
172 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

GNN4HT: A Two-Stage GNN-Based Approach for
Hardware Trojan Multifunctional Classification

Lihan Chen , Chen Dong Member, IEEE, Qiaowen Wu, Ximeng Liu , Senior Member, IEEE, Xiaodong Guo,
Zhenyi Chen , Hao Zhang , and Yang Yang , Senior Member, IEEE

Abstract—Due to the complexity of integrated circuit design
and manufacturing process, an increasing number of third parties
are outsourcing their untrusted intellectual property (IP) cores to
pursue greater economic benefits, which may embed numerous
security issues. The covert nature of hardware Trojans (HTs)
poses a significant threat to cyberspace, and they may lead
to catastrophic consequences for the national economy and
personal privacy. To deal with HTs well, it is not enough to
just detect whether they are included, like the existing studies.
Same as malware, identifying the attack intentions of HTs, that
is, analyzing the functions they implement, is of great scientific
significance for the prevention and control of HTs. Based on the
fined detection, for the first time, this article proposes a two-
stage Graph Neural Network model for HTs’ multifunctional
classification, GNN4HT. In the first stage, GNN4HT localizes
HTs, achieving a notable true positive rate (TPR) of 94.28% on
the Trust-Hub dataset and maintaining high performance on the
TRTC-IC dataset. GNN4HT further transforms the localization
results into HT information graphs (HTIGs), representing the
functional interaction graphs of HTs. In the second stage, the
dataset is augmented through logical equivalence for training and
HT functionalities are classified based on the extracted HTIG
from the first stage. For the multifunctional classification of HTs,
the correct classification rate reached as high as 80.95% at gate-
level and 62.96% at register transfer level. This article marks a
breakthrough in HT detection, and it is the first to address the
multifunctional classification issue, holding significant practical
importance and application prospects.

Index Terms—Gate level, golden free, hardware Trojan (HT),
HT information graph (HTIG), HT location, HT multifunctional
classification, register transfer level (RTL).

Manuscript received 30 November 2023; revised 29 May 2024; accepted
7 July 2024. Date of publication 15 July 2024; date of current version
26 December 2024. This work was supported in part by the Fund of Fujian
Province Digital Economy Alliance, National Natural Science Foundation
of China under Grant 62372110, Grant 62072109, Grant 2021J06013, and
Grant U1804263; and in part by the Natural Science Foundation of Fujian
Province under Grant 2020J01500, Grant 2021J01616, Grant 2020J01891, and
Grant 2023J02008. This article was recommended by Associate Editor Y. Lyu.
(Corresponding author: Chen Dong.)

Lihan Chen, Chen Dong, Qiaowen Wu, Ximeng Liu, Xiaodong Guo,
and Hao Zhang are with the College of Computer and Data Science,
Fuzhou University, Fuzhou 350108, Fujian, China (e-mail: lh08190527@
gmail.com; dongchen@fzu.edu.cn; qiaowenwu1@gmail.com; snbnix@gmail.
com; xiaodong.guo0328@gmail.com; zhanghao@fzu.edu.cn).

Zhenyi Chen is with the Department of Computer Science and Engineering,
University of South Florida, Tampa, FL 32306 USA (e-mail: zhenyichen@
usf.edu).

Yang Yang is with the School of Computing and Information Systems,
Singapore Management University, Singapore (e-mail: yang.yang.research@
gmail.com).

Digital Object Identifier 10.1109/TCAD.2024.3428469

I. INTRODUCTION

THE EMERGENCE of cyber-physical systems (CPSs)
and the consequent growth of the Internet of Things

have heightened the reliance on electronic devices, placing
integrated circuits at a security crossroads. Security risks
in these circuits threaten national structures, economic sta-
bility, and personal financial and privacy security [1], [2].
The increasing focus on these hardware security issues is
evident across various sectors of society [3], [4]. System-on-
Chip (SoC), a critical cyberinfrastructure component, presents
distinct security challenges that cannot be ignored [5], [6].

Driven by market forces, chip producers increasingly out-
source design, depending on third-party automation tools and
intellectual property (IP) cores, shortening development times
but introducing vulnerabilities [7], [8]. These vulnerabilities
may be exploited by adversaries embedding hardware Trojans
(HTs) that escape late-stage detection and activate in operation,
compromising device integrity [1]. Moreover, chip assem-
bly from globally sourced components complicates security,
amplifying the costs and revealing weaknesses in chip design
methodologies [9].

HTs are recognized as a profound threat to IP core secu-
rity within integrated circuits and are composed of triggers
and payloads that are deftly concealed [10], [11]. Their
objectives include leaking sensitive information, changing
functionality, performance degradation, etc. As the linchpin
of cyberspace, integrated circuits are foundational in multiple
sectors; hence, undetected Trojans that become active could
wreak havoc [12], [13], [14]. Unknown trojans, hidden in
the depths, trigger panic with their undisclosed functions,
constantly threatening to compromise privacy and property,
and possessing the potential to ignite warfare. In recent
years, scientists worldwide have been committed to solving
the problem of HT detection and have made significant
progress [15].

In the semiconductor manufacturing process, two critical
stages are delineated: 1) the presilicon and 2) post-silicon
phases. The presilicon phase, preceding actual production,
involves only the conceptual and design-level documentation.
Early detection of HTs during this phase can significantly
reduce potential losses and promote the timely implementa-
tion of defensive measures. Benefiting from the augmented
computational power of modern chips, machine learning-
based approaches to HT detection have gained prominence.
Distinct from traditional Trojan detection methodologies, such

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0009-0005-4197-0219
https://orcid.org/0000-0001-7546-3403
https://orcid.org/0000-0002-4238-3295
https://orcid.org/0000-0001-9498-4300
https://orcid.org/0000-0002-2092-074X
https://orcid.org/0000-0002-7891-2670

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 173

as side-channel analysis, this novel approach obviates the
need for a golden reference, which is often elusive [16].
Furthermore, machine learning methods have demonstrated
enhanced efficacy in Trojan detection, especially at gate-
level [17], [18], [19].

During the presilicon stage, it is imperative to focus on ana-
lyzing register transfer level (RTL) descriptions and gate-level
netlists. RTL descriptions encapsulate the hardware’s logic
operations and data flow processes, whereas gate-level netlists
articulate the connections between logic gates. Traditional
machine learning methods typically involve extensive feature
extraction from each component detailed at RTL descriptions
or gate-level netlists. This conventional approach, while thor-
ough, often depends significantly on the distribution of the
dataset and may inadvertently neglect essential netlist-specific
information. The recent approach of representing circuits as
graph structures has demonstrated promising results. These
graph models encapsulate the intricate relationships within
circuitry, offering a richer and more natural representation
for HT detection. Envisioning logic gates as nodes and their
interconnects as edges within gate-level netlists and leveraging
these constructs in graph models has yielded encouraging
outcomes. At RTL, converting hardware design into data flow
graphs (DFGs) for comprehensive graph classification marks
a novel direction [20].

The goals of HT detection split into two primary
strands [21]: 1) partial detection, which interrupts the design
workflow upon detecting a Trojan and 2) complete detection,
which aims to deactivate only the Trojan-compromised sec-
tions. However, existing methods based on machine learning
or graph models have not yet truly achieved comprehensive
complete detection. To deal with HTs effectively, it is not
enough to just detect their presence or absence. Like malware,
understanding the attack intentions of HTs, that is, analyzing
the functions they implement, is of great scientific significance
for studying the prevention and control of HTs. The most
refined approaches among the latest work have managed to
localize Trojans only at gate-level; for analyzing functionality,
i.e., the different purposes of Trojans, a novel and robust
solution is still needed.

The HT multifunctional classification has three significant
implications.

1) Improved Detection Accuracy: The HT multifunctional
classification aids in more accurately identifying dif-
ferent types of HTs, thereby enhancing the precision
and efficiency of detection methods. This categorization
allows security systems to more effectively discern true
threats rather than misidentifying normal behavior as
malicious.

