”. Generic ACD has a high success
rate in most cases. Limitations occur when the number of
delay-critical variables exceeds 3 or the number of variables
in the support is 10 or more. Generally, the decomposition of
11-input functions is rare. However, many 10 input functions
are still decomposable. Furthermore, the table highlights the
advantages of using multiple BS functions, with a success rate
difference between J66 and generic that peaks at 55.57% for
9-input functions, given 3 delay-critical variables. Thus, in this
case, it is 55% more likely to find a solution to a delay-driven
decomposition problem if we consider the most general two-
level ACD formulation, compared to the case when only J66
is used.

C. Delay-driven LUT mapping

Table III compares four technology mapping strategies for
delay minimization during mapping into 6-LUTs, assuming a
unit-delay model. Each strategy takes the baseline as an input
and computes structural choices before mapping. Structural
choices have not been used for the benchmark hyp due to a
known bug in ABC. The proposed method is compared against
standard LUT mapping and mapping into LUT structures. In
the rightmost column, command ACD denotes the sequence
“dch; if -Z 6 -K 8”. We do not compare against [11]
and [19] because those methods perform only area-oriented
ACD. Furthermore, we do not compare against the recent
mapper with gate decomposition based on bin-backing [40].
Nevertheless, the mapper in [40] can improve the delay of if
by only 0.31% on average.

Mapping into LUT structures “66” composed of two 6-
LUTs, which is based on a limited version of structural ACD,
reduces depth by 1.04% and the area by 2.57% on average, at

the cost of increasing the number of edges by 2.57%. The
proposed LUT mapping with ACD improves the depth of
the LUT network by 7.52% on average while increasing the
number of LUTs and edges by 8.13% and 7.87%, respectively.

Note that most of the improvements are due to the first
10 benchmarks since others are already close to their optimal
depth. For 4 of them, the delay reduction exceeds 20% and
is up to 27.27%. Practically, part of the area increase can
be reduced by area recovery [19], [41], [42], using delay
relaxation, or by an additional mapping step applied after
ACD. The rightmost strategy performs the latter option. The
LUT count and edge count are reduced considerably, leading
to an area improvement of 2.20%, compared to traditional
technology mapping with choices. Also, the logical depth
further decreases up to 54.55%. To achieve this, the LUT
network after ACD is used as a structural choice to improve
the next round of mapping because choices extracted from
mapping with ACD are more structurally suited to delay-
oriented mapping, compared to the original AIG. Moreover,
structural choices help reduce the area on the non-critical
paths. Note that a second mapping round does not give
practical benefits if applied after the default LUT mapper
(leftmost column) since the network after deriving the AIG is
structurally similar to the baseline. Furthermore, benchmark
hyp is noticeably improved by remapping both in area and
delay, although it does not use structural choices. Regarding
the run time, mapping with ACD is much faster than mapping
into LUT structures while being more general.

D. EPFL synthesis competition

This experiment shows that ACD-based LUT mapping can
improve well optimized LUT networks, resulting in best
known results for 4 benchmarks in the ongoing EPFL synthesis
competition. The previous best results were obtained using
a portfolio of heavy logic optimization applied to various
representations, such as AIGs and LUT networks. In recent
years, results have been further improved using design-space
exploration (DSE) techniques that incrementally generate op-
timization scripts and visit multiple points of the design space.
Examples of these methods are: Bayesian optimization [44],
reinforcement learning [45], machine learning, and other
heuristic approaches.

We compete in the best delay competition by using standard
delay-oriented scripts in ABC and LUT mapping with ACD.
We do not use DSE to show that the proposed method
outperforms or gets close to the best results in the competition.
We obtain the optimized AIGs by repeatedly running the script
used in the baseline of Table III along with additional delay-
oriented AIG commands in ABC. For the resulting AIGs, we
compare traditional LUT mapping with choices and LUT map-
ping with ACD. Notably, results by the traditional mapper are
quite far from the best results. This observation shows that our
technology-independent optimization finds worse AIGs than
those used to obtain the best results, as expected. However,
LUT mapping with ACD matches or improves the depth for
almost all the benchmarks. The improved benchmarks are hyp,
log2, multiplier, and square. Remarkably, our method reduces

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

12

TABLE III
COMPARISON OF DELAY-DRIVEN LUT MAPPING, LUT MAPPING TO “66” STRUCTURE, AND LUT MAPPING USING ACD.