2) Tailored Defensive Strategies: Through HT multifunc-
tional classification, security levels can be assigned to
HTs, enabling more targeted defensive measures.

3) Deeper Insight Into Trojan Threats: Understanding the
diverse functions in HT multifunctional classification
assists in better-predicting attack mechanisms and tar-
gets, guiding more precise defensive strategies.

As with the functionality detection of malicious code,
identifying the functionality of malicious code first requires

determining its location or the module they inhabit. Similarly,
locating the Trojan is the initial step for complete HT detec-
tion, followed by HT multifunctional classification. Therefore,
precision in accurately locating Trojan hardware is crucial.
Unlike the solid logical relationships found in malicious code,
HTs lack substantial logical interconnections. Characterizing
their combined effects becomes a significant challenge once
they are located. Most importantly, the scarcity of current
datasets limits the possibility of providing sufficient data for
model training.

To address the critical challenges of HT multifunctional
classification, we introduce GNN4HT, a pioneering two-stage,
golden-free approach. Our strategy innovatively classifies HT
functionalities, marking a first in the field. The precision of the
system in HT multifunctional classification reaches 80.95% at
gate-level and 62.96% at RTL.

Our contributions are as follows.
1) GNN4HT is developed, a groundbreaking two-stage

HT complete detection framework that localizes and
classifies HT functionalities accurately without the need
for a golden reference, significantly advancing the field.

2) GNN4HT transforms gate-level netlists into undirected
graphs, incorporating graph isomorphism network (GIN)
and global graph features that substantially improve the
accuracy of HT localization, which achieves the true
positive rate (TPR) of 94.28% and demonstrate the
model’s generalizability to TRIT-TC benchmark with
95.81% TPR and 99.02% true negative rate (TNR).

3) GNN4HT introduces the hardware Trojan information
graph (HTIG), effectively connecting the interrelations
between Trojan gates and unifying the representation of
Trojan functionalities.

4) GNN4HT employs a GNN whole-graph classifier. It
augments the training set using a logic equivalence
method and further classifies the Trojan functionalities
based on the localization results from the first stage,
achieving an unprecedented 80.95% accuracy rate. To
further validate the effectiveness of our second stage,
we synthesized RTL designs into gate-level netlists to
serve as our test set, ultimately achieving an accuracy
of 62.96%

The remainder of this article is organized as follows:
Section II reviews related work. Section III describes
the Problem Model. Section IV details the Methodology,
encompassing graph modeling and threshold-based data aug-
mentation, among other techniques. Section V discusses the
Experimental Results, validating the efficacy of our proposed
methods. Finally, Section VI offers concluding remarks.

II. RELATED WORKS AND MOTIVATION

A. Related Works

Machine learning excels at unraveling intricate patterns
within complex datasets that typically elude human scrutiny.
It enables models to learn from data and autonomously
adjust to emerging patterns. In the pioneering work of
Hasegawa et al. [22], the extraction of netlist features and
the conceptualization of networks were introduced. Their

174 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

approach utilized support vector machines (SVMs) for binary
classification, creatively mitigating the issue of data imbalance
by duplicating Trojan instances. Further advancements were
made by incorporating random forests for refined classification
as explored in [23]. In a subsequent study, a multilayer
perceptron was employed [21]; however, the features used
were overly dependent on dataset distribution and could not
detect unknown Trojans.

While conventional machine learning techniques for HT
detection are promising, pathway-level analysis represents a
specialized niche. Pioneering works by Lu et al. [12] treated
each pathway as an individual entity, utilizing the netlist’s
entirety as a training corpus for a natural language process-
ing (NLP) model, yielding encouraging outcomes. Moreover,
LMDet [24] harnessed NLP methodologies to discern the
“unnaturalness” in HTs vis-à-vis legitimate circuits. This
was accomplished through statistical language models that
sequence circuit gates, scrutinizing their probabilistic fit within
the model to signal circuit sequences as suspicious when
exhibiting low-probability thresholds, indicative of potential
Trojan activity.

Graph-based models have significantly advanced the analyt-
ical prowess at RTL and gate-level, illuminating pathways to
detect and classify HTs with enhanced precision. Techniques
like GNN4TJ [25] and HW2VEC [26] at RTL have pioneered
the use of DFGs, leveraging the structural intricacies of
netlists through GNNs. The DFG structure, which matches
the RTL designs, brings high-precision reporting, but it cannot
accurately locate Trojans and can even only achieve partial
detection.

At gate-level, innovations, such as NHTD-GL [27] and
TrojanSAINT [28], have achieved marked success in precisely
pinpointing Trojan locations. NHTD-GL, employing a pio-
neering graph structure, provided a novel method for Trojan
localization, achieving high precision. Nonetheless, it stopped
short of realizing complete detection, such as multifunctional
classification. TrojanSAINT also achieved precise localiza-
tion of HTs based on gate-level netlists, demonstrating high
accuracy. This study further pointed out that the experimental
approach commonly adopted in existing literature, which
involved reserving one netlist for validation and testing, lacked
generalizability and did not correspond to real-world scenarios.

While transformative in HT detection, graph models are
not impervious to exploitation. The BadGNN attack [29]
underscores the imperative to scrutinize GNNs for vulnerabil-
ities. This method injected backdoor triggers into otherwise
benign models by introducing subtle perturbations into the cir-
cuit’s graph representation; when these compromised models
undergo training for graph classification, they adeptly bypass
detection mechanisms, posing a hidden threat.

Against this backdrop, the principle of logical equivalence
emerges as a bulwark to bolster the robustness of detection
models. A pioneering approach [30] harnessing machine
learning has been introduced, utilizing data augmentation
to strengthen Trojan detection. This technique generated a
diversified dataset by substituting gates within Trojan circuits
with their logical equivalents, enhancing the model’s exposure
to varied Trojan patterns. The R-HTDetector [31] pushed the

envelope further by employing adversarial training rooted in
logical equivalence, achieving strides toward machine learn-
ing models that are inherently more resilient. Despite these
advancements, integrating logical equivalence into existing
graph-based models remains untapped.

B. Research Challenges

At present, the solutions to the HT multifunctional classifi-
cation problem face the following challenges.

1) Golden-Free: The lack of readily available golden chips
necessitates a detection methodology that does not rely
on such references, making it critically important for
practical applications.

2) Feature Representation: Selecting and engineering fea-
tures that effectively capture the essence of the problem
is vital in machine learning. For HT detection, this
involves converting circuit data into a format understand-
able to the model, which is inherently challenging.

3) Scalability: A model’s ability to effectively adapt to
different netlists is crucial for widespread adoption.
Strong generalization capability allows for more efficient
design processes, reducing time and resources spent on
adaptation.

4) Unknown Trojan Functionality: Detecting and neutral-
izing Trojan components does not inherently disclose
their intended function. Understanding the functionality
of a Trojan goes beyond mere detection and is key to
developing a proactive defense strategy.

To address the abovementioned challenges, this article intro-
duces a two-stage, golden-free complete detection approach
to achieve high-precision localization and multifunctional
classification of HTs.

III. PROBLEM MODEL

In the context of this research, we proceed with a founda-
tional hypothesis that an attacker may implant HTs during the
design or manufacturing phases, especially within third-party
IP cores or outsourced production scenarios. The attacker’s
objectives may include leaking sensitive information, com-
promising chip functionality or performance, or activating
malevolent actions under certain conditions. The detection
based on gate-level netlists can be provided by suppliers or
obtained through reverse engineering principles involving the
reading and restoration from schematics.

In the given netlists, each logic gate i can be encoded as
a vector Xi ∈ R

d, where d represents the dimension of the
encoding space. Consequently, a netlist can be represented as
a matrix X ∈ R

n×d, where n denotes the number of logic
gates. We formulate the HT location task as a Trojan-gate
classification problem, which can be described as follows:

y = fLocation(X), y(i) ∈ y (1)

y(i) =
{

(1, 0), if the node is a Trojan gate
(0, 1), otherwise.

(2)

Definition (HTIG): Let � be a mapping function. We extract
the set of gates characterizing the HT functionality information

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 175

Fig. 1. Overall process of GNN4HT. The entire process includes two stages, location and multifunctional classification.

into a new structure, which is defined as

HTIG = �(X, y) (3)

where � is a transformation that encapsulates the localized
Trojan behavior within the netlist.

To further categorize the HTIG, that is, to ultimately classify
the function of the Trojan within each netlist, we proceed as
follows:

yHT = fMultifunction Classification(HTIG), yHT ∈ R
n (4)

where the vector yHT = [c1, c2, . . . , cn] is composed of ele-
ments ci that indicate the presence of specific functionalities,
where

ci =
{

1, if HTIG corresponds to functionality class i
0, otherwise

(5)

each ci is a binary indicator within the one-hot encoded vector
yHT, representing whether a particular Trojan functionality.

In this study, we introduce the GNN4HT framework,
designed to develop two models that approximate the functions
fLocation and fMultifunction Classification, respectively.

IV. METHODOLOGY

In this section, we outline the comprehensive framework of
GNN4HT and then delve into the specific methodologies that
support each stage of this framework.

A. GNN4HT Framework

As depicted in Fig. 1, the entire architecture of GNN4HT
consists of two main stages, each relying on a distinct graph
neural network model to solve specific target tasks. The first
stage aims to localize HTs in the target gate-level netlist
and extract related information. The second stage focuses
on addressing the issue of data scarcity by augmenting the
dataset and then performing further multifunctional classifica-
tion based on the information acquired in the first stage. The
GNN4HT process is as follows:

Preprocessing: Each gate-level netlist is represented as a
graph, and nodes and edges are endowed with specialized
features. It contains two processes as follows.

1) Graph Construction: Extract all logical gates from the
gate-level netlist as the nodes in the graph, and the
connections between these logical gates form the edges
of the undirected graph.

2) Node and Edge Feature Allocation: Features are
assigned to each node based on its original information
and topological location in the graph. To more accurately
locate HTs, global features are added to the nodes, and
port information is incorporated into the edge features.

Stage One: The objective of this stage is to achieve the
localization of the Trojan as well as to extract relevant
information about the Trojan; it primarily includes the follow-
ing two key steps.

1) Model Training and Inference: fLocation is GIN model
which is aimed at node classification. Each node is
assigned a unique computation graph and classified

176 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

using the GIN for more accurate localization of the
Trojan; the unique computation graph is articulated in
the following equation:

fv : Gv → F (6)

where fv is an injective function, ensuring that the
computation graph Gv for each node v is unique and
F represents the feature space to which each node’s
computed graph is mapped.

2) HTIG Extraction(for Inference): Nodes classified as HTs
are extracted to form HTIG, which serves as the input
for the model in the second stage.

Stage Two: This stage is dedicated to enlarging the dataset
and implementing the HT multifunctional classification. It
fundamentally comprises three pivotal steps.

1) Logical Equivalence Handling: To alleviate the problem
of data scarcity, logical equivalence is used to transform
the Trojan nodes in the undirected graph constructed in
the preprocessing stage. Let the new graph after logical
equivalence transformation be denoted as G′ = (V ′, E′),
where V ′ and E′ can be defined as follows:

V ′ = (V \ VHT) ∪ φ(VHT) (7)

E′ = E (8)

where φ : VHT → V ′ is the logical equivalence
transformation function.

2) Dataset Threshold Filtering: To filter the new dataset
derived from logical equivalence, we established a
threshold filtering mechanism. The threshold is calcu-
lated based on the intraclass similarity of the HTIG,
transformed from the undirected graphs associated with
each category of HT functionalities. The specific calcu-
lation is as follows:

μ = 1(|Dfunction|
2

) ∑
HTIGi,HTIGj∈Dfunction

i �=j

Similarity
(
HTIGi, HTIGj

)
. (9)

If the similarity θHTIG’ between the newly HTIG’
derived from G′ and its corresponding class in the
dataset is less than the established threshold μ for that
class, HTIG’ is permitted to be added to the dataset
Dfunction. Otherwise, it is not included.

3) Model Training and Inference: fMultifunctional Classification
is a GNN model specifically devised for whole graph
classification. The HTIGs, augmented and categorized
based on distinct functionalities, will be employed as
the training dataset to cultivate a robust model. The
HTs located in the initial stage and subsequently trans-
formed into HTIGs will function as the inputs for
fMultifunctional Classification, culminating in the achievement
of precise functional classification outcomes.

B. Graph Modeling

A common challenge in using graph models for HT issues is
deciding whether to represent circuit schematics as directed or
undirected graphs. Utilizing directed graphs preserves the fun-
damental direction of signal propagation in the circuitry, which
seems apt for this problem. However, for graph models, the

Fig. 2. Circuit graph modeling process of the gate-level netlist.

aggregation function only collects information in one direction
of each edge, consequently neglecting the nodes connected
on the opposite side [27]. Thus, we opt to represent circuit
diagrams as undirected graphs, facilitating better convergence
of the graph neural networks.

Each gate-level netlist is constructed as an undirected graph
G = 〈V, E〉. The node set V = {v0, v1, . . . , vn−1} comprises
n logic gates derived from the netlist. The edge set E =
{est|s, t = 0, . . . , n − 1} signifies the connections among the
gates. A bidirectional edge est is in E if the output port of the
logic gate vs is wired to the input port of the gate vt.

To represent the information and graph structure of the
circuit diagram and to enable better convergence of the graph
model, we have encoded the following features for each node
and edge in the graph as depicted in Fig. 2. Gate-level netlists
are converted into undirected graphs by a script we developed,
and features are automatically extracted from these graphs.

1) Circuit Structure: To represent the information in the
circuit, we extracted three features, with two serving as node
features and one as edge features.

Gate Type: Each gate type is uniquely identified through
one-hot encoding, with the bit corresponding to the specific
gate type encoded as one and all others as 0.

Port Information: The logic gate port data is embedded into
the edge feature. Specifically, for an edge where the output of
one gate connects to the input of another gate, the port number
type of the input is used as the edge feature and is represented
using one-hot encoding. As Fig. 2 shows, The graph includes
two types of connections where the outputs of certain gates
are linked to the inputs at ports A and B. In the original gate-
level netlist, the output of X3 is connected to the input at port
B of X5. Therefore, the edge e(x3, x5) is (1, 0).

Out-Degree and In-Degree: The degrees of outgoing and
incoming edges will be incorporated as features to characterize
the nodes, representing the logic gates.

2) Global Features: To enhance the localization of trojans,
we introduce global features to enable the model to more
effectively capture the distinct positions of nodes within the
graph. Global features are represented as node features to
indicate the positions of gates within the gate-level netlist.

Betweenness Centrality: This measure of centrality gauges
a node’s importance across all shortest paths and can be a
vital feature [32]. In the context of this study, nodes with
low-betweenness values may be integral components of HTs,

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 177

Fig. 3. (a) Demonstrates a fundamental graph structure. (b) Indicates that in this graph structure, when nodes A and B aggregate the same points, due to
GIN’s independent mapping function, the final embeddings generated in their computation graphs are different. (c) Represents that in the traditional GNN
perspective, the computation graphs for nodes A and B are identical.

influencing numerous signal paths

CB(v) =
∑
s,t∈V

σ(s, t|v)
σ (s, t)

(10)

where s and t are nodes in the graph, σ(s, t) is the total number
of shortest paths from node s to node t, and σ(s, t|v) is the
number of those paths that pass through v.