Benchmark dch; if -K 6 dch; if -s -S 66 -K 8 dch; if -Z 6 -K 8 ACD; st; dch -f; if -K 6
LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s) LUTs Edges Depth Time (s)

adder 363 1433 22 0.18 362 1465 20 0.28 383 1519 16 0.20 353 1518 10 0.39
bar 1664 9344 4 0.44 1664 9344 4 0.57 1664 9344 4 0.47 1006 5274 4 0.76
div 8618 32394 406 6.62 9107 33665 397 13.42 11644 44496 326 7.16 9068 39167 271 21.19
hyp 58393 239097 1864 5.43 61701 247699 1840 31.82 65615 264998 1396 11.13 61769 263254 1034 19.76
log2 9712 43562 58 17.05 10172 44943 58 30.06 10313 46365 56 17.81 9429 42533 57 39.09
max 831 3804 14 0.37 840 3668 14 0.63 1211 5578 12 0.42 871 4277 11 1.39
multiplier 7383 34137 36 6.01 7334 32781 36 12.11 7693 35798 33 6.82 6800 31705 31 13.32
sin 1928 8445 30 1.31 1948 8463 30 4.94 2052 8913 29 1.50 1830 8178 30 2.91
sqrt 7515 29573 663 4.17 7972 30610 638 12.66 10156 38558 519 4.73 9292 36030 476 8.77
square 4122 17319 23 1.98 4165 17547 22 3.91 4107 17924 18 2.22 4118 18285 14 5.15
arbiter 1833 8982 6 1.64 1879 8836 6 2.02 1850 8987 6 1.70 2037 8780 6 3.33
cavlc 137 707 4 0.13 104 491 4 0.56 137 707 4 0.15 123 655 4 0.20
ctrl 30 133 2 0.07 28 127 2 0.08 30 133 2 0.08 29 126 2 0.08
dec 287 684 2 0.09 287 1404 2 0.1 287 684 2 0.10 284 816 2 0.12
i2c 312 1360 3 0.16 306 1316 3 0.36 319 1378 3 0.19 297 1329 3 0.27
int2float 52 258 3 0.08 46 205 3 0.18 52 258 3 0.09 50 251 3 0.11
mem ctrl 11037 48812 18 10.24 10830 46368 18 31.67 11232 49483 17 11.40 10398 45793 16 20.57
priority 178 725 6 0.11 182 736 6 0.18 185 736 6 0.12 171 698 6 0.17
router 89 285 4 0.09 61 283 4 0.14 92 290 4 0.09 89 279 4 0.12
voter 1838 8596 13 2.23 1784 8624 13 4.14 1838 8583 13 2.32 1777 8426 13 4.82

Reduction 2.57% -2.57% 1.04% -8.13% -7.87% 7.52% 2.20% -0.30% 12.39%
Total 58.40 149.83 68.70 142.52

TABLE IV
LUT MAPPING IN THE EPFL SYNTHESIS COMPETITION.

Benchmark Best [43] dch -f; if -K 6 dch -f; if -Z 6 -K 10
LUTs Depth LUTs Depth LUTs Depth

adder 347 5 360 6 445 5
bar 512 4 512 4 512 4
div 25318 175 23461 192 31526 175
hyp 182723 483 122394 511 154903 473
log2 8617 52 8778 60 9613 51
max 1114 6 1113 7 1250 6
multiplier 7785 25 6839 28 6903 25
sin 680530 10 1820 33 2379 27
sqrt 29593 162 30945 172 41626 156
square 3732 10 4189 11 4275 10

the depth of hyp by 10 levels, compared to state-of-the-art
while also reducing area by 15%. In the benchmark multiplier,
our result matches the depth but improves the number of
LUTs. Benchmark sin is the only one where there is a large
gap compared to the best result. It is likely that the best result
for sin requires significant logic duplication not performed in
our synthesis flow.