Eigenvector Centrality: Employing eigenvector centrality
gives a multifaceted assessment of a node’s influence[33].
Nodes with significant eigenvector centrality may constitute
key elements of HTs, given their considerable effect on the
entire graph

x(k+1) = Ax(k)

|Ax(k)| (11)

where A is the adjacency matrix of the graph, x(k) is the vector
of centrality scores at iteration k, and x(k+1) is the vector of
centrality scores at the next iteration.

C. Graph Isomorphism Network for HT Location

The effectiveness of GNN in various fields has been
overshadowed by specific critical limitations in capturing
underlying graph structures. We address this challenge by
implementing our model using the GIN [34], renowned for its
superior ability to discern complex structures that traditional
GNN or GraphSaint models might miss.

Classic GNNs or GraphSaint models may misclassify
identical structures within a graph, leading to possible mis-
classification of HT nodes as normal nodes if they exist
within the same subgraph structure as depicted in Fig. 3. This
misclassification can result in a significant drop in accuracy.

Conversely, GIN mitigates this challenge by associating
each node’s computational graph with unique functions. This
implies that GIN can distinguish between nodes that exhibit
structural resemblance or are identical by correlating them
with disparate functions. The integration of a specialized
global structure, as delineated in Section IV-B, further aug-
ments the GIN’s proficiency in identifying Trojan nodes. The

node update function is articulated in the following equation:

h(k+1)
v = MLP

⎛
⎝(1 + ε) · h(k)

v +
∑

u∈N(v)

h(k)
u

⎞
⎠ (12)

where h(k+1)
v signifies the updated feature of node v at the

(k + 1)th iteration, N(v) is the set of neighboring nodes of v,
and ε is a trainable parameter.

The refined node features are then fed into a Softmax layer
to produce the final classification

Y = Softmax
(

FC(h(k+1)
v)

)
(13)

where FC denotes the Fully Connected layer, and h(k+1)
v are

the node features processed by the GIN model.
In our methodology, we optimize the model using a spe-

cialized weighted cross-entropy loss function, emphasizing the
prediction of Trojan nodes

Loss = −
N∑

i=1

wi
[
yi log(pi) + (1 − yi) log(1 − pi)

]
(14)

here, N indicates the total number of data points, wi refers to
the weights for each category (based on the ratio of Trojan and
non-Trojan nodes), yi represents the proper categories, and pi

are the predicted probabilities. This loss function makes the
model more biased toward predicting Trojan nodes, enhancing
accuracy in locating HTs.

D. Hardware Trojan Information Graph

HTs Typically Comprise Two Elements: a trigger and a
payload part. The trigger and payload often reside within low-
activity, inconspicuous networks, modifying the propagation
of signals to achieve their objective [35], [36]. To express their
combined effect and characterize their joint representation,
we propose the concept of HTIG. The following outlines the
derivation method for HTIG.

1) Node Selection: We extract the nodes associated with
HTs from the undirected graph G. This is defined as

VHTIG = {vi | vi ∈ VG, and vi is a trojan node} (15)

178 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

Fig. 4. Construction of HTIG.

Algorithm 1 Extract HTIG
1: Input: Graph G, HT nodes set H
2: Output: HTIG
3: Initialize an empty graph HTIG
4: for each node n in G do
5: if n is in H then
6: Add node n to HTIG
7: end if
8: end for
9: for each pair of nodes n1, n2 in HTIG do

10: if n1 �= n2 then
11: The shortest distance between node n1 and n2 in

the original graph G is used as the edge weight in HTIG
12: end if
13: end for
14: return HTIG

the vectors of nodes in the original graph G will be
retained, which can characterize the information of this
Trojan gate in the original graph.

2) Edge Definition: For the edges within HTIG, they are
defined as follows:

EHTIG = {(
vi, vj, wij

) | vi, vj ∈ VHTIG
}

(16)

here, wij signifies the number of hops between iden-
tified Trojan gates, depicted as the shortest distance
between nodes in the original graph, encapsulating the
interconnections among Trojan components.

With the initial stage of the GNN4HT framework concluded,
wherein Trojans are located, and their nodes are harvested into
HTIG for assembling the test set for multifaceted classification
tasks, attention shifts toward the onset of the second stage.
This stage, illustrated in Fig. 1, entails preparing the training
set, which HTIG is similarly extracted from the graph refined
during the preprocessing stage. To alleviate the constraints
of a limited dataset, logical equivalence transformations are
strategically deployed on the nodes within the graph. This
critical augmentation is executed on the preprocessed undi-
rected graph rather than the HTIG to avoid diluting the nodes’
inherent global features. This measure is pivotal to maintaining
the fidelity of Trojan functionality classification. The trojan
nodes’ unique attributes are preserved through careful dataset
augmentation via the undirected graph, thereby empowering a
more robust and precise classification.

Fig. 5. Logic gate replacement patterns.

E. Dataset Augmentation via Logic Equivalence

HT multifunctional classification has two predominant chal-
lenges: 1) the effective representation of Trojan information
and 2) the prevalent scarcity of datasets. The preceding
section addresses the former by detailing a robust extraction
method for salient Trojan information. This section pivots to
introducing methodologies devised to bolster the HT dataset,
laying solid groundwork for our forthcoming multiclassifica-
tion experiments. Hasegawa et al. [30] originally introduced
the notion of logical equivalence, a concept markedly dis-
tinct from traditional image data augmentation, owing to the
unique limitations of integrated circuit augmentation. The
augmentation must preserve the circuit’s logical functionality
to maintain its operational integrity; concurrently, extensive
modifications are eschewed to circumvent any undue increase
in power consumption or significant latency.

In a departure from Hasegawa et al.’s logical equivalence
schema, our approach harnesses De Morgan’s theorem to facil-
itate logical equivalence substitutions within gate-level netlists.
We conceptualize De Morgan’s theorem as a transformational
function that prescribes an equivalent gate combination for any
given gate type; this prescribed combination conservatively
maintains both the count of input and output wires and the
gate’s logical functionality intact. Recognizing the constraints
of De Morgan’s theorem and the rich diversity of gate types
present in netlists, we incorporate a comprehensive suite of
gates, such as NAND, NOR, AND, OR, XOR, and XNOR.
The granularity of our approach extends to distinguishing
between gates with two, three, and four inputs, reflecting their
structural and functional variances. The transformation process
consequently generates an array of corresponding replacement
patterns. Moreover, the four transformation strategy employs
NOT gates to execute logical equivalence or the more intricate
and sequential components like flip-flops and multiplexers;
these replacement patterns and their implications are graphi-
cally elucidated in Fig. 5.

In our dataset augmentation process, each undirected graph
set Gi is initially transformed into its corresponding HTIG
collection, denoted as Horig. A threshold τi is established based

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 179

Algorithm 2 Threshold-Based Logical Equivalence Data
Augmentation for a Specific Function Set Gi.

1: Input: Specific function set Gi, logical equivalence ratio
α, substitution pattern p

2: Output: Augmented HTIG set Haug
3: Initialize the HTIG collection Horig from Gi

4: Compute intraclass similarity threshold τi for Horig
5: Randomly select a graph G from Gi

6: Apply logical equivalence to G using p to generate G′
7: Convert G′ to HTIG H′
8: Calculate the average similarity S(H′) with all HTIGs in

Horig
9: if S(H′) ≤ τi then

10: Add H′ to Horig
11: end if
12: return the augmented HTIG collection Haug

on the internal cosine similarity within each Horig collection,
serving as a crucial filter to preserve the diversity of the
dataset.

The graph embedding E(G) for each graph G is computed
utilizing the aggregate function

E(G) = Agg
({

h(L)
v : v ∈ V(G)

})
. (17)

The cosine similarity between two HTIG embeddings,
E(Ha) and E(Hb), is given by

Cosine Similarity(E(Ha), E(Hb)) = E(Ha) · E(Hb)

‖E(Ha)‖‖E(Hb).‖ (18)

The threshold τi for each functional class in Horig is the
mean cosine similarity across all HTIG pairs

τi = 1

|Gi|(|Gi| − 1)

∑
Ha,Hb∈Horig,

a�=b

Cosine Similarity(E(Ha), E(Hb)).

(19)

For each new graph G′ generated through logical equiva-
lence transformations, which is transformed into HTIG H′, its
average cosine similarity with HTIGs in Horig is computed.
HTIG H′ is included in Horig only if its similarity S(H′) is
less than or equal to τi

S
(H′) = 1

|Gi|
∑

H∈Horig

Cosine Similarity
(
E(H′), E(H)

)
. (20)

Algorithm 2 details the threshold-based selection method for
logical equivalence augmentation applied to specific functional
categories of HT sets under a given logical equivalence
ratio. This approach effectively mitigates the issue of dataset
insufficiency, enhancing the robustness of our multifunctional
classification model.

F. HT Multifunctional Classification

This section will integrate the content above to finalize the
HT multifunctional classification.

A GNN model tailored for whole-graph classification at this
stage as depicted in Fig. 6. This model augments the analytical

Fig. 6. Process of multifunctional classification of HTs.

scope from the targeted node classification of the initial stage
to encompass the entire graph, focusing on HTIG that captures
the essence of HT functionalities.

The node update mechanism for our GNN model, which
serves as the backbone for learning graph representations, is
defined by the equation

h(l+1)
v = σ

⎛
⎝W(l)h(l)

v +
∑

u∈N(v)

W(l)h(l)
u

⎞
⎠ (21)

where h(l)
v signifies the hidden state of node v at layer l, σ

represents the nonlinear activation function, and N(v) denotes
the set of neighboring nodes of v.

For whole-graph classification, the GNN model leverages
the composite graph embedding obtained by aggregating the
node embeddings from the last layer L

Z = 1

|V|
∑
v∈V

h(L)
v . (22)

This embedding is then projected through a fully connected
layer and processed by a Softmax function to yield the final
classification vector

C = Softmax(FC(Z)) (23)

where FC is the fully connected layer and C denotes the
predicted classifications.

Utilizing the enriched HTIG as the training set, the model
is optimized using the Adam optimizer. The objective is to
minimize the cross-entropy loss function L

L = −
∑
g∈G

K∑
k=0

Ygk ln
(
Zgk

)
(24)

here, G represents the set of graphs, K is the number of HT
functionalities, Y is the ground truth, and Z is the predicted
label distribution for each graph.

After training, we leverage the outcomes from stage one
as inputs to refine the model further, enabling us to obtain
accurate classification results for HT functionalities.

V. EXPERIMENT RESULTS AND ANALYSIS

A. Experiments of Preprocessing

In our experiments, we selected netlists provided by
Trust-Hub [37] and TRIT-TC [38] as our experimental bench-
marks. The gate-level netlists involved in the experiments are

180 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

TABLE I
COMPARE THE LOCALIZATION EFFICACY OF GNN4HT ACROSS VARIOUS NETLISTS WITH ADVANCED METHODOLOGIES

TABLE II
BEST PARAMETERS FOR THE FIRST STAGE OF GNN4HT

presented in Tables I and III. Twenty-one netlists are chosen
from Trust-Hub and fifteen from TRIT-TC, which encom-
passes three types of Trojan functionalities, with the number
of gates in the gate-level netlists ranging from hundreds to
hundreds of thousands. The netlists from Trust-Hub were used
for the experiments in both the first and second stages, while
the netlists from TRIT-TC were employed to validate the
effectiveness of the GIN model in the first stage.

As Section IV-B describes, each netlist from the aforemen-
tioned benchmarks is constructed into an undirected graph. In
the Trust-Hub netlist collection, each node of the transformed
undirected graph is built into a 95-D feature vector, where 93
dimensions represent circuit features, including a 91-D one-hot
encoding of gate types and two dimensions for the in-degree
and out-degree. The remaining two dimensions represent
global features. Edge features are expressed in a 50-D vector,
reflecting the complexity of 50 different port numbers. In
the undirected graphs constructed from the TRIT-TC dataset,
node features are encoded into 48-D feature vectors, with
46 dimensions for circuit features and 2 for global features.
Port information is encapsulated within the 45-D edge feature
vectors.

B. Experiments of HT Location

Experiment Setup: Consistent with [27], We adopted
the leave-one-out cross-validation (LOOCV) method. For
instance, in evaluating the RS232-T1000 netlist, the remaining
netlists served as the training set, and RS232-T1000 was
exclusively used as the test set. The experimental parameters
of the models used in the experiment are shown in Table II. In

TABLE III
COMPARING THE PERFORMANCE OF GNN4HT ON THE TRIT-TC

DATASET WITH EXISTING METHODS, WITHOUT ALTERING

THE MODEL PARAMETERS

the GIN model configuration, learn_eps was set to True
to better adapt to the data. The aggregation method chosen
was sum, which preserves the uniqueness and discriminative
power of the neighboring node features. The experiments
were performed on a computer with an Intel Core i7-12700H
(2.30 GHz) and an NVIDIA GeForce RTX 3070 Laptop GPU
(8 GB of GDDR6 memory).

Throughout the experiments, classification outcomes for
each netlist are meticulously documented, including counts
of true positives (TPs), true negatives (TNs), false positives
(FPs), and false negatives (FNs). The associated models are
evaluated using two specific machine learning metrics: 1) true
positive rate (TPR, or Recall) and 2) TNR. These metrics are
calculated as follows:

TPR = TP

TP + FN
, TNR = TN

FP + TN
.

Tables I and III compare the stage one detection model of
GNN4HT to other state-of-the-art gate-level netlist location
methods. By examining Table I, it is evident that GNN4HT

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 181

Fig. 7. Results of ablation experiments in four different cases.

exhibits an exceptional performance in the experiments, with
TPR and TNR reaching 94.28% and 97.22%, respectively.
The astonishing 94.28% TPR surpasses other gate-level
netlist location models, affording the best TPR, indicating
our superior capability in locating Trojans. Furthermore, the
exceptional results are not derived through leave-one-out
split, where one sample is reserved as both the test and
validation set. This method is often considered in literature
due to its ability to showcase a model’s optimal performance.
In [28], they discuss an optimal scenario where leave-one-
out validation yields precision with a TPR of up to 96%
and a TNR of 98%. In this experiment, we do not endorse
this unrealistic scenario because our localization performance
is already exceedingly close to what they deem optimal in
practical applications. This success can be attributed to several
factors: using global features to help the graph model more
accurately identify Trojans, utilizing port information to aid
the model’s convergence, and employing the GIN model to
provide individual mapping functions for each node. These
advantages are validated in the ablation study. Due to the
parallel computing acceleration of the GPU, the model can
locate the trojans of the netlist containing 105 gates within
105.63ms.

Ablation Study: This study was designed to elucidate the
contributions of global features and port information encoding
in HT location. To this end, we executed ablation studies
under three distinct configurations, each juxtaposed against our
standard research model. The ablation configurations are as
follows.

1) “Without Global Features”: This setting solely relies on
port information, excluding global features.

2) “Without Port Information”: We focused on global
features, omitting the port encoding.

3) “Without Global Features & Port Information”: Both
global features and port information were omitted,
providing a baseline for comparison.

4) “GNN4HT”: An optimal localization approach
integrating global features and port information.

The outcomes of these studies, depicted in Fig. 7, it can
be observed that without the aid of port information and
global features, GIN fails to effectively learn the distinctions
between Trojan and normal gates in the graph, resulting in
TPR and TNR. With the addition of port information, GIN’s
sensitivity to normal gates improves, yet it still struggles

Fig. 8. Schematic of the HTIG extracted from the undirected graph converted
from the RS232-T1000 with the predicted Trojan nodes. (a) Displays the
node classification results in the undirected graph transformed from the netlist
predicted by the GIN model. (b) Shows the result of extracting the HTIG,
with edge weights representing the shortest distance between nodes in the
original undirected graph.

to accurately identify Trojan gates. However, incorporating
global features significantly enhances GIN’s ability to effec-
tively locate Trojan gates.