Unlike many other methods used to produce the best results,
our results in Table III are obtained directly by LUT mapping
without post-mapping optimization. For instance, if we use
LUT resubstitution, the area of multiplier is further reduced
to 6499 nodes. Even better results are expected by integrating
ACD-based LUT mapping into a DSE flow.

E. Mapping into LUT structures

In this experiment, we perform technology mapping into
LUT structures by leveraging non-routable cascade connec-
tions of LUTs in FPGA architectures. Specifically, motivated
by the high cost of routing, we assume that a 6-LUT and a
cascade of two 6-LUTs both have unit delay. A more precise

model would assign propagation delay of about 1.2 to the
signals in the bound set of a LUT cascade and unit delay to
the signals connected to the composition function. However,
the mapper in [11] only supports a fixed delay assignment to
all the signals. Hence, we assume the delay of a cascade to
be unitary to not penalize the quality of mapping into LUT
structures. We run all the mappers with the same parameters to
perform minimal-delay mapping. Mappers running ACD use
cuts up to 10 inputs.

Table V compares traditional LUT mapping with choices,
the LUT structure mapping [11], and the proposed method
described in Section VI supporting 1 (1-SS) or multiple (M-
SS) shared set variables. S66 improves the traditional mapper
by 30.74% in delay while increasing area and the number of
edges. For many benchmarks, the area increases due to logic
duplication to minimize delay. Notably, J66 1-SS considerably
improves all the metrics, compared to S66. The improvement
comes from the better success rate of the decomposition shown
in Table I. Moreover, J66 M-SS achieves further improvement,
compared to S66, reducing the average delay, area, and edge
count by 6.22%, 3.82%, and 3.09%, respectively, with a faster
run time. Remarkably, for designs with a similar delay to
the traditional mapper, J66 achieves a large reduction in the
number of LUTs and edges. This is because J66 successfully
mitigates structural bias. For instance, for benchmark int2float,
J66 M-SS reduces the number of LUTs by 27%. For the same
benchmark, S66 reduces the number of LUTs only by 1.92%.
Similar improvements are also observed for all the benchmarks
when performing area-oriented mapping, instead of delay-
oriented mapping. Another interesting benchmark is cavlc,
where multiple shared set variables significantly improve the
delay, area, and edge count.

Finally, while S66 is generally faster than J66 for large
functions, the mapping time of J66 is better than S66. This

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

13

TABLE V
COMPARISON OF DELAY-DRIVEN LUT MAPPING AND MULTIPLE ACD-BASED MAPPING INTO “66” CASCADE STRUCTURES.

Benchmark dch; if -K 6 dch; if -S 66 [11] dch; if -J 66 1-SS dch; if -J 66 M-SS
LUTs Edges Delay Time (s) LUTs Edges Delay Time(s) LUTs Edges Delay Time(s) LUTs Edges Delay Time(s)

adder 363 1433 22 0.18 352 1521 13 0.85 356 1552 13 0.52 354 1550 13 0.83
bar 1664 9344 4 0.44 1664 8320 3 1.34 1664 8320 3 0.75 1664 8320 3 0.78
div 8618 32394 406 6.62 11555 46558 266 34.87 11071 45711 251 27.54 11298 47587 248 30.87
hyp 58393 239097 1864 5.43 65987 274992 1144 270.03 65352 274000 1082 161.75 65175 273434 1076 183.77
log2 9712 43562 58 17.05 12813 59950 42 73.19 12526 58798 40 54.03 12409 59528 39 71.87
max 831 3804 14 0.37 1177 6162 9 1.77 1113 5448 9 1.31 1113 5448 9 1.44
multiplier 7383 34137 36 6.01 8898 42566 25 46.10 8861 42005 25 31.27 8645 43556 24 36.15
sin 1928 8445 30 1.31 2620 12074 22 12.45 2461 11125 21 9.39 2400 10977 21 13.17
sqrt 7515 29573 663 4.17 9510 37809 423 42.21 9109 37396 403 24.86 9441 38373 398 32.31
square 4122 17319 23 1.98 4299 19677 15 11.75 4290 19843 14 8.07 4299 19972 14 12.65
arbiter 1833 8982 6 1.64 2000 9481 4 2.71 1992 9834 4 2.53 1992 9834 4 2.50
cavlc 137 707 4 0.13 125 645 3 0.49 124 639 3 0.43 110 565 2 0.54
ctrl 30 133 2 0.07 28 131 2 0.08 28 133 1 0.09 28 133 1 0.09
dec 287 684 2 0.09 512 2304 1 0.11 512 2304 1 0.12 512 2304 1 0.12
i2c 312 1360 3 0.16 327 1530 2 0.49 319 1478 2 0.41 306 1433 2 0.45
int2float 52 258 3 0.08 51 257 2 0.17 42 216 2 0.17 38 191 2 0.20
mem ctrl 11037 48812 18 10.24 11666 52725 13 59.20 11247 51109 13 48.04 11019 50726 13 56.43
priority 178 725 6 0.11 175 761 4 0.21 176 768 4 0.28 176 768 4 0.28
router 89 285 4 0.09 65 305 3 0.15 65 306 3 0.19 65 303 3 0.21
voter 1838 8596 13 2.23 2133 10793 10 7.22 2068 10082 10 5.58 2053 10081 10 7.87

Reduction -13.65% -27.62% 30.74% -10.73% -24.52% 34.29% -9.44% -24.00% 35.86%
Total 58.40 565.39 377.33 452.53

is because J66 is faster when applied to frequently appearing
decomposable functions and slower when applied to non-
decomposable functions. After all, it uses more effort to find
a solution. For instance, on the benchmark sqrt, which has a
considerable run time difference between S66 and J66, only
2.93% of all cuts are not decomposable by J66, against an
11.45% of S66. Moreover, only 10.35% of 10-input cuts
are not decomposable by J66 M-SS, while 39.48% are not
decomposable by S66. Finally, run time could be further
reduced by taking advantage of GPU-based LUT mapping
implementations [46].

VIII. CONCLUSION

This work proposes a novel formulation of Ashenhurst-
Curtis decomposition (ACD) to enable efficient technology
mapping and post-mapping resynthesis. The algorithm is truth-
table-based and flexible in terms of the sizes of the free set,
bound set, and shared set, which makes it well-suited for delay
optimization. We have shown that our Boolean decomposi-
tion improves state-of-the-art in decomposition quality with
a competitive run time. We have implemented and integrated
the proposed method into a delay-driven LUT mapper. The
experiments show that LUT mapping with ACD can improve
the average delay by 12.39%, compared to traditional struc-
tural LUT mapping with choices. Furthermore, the proposed
approach has found 4 new best results in the EPFL synthesis
competition. Finally, we applied ACD to perform mapping into
LUT cascade structures, outperforming state-of-the-art in all
metrics.

The findings of this work have impact beyond technology
mapping. LUT mappers are key in design-space exploration
engines and in various optimization flows, for example, in
those used for standard cells [47]. Hence, the methods pro-

posed in this paper may significantly improve the quality of
logic synthesis tools, especially for delay optimization.

REFERENCES

[1] J. Cong and Y. Ding, “FlowMap: an optimal technology mapping
algorithm for delay optimization in lookup-table based FPGA designs,”
Trans. CAD, vol. 13, no. 1, pp. 1–12, 1994.

[2] A. H. Farrahi and M. Sarrafzadeh, “Complexity of the lookup-table
minimization problem for FPGA technology mapping,” IEEE Trans.
CAD, vol. 13, no. 11, pp. 1319–1332, 1994.