To verify the generalizability of our method, we conducted
Trojan localization on netlists using the TRIT-TC dataset under
the same experimental settings, with results shown in Table III,
GNN4HT achieved the best performance to date, confirming
the robustness and effectiveness of our model. A TPR of
95.81% and a TNR of 99.02% surpass existing methods.

Upon completion of the localization process, the results
are encapsulated within HTIGs, which serve as a collective
representation of the identified Trojan gates and their func-
tionalities. As depicted in Fig. 8, in the case of RS232-1000,
the locations of Trojans identified by the GIN model were
transformed into HTIG. They served as the test set for the
final HT multifunctional classification model. We reported the
time taken to extract the HTIG after locating the Trojans. Most
netlists could be processed within 3 min. However, the netlist
s38584-T300 contains more Trojans, which requires more time
to traverse the graph and calculate the hop counts between
Trojan gates.

C. Experiments of HT Multifunctional Classification

In this section, the experimental results of dataset augmen-
tation based on logical equivalence are presented, as well as
the training and final functional classification results of the
second-stage model. To verify the feasibility of GNN4HT, we
synthesized the RTL benchmarks into gate netlists to test the
effectiveness of the second stage model.

Tables IV and V summarize the classifications of the netlists
involved in three types of functionalities as well as the
interclass similarity of the functionalities associated with the
extracted HTIGs. Clearly, dataset augmentation is necessary
for each type of functionality due to the common issues
of insufficient datasets and overly high-interclass similarity,
especially in the category of leak information, where the

182 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

TABLE IV
SUMMARY OF TROJAN FUNCTIONALITIES AND CORRESPONDING

DATASETS

TABLE V
SUMMARY OF TROJAN FUNCTIONALITIES AND SIMILARITY MEANS

TABLE VI
BEST PARAMETERS FOR THE SECOND STAGE OF GNN4HT

availability of only three datasets severely hampers the model’s
learning capabilities.

Experiment Setup: Similar to the experimental setup in the
first stage, leave-one-out validation is used for each tested
netlist, ensuring that each tested netlist remains unknown.
For instance, if the netlist RS232-T1000 is considered as
the test netlist, the first-stage model will be trained on the
remaining 20 netlists to locate Trojans and extract them
as HTIGs. The second-stage functional classification model
will also not see this netlist. The remaining 20 netlists
will be used as the training set, with logical augmentation
performed only on these 20 netlists. Subsequently, they will be
extracted as HTIG and used for model training, and finally, the
functional classification will be performed on the test netlist.
Regarding dataset augmentation, we selected a range of logical
equivalence ratios from 5% to 95%, with increments of 5%.
For each functionality, at each ratio, we randomly selected a
graph from the collection to perform augmentation based on
logical equivalence. The parameters related to the functional
classification model are shown in Table VI.

Table VII shows the number of netlists used as the training
set, which are the remaining 20 netlists processed through
logical equivalence when each netlist was used as the test
set and the classification results for the original dataset of 20
netlists and the augmented dataset.

With only 20 netlists used as the training set, the accuracy
rate for Trojan functionality classification was merely 52.38%.
In the category of changing function, most netlists were
correctly classified, however, in the denial of service category,
due to low-intraclass similarity and an insufficient dataset, the
model could only correctly identify the functionality of two
netlists. In the leak information category, not a single netlist
was correctly identified due to only having two netlists in this
category when one was used as the test set, which prevented

TABLE VII
PERFORMANCE OF MULTIFUNCTIONAL CLASSIFICATION MODEL ON 21
BENCHMARKS WITH AND WITHOUT LOGIC EQUIVALENCE EXPANSION

the model from learning sufficient information about the class.
Additionally, the results of Trojan localization in the first stage
also impact the function classification outcomes. Even though
we achieved a high TPR and effectively located Trojans in
the first stage, the misclassification of normal gates as Trojan
gates, followed by their extraction into HTIGs, also affected
the representation of Trojan functions.

After logical equivalence processing, the average number
of training netlists per test netlist increased to 66, sig-
nificantly boosting the training data volume to 3.14 times
the original amount. Moreover, only netlists that passed a
threshold selection could be added to the dataset, effectively
reducing interclass similarity. By applying logical equivalence
to Trojan gates, we enhanced the different representations of
HTIGs under the same function, which increased the model’s
robustness and sensitivity to Trojan-related information, the
model could better learn the Trojan functionality represented
by HTIGs. In both the denial of service and leak information
categories, only one netlist’s functionality was not correctly
identified, and the accuracy of function classification reached
80.95%. Additionally, we have reported the detection times of
our multifunctional classification model. Our model is capable
of detecting the functionality of any netlist that has been
located in the first stage and extracted as a HTIG within
5.245 ms.

To verify the effectiveness of our second stage model,
we used an open-source RTL synthesis tool called Yosys
[40]. We synthesized RTL designs into gate-level netlists
and tested them. We expanded the dataset through logical
equivalence on 21 netlists from Trust-Hub and trained the
entire set. To prevent Yosys from optimizing away the relevant
HT code, we specified in Yosys not to delete any user-
defined cells for netlists that lacked Trojan information after
synthesizing to gate-level, ensuring that the Trojan gates are
preserved. In these RTL codes, we marked all modules related
to Trojans, and upon conversion to gate-level, all gates from
these modules were treated as Trojan gates. These gates were
then extracted as HTIGs to form the test set.

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 183

TABLE VIII
COMPARE THE PERFORMANCE OF GNN4HT WITH THE STATE-OF-THE-ART HT DETECTION

31

TABLE IX
BEST PARAMETERS FOR THE SECOND STAGE OF GNN4HT FOR RTL

DESIGNS

TABLE X
PERFORMANCE OF MULTIFUNCTIONAL CLASSIFICATION MODEL ON RTL
BENCHMARKS WITH AND WITHOUT LOGIC EQUIVALENCE EXPANSION

The parameters and results of the RTL designs multifunc-
tional classification model are shown in Tables IX and X. It
can be observed that before applying logical equivalence, the
model’s accuracy was merely 14.81%. This low accuracy is
due to the insufficiency of the dataset and because our test
dataset, aimed at including more Trojan information, contained
a lot of redundant information. In contrast, the Trojan gates
in the gate-level netlists on Trust-Hub are inserted directly,

designed to be covert and hard to detect without redun-
dant information. Logical equivalence resolved this issue by
expanding the dataset, which improved the model’s robustness
and increased its accuracy by 48.15%. The training set did
not contain RTL designs and was trained only with gate-level
netlists. Testing conducted by converting RTL to gate-level
netlists also achieved an accuracy of 62.96%, demonstrating
the viability of this method.

Table VIII presents the comparison results of our model
with existing advanced HT detection technologies. It can
be observed that existing models were mainly focused on
detecting Trojan components in netlists (i.e., stage one). Yasaei
et al. [25], [26] both developed models for detecting Trojans
at RTL and gate-level, but these models can only determine
whether the entire netlist contains Trojans without the ability to
detect specific Trojan components. Among the models that can
locate Trojans, GNN4HT achieved the highest TPR of 94.28%,
and our model has also demonstrated excellent performance in
other datasets. GNN-RE [2] achieved good results in locating
gates and classifying their functions in gate-level netlists, but it
cannot classify the functions of Trojans. Building on the results
of the first stage, GNN4HT introduced the innovative HTIG.
It expanded the dataset using logical equivalence, achieving
accuracies of 80.95% and 62.96% at gate-level and RTL,
respectively. This introduces a new direction for HT detection
and marks a significant advancement in hardware security.