[3] E. Lehman, Y. Watanabe, J. Grodstein, and H. Harkness, “Logic decom-
position during technology mapping,” Trans. CAD, vol. 16, no. 8, pp.
813–834, 1997.

[4] S. Chatterjee, A. Mishchenko, R. Brayton, X. Wang, and T. Kam,
“Reducing structural bias in technology mapping,” in Proc. ICCAD,
2005, pp. 519–526.

[5] R. Francis, J. Rose, and K. Chung, “Chortle: a technology mapping
program for lookup table-based field programmable gate arrays,” in
DAC, 1990, pp. 613–619.

[6] G. Chen and J. Cong, “Simultaneous logic decomposition with technol-
ogy mapping in FPGA designs,” in Proc. FPGA, 2001, p. 48–55.

[7] C. Legl, B. Wurth, and K. Eckl, “A boolean approach to performance-
directed technology mapping for LUT-based FPGA designs,” in DAC,
1996, pp. 730–733.

[8] J. Cong and Y.-Y. Hwang, “Structural gate decomposition for depth-
optimal technology mapping in LUT-based FPGA design,” in DAC,
1996, pp. 726–729.

[9] V. Manohararajah, S. D. Brown, and Z. G. Vranesic, “Heuristics for area
minimization in LUT-based FPGA technology mapping,” IEEE Trans.
CAD, vol. 25, no. 11, pp. 2331–2340, 2006.

[10] “AMD versal CLB documentation.” [Online]. Available: https:
//docs.amd.com/r/en-US/am005-versal-clb/Look-Up-Table

[11] S. Ray, A. Mishchenko, N. Een, R. Brayton, S. Jang, and C. Chen,
“Mapping into LUT structures,” in Proc. DATE, 2012, pp. 1579–1584.

[12] R. L. Ashenhurst, “The decomposition of switching functions,” in Proc.
Int. Symp. Theory Switch., 1957, pp. 74–116.

[13] J. P. Curtis, A New Approach to the Design of Switching Circuits. D.
Van Nostrand, 1962.

[14] J. P. Roth and R. M. Karp, “Minimization over boolean graphs,” IBM
Journal of Research and Development, vol. 6, no. 2, pp. 227–238, 1962.

[15] C. Legl, B. Wurth, and K. Eckl, “Computing support-minimal subfunc-
tions during functional decomposition,” Trans. VLSI, vol. 6, no. 3, pp.
354–363, 1998.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

14

[16] R. Bryant, “Graph-based algorithms for boolean function manipulation,”
IEEE Trans. on Computers, vol. C-35, no. 8, pp. 677–691, 1986.

[17] M. Perkowski, M. Marek-Sadowska, L. Jozwiak, T. Luba, S. Grygiel,
M. Nowicka, R. Malvi, Z. Wang, and J. Zhang, “Decomposition of
multiple-valued relations,” in Proc. Inter. Symp. on Mult.- Valued Logic,
1997, pp. 13–18.

[18] N. Vemuri, P. Kalla, and R. Tessier, “BDD-based logic synthesis for
LUT-based FPGAs,” ACM Trans. Des. Autom. Electron. Syst., vol. 7,
no. 4, p. 501–525, 2002.

[19] A. Mishchenko, R. Brayton, and S. Chatterjee, “Boolean factoring and
decomposition of logic networks,” in Proc. ICCAD, 2008, pp. 38–44.

[20] A. Mishchenko, R. Brayton, and S. Jang, “Global delay optimization
using structural choices,” in Proc. FPGA, 2010, p. 181–184.

[21] A. Mishchenko and R. Brayton, “Scalable logic synthesis using a simple
circuit structure,” in Proc. IWLS, 2006.

[22] Bertacco and Damiani, “The disjunctive decomposition of logic func-
tions,” in Proc. ICCAD, 1997, pp. 78–82.

[23] J. Cong, C. Wu, and Y. Ding, “Cut ranking and pruning: Enabling a
general and efficient FPGA mapping solution,” in Proc. FPGA, 1999.

[24] A. Mishchenko, S. Cho, S. Chatterjee, and R. Brayton, “Combinational
and sequential mapping with priority cuts,” in Proc. ICCAD, 2007.

[25] V. N. Kravets and K. A. Sakallah, “Constructive multi-level synthesis
by way of functional properties,” Ph.D. dissertation, University of
Michigan, 2001.

[26] T. Stanion and C. Sechen, “Quasi-algebraic decompositions of switching
functions,” in in Advanced Res. VLSI, 1995, pp. 358–367.

[27] C. Yang and M. Ciesielski, “BDS: a BDD-based logic optimization
system,” IEEE Trans. CAD, vol. 21, no. 7, pp. 866–876, 2002.

[28] V. Bertacco and M. Damiani, “Boolean function representation based on
disjoint-support decompositions,” in Proc. Int. Conf. on Comp. Design,
1996, pp. 27–32.

[29] Y.-T. Lai, M. Pedram, and S. Vrudhula, “BDD based decomposition of
logic functions with application to FPGA synthesis,” in DAC, 1993.

[30] A. Mishchenko and T. Sasao, “Encoding of boolean functions and its
application to LUT cascade synthesis,” in Proc. IWLS, 2002.

[31] G. De Micheli, R. Brayton, and A. Sangiovanni-Vincentelli, “Optimal
state assignment for finite state machines,” Trans. CAD, vol. 4, no. 3,
pp. 269–285, 1985.

[32] T. Villa and A. Sangiovanni-Vincentelli, “NOVA: state assignment of
finite state machines for optimal two-level logic implementation,” Trans.
CAD, vol. 9, no. 9, pp. 905–924, 1990.

[33] S. Yang and M. Ciesielski, “Optimum and suboptimum algorithms for
input encoding and its relationship to logic minimization,” Trans. CAD,
vol. 10, no. 1, pp. 4–12, 1991.

[34] A. Mishchenko, S. Chatterjee, and R. Brayton, “Fast boolean matching
for LUT structures,” EECS Dep., UC Berkeley, Tech. Rep., 2007.

[35] R. Brayton and A. Mishchenko, “ABC: An academic industrial-
strength verification tool,” in Computer Aided Verification, T. Touili,
B. Cook, and P. Jackson, Eds., 2010. [Online]. Available: https:
//github.com/berkeley-abc/abc

[36] L. Amarù, P.-E. Gaillardon, and G. D. Micheli, “The EPFL combina-
tional benchmark suite,” in Proc. IWLS, 2015.

[37] A. Mishchenko, S. Chatterjee, and R. Brayton, “FRAIGs: A unifying
representation for logic synthesis and verification,” EECS Dep., UC
Berkeley, Tech. Rep., 2005.

[38] W. Yang, L. Wang, and A. Mishchenko, “Lazy man’s logic synthesis,”
in Proc. ICCAD, 2012, p. 597–604.

[39] M. Soeken, A. Mishchenko, A. Petkovska, B. Sterin, P. Ienne, R. K.
Brayton, and G. De Micheli, “Heuristic NPN classification for large
functions using AIGs and LEXSAT,” in Theory and Applications of
Satisfiability Testing, N. Creignou and D. Le Berre, Eds., 2016.

[40] L. Fan and C. Wu, “FPGA technology mapping with adaptive gate
decomposition,” in Proc. FPGA, 2023, p. 135–140.

[41] A. Mishchenko, R. Brayton, J.-H. R. Jiang, and S. Jang, “Scalable don’t-
care-based logic optimization and resynthesis,” ACM Trans. Reconfig-
urable Technol. Syst., vol. 4, no. 4, 2011.

[42] B. Schmitt, A. Mishchenko, and R. Brayton, “SAT-based area recovery
in structural technology mapping,” in Proc. ASP-DAC, 2018, pp. 586–
591.