VI. CONCLUSION

In this study, we introduced a two-stage model based on
GNNs that effectively addresses the multifunctional classifi-
cation of HTs. GNN4HT addresses the three main challenges
in the multifunctional classification of HTs: 1) high-precision
localization; 2) structural representation of HT functionalities;
and 3) dataset insufficiency. In the first stage, GNN4HT
employs the unique node computational graph mapping
method and global structure of GIN to achieve a high TPR
of 94.28%, ensuring precise localization. Furthermore, its

184 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 44, NO. 1, JANUARY 2025

performance on the TRIT-TC dataset demonstrates its gen-
eralizability, surpassing existing HT localization methods. To
better represent the interactions between Trojan gates and the
expression of HT functionalities, we introduced the HTIG
and encapsulated the localization results into HTIG. In this
stage, GNN4HT adopts a threshold-based logic equivalence
data augmentation method to enrich the dataset diversity and
alleviate the issue of dataset insufficiency. GNN4HT trains
a robust GNN whole-graph classification model and further
classifies the functionalities of the located HTs, achieving
a 80.95% accuracy rate at gate-level and 62.96% at RTL.
This is the first time in the world that Trojan functionalities
have been classified, representing a significant breakthrough
with important practical implications and broad application
prospects.

REFERENCES

[1] X. Chen et al., “Hardware trojan detection in third-party digi-
tal intellectual property cores by multilevel feature analysis,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 7,
pp. 1370–1383, Jul. 2018.

[2] L. Alrahis et al., “GNN-RE: Graph neural networks for reverse engineer-
ing of gate-level netlists,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 41, no. 8, pp. 2435–2448, Aug. 2022.

[3] C. Liu, P. Cronin, and C. Yang, “Securing cyber-physical systems from
hardware trojan collusion,” IEEE Trans. Emerg. Topics Comput., vol. 8,
no. 3, pp. 655–667, Sep. 2020.

[4] A. K. M. J. Alam Majumder, C. B. Veilleux, and J. D. Miller,
“A cyber-physical system to detect IoT security threats of a smart
home heterogeneous wireless sensor node,” IEEE Access, vol. 8,
pp. 205989–206002, 2020.

[5] A. Jain, Z. Zhou, and U. Guin, “Survey of recent developments for
hardware trojan detection,” in Proc. IEEE Int. Symp. Circuits Syst.
(ISCAS), 2021, pp. 1–5.

[6] C. Dong, G. He, X. Liu, Y. Yang, and W. Guo, “A multi-layer
hardware trojan protection framework for IoT chips,” IEEE Access,
vol. 7, pp. 23628–23639, 2019.

[7] A. Basak, S. Bhunia, T. Tkacik, and S. Ray, “Security assurance for
system-on-chip designs with untrusted IPs,” IEEE Trans. Inf. Forensics
Security, vol. 12, pp. 1515–1528, 2017.

[8] B. Shakya, T. He, H. Salmani, D. Forte, S. Bhunia, and M. Tehranipoor,
“Benchmarking of Hardware Trojans and maliciously affected circuits,”
J. Hardw. Syst. Secur., vol. 1, pp. 85–102, Mar. 2017.

[9] S. Charles, V. Bindschaedler, and P. Mishra, “Digital watermarking for
detecting malicious intellectual property cores in NoC architectures,”
IEEE Trans. Very Large Scale Integr. (VLSI) Syst., vol. 30, no. 7,
pp. 952–965, Jul. 2022.

[10] N. Vashistha, H. Lu, Q. Shi, D. L. Woodard, N. Asadizanjani, and
M. M. Tehranipoor, “Detecting Hardware Trojans using combined self-
testing and imaging,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 41, no. 6, pp. 1730–1743, Jun. 2022.

[11] G. Piliposyan and S. Khursheed, “PCB hardware trojan run-time
detection through machine learning,” IEEE Trans. Comput., vol. 72,
no. 7, pp. 1958–1970, Jul. 2023.

[12] R. Lu, H. Shen, Y. Su, H. Li, and X. Li, “GramsDet: Hardware trojan
detection based on recurrent neural network,” in Proc. IEEE 28th Asian
Test Symp. (ATS), 2019, pp. 111–115.

[13] H. Salmani, “Gradual-N-Justification (GNJ) to reduce false-positive
hardware trojan detection in gate-level netlist,” IEEE Trans. Very Large
Scale Integr. (VLSI) Syst., vol. 30, no. 4, pp. 515–525, Apr. 2022.

[14] T. Kurihara, K. Hasegawa, and N. Togawa, “Evaluation on hardware-
trojan detection at gate-level IP cores utilizing machine learning
methods,” in Proc. IEEE 26th Int. Symp. Line Test. Robust Syst. Design
(IOLTS), 2020, pp. 1–4.

[15] Y. Wang, P. Liu, X. Han, and Y. Jiang, “Hardware trojan detection
method for inspecting integrated circuits based on machine learning,”
in Proc. 22nd Int. Symp. Qual. Electron. Design (ISQED), 2021,
pp. 432–436.

[16] S. Faezi, R. Yasaei, and M. A. Al Faruque, “HTnet: Transfer learning
for golden chip-free hardware trojan detection,” in Proc. Design, Autom.
Test Eur. Conf. Exhibit. (DATE), 2021, pp. 1484–1489.

[17] Y. Wang, T. Han, X. Han, and P. Liu, “Ensemble-learning-based
Hardware Trojans detection method by detecting the trigger nets,” in
Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2019, pp. 1–5.

[18] M. Oya, Y. Shi, M. Yanagisawa, and N. Togawa, “A score-based
classification method for identifying hardware-Trojans at gate-level
netlists,” in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2015,
pp. 465–470.

[19] Z. Huang, Q. Wang, Y. Chen, and X. Jiang, “A survey on machine learn-
ing against hardware Trojan attacks: Recent advances and challenges,”
IEEE Access, vol. 8, pp. 10796–10826, 2020.

[20] R. Yasaei, L. Chen, S.-Y. Yu, and M. A. Al Faruque, “Hardware
Trojan detection using graph neural networks,” IEEE Trans. Comput.-
Aided Design Integr. Circuits Syst., early access, May 26, 2022,
doi: 10.1109/TCAD.2022.3178355.

[21] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Hardware Trojans
classification for gate-level netlists using multi-layer neural networks,”
in Proc. IEEE 23rd Int. Symp. Line Test. Robust Syst. Design (IOLTS),
2017, pp. 227–232.

[22] K. Hasegawa, M. Oya, M. Yanagisawa, and N. Togawa, “Hardware
Trojans classification for gate-level netlists based on machine learning,”
in Proc. IEEE 22nd Int. Symp. Line Test. Robust Syst. Design (IOLTS),
2016, pp. 203–206.

[23] K. Hasegawa, M. Yanagisawa, and N. Togawa, “Trojan-feature extrac-
tion at gate-level netlists and its application to Hardware-Trojan
detection using random forest classifier,” in Proc. IEEE Int. Symp.
Circuits Syst. (ISCAS), 2017, pp. 1–4.

[24] H. Shen, H. Tan, H. Li, F. Zhang, and X. Li, “LMDet: A ‘naturalness’
statistical method for Hardware Trojan detection,” IEEE Trans. Very
Large Scale Integr. (VLSI) Syst., vol. 26, no. 4, pp. 720–732, Apr. 2018.

[25] R. Yasaei, S.-Y. Yu, and M. A. Al Faruque, “GNN4TJ: Graph neural
networks for Hardware Trojan detection at register transfer level,”
in Proc. Design, Autom. Test Eur. Conf. Exhibit. (DATE), 2021,
pp. 1504–1509.

[26] S.-Y. Yu, R. Yasaei, Q. Zhou, T. Nguyen, and M. A. Al Faruque,
“HW2VEC: A graph learning tool for automating hardware security,”
in Proc. IEEE Int. Symp. Hardw. Orient. Secur. Trust (HOST), 2021,
pp. 13–23.