[43] “EPFL synthesis competition best results [2023].” [Online]. Available:
https://github.com/lsils/benchmarks/tree/v2023.1/best results

[44] A. Grosnit, C. Malherbe, R. Tutunov, X. Wan, J. Wang, and H. B.
Ammar, “BOiLS: Bayesian optimisation for logic synthesis,” in DATE,
2022, pp. 1193–1196.

[45] J. Yuan, P. Wang, J. Ye, M. Yuan, J. Hao, and J. Yan, “EasySO:
exploration-enhanced reinforcement learning for logic synthesis se-

quence optimization and a comprehensive RL environment,” in ICCAD,
2023, pp. 1–9.

[46] T. Liu, L. Chen, X. Li, M. Yuan, and E. F. Y. Young, “Finemap: A fine-
grained GPU-parallel LUT mapping engine,” in Proc. ASP-DAC, 2024,
p. 392–397.

[47] W. L. Neto, L. Amarú, V. Possani, P. Vuillod, J. Luo, A. Mishchenko,
and P.-E. Gaillardon, “Improving LUT-based optimization for ASICs,”
in Proc. DAC, 2022.

Alessandro Tempia Calvino received a B.S. degree
in Computer Engineering from the Politecnico di
Torino, Turin, Italy, in 2017, and an M.S. degree
in Computer Engineering from the Politecnico di
Torino, in 2020, and Télécom Paris, Paris, France,
in 2021. He is currently pursuing a Ph.D. degree in
Computer Science at EPFL, Lausanne, Switzerland
in the Integrated Systems Laboratory. His research
interests include design automation, logic synthesis,
and emerging technologies.

Giovanni De Micheli is Professor and Director of
the Integrated Systems Laboratory at EPFL Lau-
sanne, Switzerland. He is a Fellow of ACM, AAAS
and IEEE, a member of the Academia Europaea
and an International Honorary member of the Amer-
ican Academy of Arts and Sciences. His current
research interests include several aspects of design
technologies for integrated circuits and systems,
such as synthesis for emerging technologies. He is
member of the Scientific Advisory Board of IMEC
and STMicroelectronics. Prof. De Micheli is the

recipient of the 2022 ESDA-IEEE/CEDA Phil Kaufman Award, the 2019
ACM/SIGDA Pioneering Achievement Award, and several other awards.

Alan Mishchenko received the M.S. degree from
the Moscow Institute of Physics and Technology,
Moscow, Russia, in 1993 and the Ph.D. degree from
the Glushkov Institute of Cybernetics, Kiev, Ukraine,
in 1997. In 2002, he joined the EECS Department,
University of California at Berkeley, Berkeley, CA,
USA, where he is currently a Full Researcher. His
current research interests include computationally
efficient logic synthesis, formal verification, and
machine learning.

Robert Brayton received his Ph.D. degree in math-
ematics from MIT in 1961. He was a member
of the Mathematical Sciences Department of the
IBM T. J.Watson Research Center until he joined
the EECS Department at Berkeley in 1987. He is
a Fellow of the IEEE and a member of the Na-
tional Academy of Engineering. Notable awards in-
clude: IEEE Emanuel R. Piore (2006); ACM Kanal-
lakis (2006); European DAA Lifetime Achieve-
ment (2006); EDAC/CEDA Phil Kaufman (2007);
D.O. Pederson best paper in Trans. CAD (2008);

ACM/IEEE A. Richard Newton Technical Impact in EDA (2009); Iowa State
University Distinguished Alumnus (2010); SRC Technical Excellence (2011);
and the ACM/SIGDA Pioneering Achievement (2011). Prof. Brayton held
the Buttner Chair and the Cadence Distinguished Professorship of Electrical
Engineering and is currently a Professor in the Graduate School at Berkeley.

This article has been accepted for publication in IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems. This is the author's version which has not been fully edited and

content may change prior to final publication. Citation information: DOI 10.1109/TCAD.2024.3457378

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