[27] K. Hasegawa, K. Yamashita, S. Hidano, K. Fukushima, K. Hashimoto,
and N. Togawa, “Node-wise hardware trojan detection based on
graph learning,” IEEE Trans. Comput., early access, May 25, 2023,
doi: 10.1109/TC.2023.3280134.

[28] H. Lashen, L. Alrahis, J. Knechtel, and O. Sinanoglu, “TrojanSAINT:
Gate-level netlist sampling-based inductive learning for Hardware Trojan
detection,” in Proc. IEEE Int. Symp. Circuits Syst. (ISCAS), 2023,
pp. 1–5.

[29] L. Alrahis and O. Sinanoglu, “Graph neural networks for hardware
vulnerability analysis—Can you trust your GNN?” in Proc. IEEE 41st
VLSI Test Symp. (VTS), 2023, pp. 1–4.

[30] K. Hasegawa, S. Hidano, K. Nozawa, S. Kiyomoto, and N. Togawa,
“Data augmentation for machine learning-based Hardware Trojan detec-
tion at gate-level netlists,” in Proc. IEEE 27th Int. Symp. Line Test.
Robust Syst. Design (IOLTS), 2021, pp. 1–4.

[31] K. Hasegawa, S. Hidano, K. Nozawa, S. Kiyomoto, and N. Togawa,
“R-HTDetector: Robust Hardware-Trojan detection based on adversarial
training,” IEEE Trans. Comput., vol. 72, no. 2, pp. 333–345, Feb. 2023.

[32] K. Madduri, D. Ediger, K. Jiang, D. A. Bader, and D. Chavarria-Miranda,
“A faster parallel algorithm and efficient multithreaded implementations
for evaluating betweenness centrality on massive datasets,” in Proc.
IEEE Int. Symp. Parallel Distrib. Process., 2009, pp. 1–8.

[33] G. L. D. l. Sarracén and P. Rosso, “Offensive keyword extraction based
on the attention mechanism of BERT and the eigenvector centrality using
a graph representation,” Pers. Ubiquitous Comput., vol. 27, pp. 45–57,
Feb. 2023.

[34] X. Wang and M. Zhang, “How powerful are spectral graph neu-
ral networks,” in Proc. 39th Int. Conf. Mach. Learn., 2022,
pp. 23341–23362.

[35] H. Salmani, “COTD: Reference-free Hardware Trojan detection and
recovery based on controllability and observability in gate-level netlist,”
IEEE Trans. Inf. Forensics Security, vol. 12, pp. 338–350, 2017.

[36] A. Mondal, S. Karmakar, M. H. Mahalat, S. Roy, B. Sen, and
A. Chattopadhyay, “Hardware Trojan detection using transition proba-
bility with minimal test vectors,” ACM Trans. Embed. Comput. Syst.,
vol. 22, no. 1, pp. 1–21, Oct. 2022.

[37] “Trust-HUB.”Accessed: May 15, 2024. [Online]. Available: https://trust-
hub.org

http://dx.doi.org/10.1109/TCAD.2022.3178355
http://dx.doi.org/10.1109/TC.2023.3280134

CHEN et al.: GNN4HT: A TWO-STAGE GNN-BASED APPROACH FOR HT MULTIFUNCTIONAL CLASSIFICATION 185

[38] H. Salmani, M. Tehranipoor, and R. Karri, “On design vulnerability
analysis and trust benchmarks development,” in Proc. IEEE 31st Int.
Conf. Comput. Design (ICCD), 2013, pp. 471–474.

[39] S. Li, Y. Zhang, X. Chen, M. Ge, Z. Mao, and J. Yao, “A XGBoost based
hybrid detection scheme for gate-level Hardware Trojan,” in Proc. IEEE
9th Joint Int. Inf. Technol. Artif. Intell. Conf. (ITAIC), 2020, pp. 41–47.

[40] C. Wolf. “Yosys open synthesis suite.” Accessed: May 15, 2024.
[Online]. Available: http://www.clifford.at/yosys/

Lihan Chen received the B.S. degree from the
College of Computer and Data Science, Fuzhou
University, Fuzhou, China, in 2022, where he is
currently pursuing the master’s degree in artificial
intelligence.

His research interests include hardware security
and graph neural networks.

Chen Dong (Member, IEEE) received the B.S. and
M.S. degrees from the College of Computer and
Data Science, Fuzhou University, Fuzhou, China, in
2002 and 2005, respectively, and the Ph.D. degree in
computer science from the Computer School, Wuhan
University, Wuhan, China, in 2011.

She was a Visiting Researcher with the University
of California at Los Angeles, Los Angeles,
CA, USA, from 2015 to 2016. She is cur-
rently an Associate Professor with the College of
Computer and Data Science, Fuzhou University. Her

research interests include artificial intelligence, hardware security, intelligent
computing, and integrated circuit physical design.

Qiaowen Wu received the B.S. degree in elec-
tronic and information engineering from the Wuhan
University of Science and Technology, Wuhan,
China, in 2019. She is currently pursuing the mas-
ter’s degree in computer software and theory with
the College of Computer and Data Science, Fuzhou
University, Fuzhou, China.

Her research interests include hardware security
and artificial intelligence.

Ximeng Liu (Senior Member, IEEE) received the
B.S. degree in electronic engineering and the Ph.D.
degree from Xidian University, Xi’an, China, in
2010 and 2015, respectively.

He is currently a Full Professor with the
College of Computer and Data Science, Fuzhou
University, Fuzhou, China. He was a Research
Fellow with the School of Information System,
Singapore Management University, Singapore. He
has published more than 250 papers on the topics
of cloud security and big data security, includ-

ing papers in the IEEE TRANSACTIONS ON COMPUTERS, the IEEE
TRANSACTIONS ON INDUSTRIAL INFORMATICS, the IEEE TRANSACTIONS

ON DEPENDABLE AND SECURE COMPUTING, the IEEE TRANSACTIONS ON

SERVICE COMPUTING, and the IEEE INTERNET OF THINGS JOURNAL. His
research interests include cloud security, applied cryptography, and big data
security.

Dr. Liu was awarded the ACM SIGSAC China Rising Star Award.

Xiaodong Guo received the B.S. degree in software
engineering from the College of Computer and
Science, Huaqiao University, Quanzhou, China, in
2020. He is currently pursuing the M.S. degree with
the College of Computer and Big Data Science,
Fuzhou University, Fuzhou, China.

His research interests include IC security, biochip
security, and design.

Zhenyi Chen received the B.S. and M.S. degrees
in computer science from the College of Computer
and Data Science, Fuzhou University, Fuzhou,
China, in 2000 and 2005, respectively, and the
first Ph.D. degree in applied computer technol-
ogy from the Computer School, Wuhan University,
Wuhan, China, in 2012. He is currently pursuing
the second Ph.D. degree with the Department of
Computer Science and Engineering, University of
South Florida, Tampa, FL, USA.

His research interests include swarm intelligence,
optimization, and parallel computing.

Hao Zhang received the B.S. and M.S. degrees in
computer science from the University of Electronic
Science and Technology of China, Chengdu, China,
in 2002 and 2006, respectively, and the Ph.D. degree
in applied mathematics from Fuzhou University,
Fuzhou, China, in 2015.

He is currently an Associate Professor with the
College of Computer and Data Science, Fuzhou
University. He is also a Visiting Scholar with the
Department of Electrical and Computer Engineering,
Dalhousie University, Halifax, NS, Canada. His

research interests include VLSI physical design and machine learning.

Yang Yang (Senior Member, IEEE) received the
B.Sc. and Ph.D. degrees from Xidian University,
Xi’an, China, in 2006 and 2011, respectively.

She is a Full Professor with the College of
Computer Science and Big Data, Fuzhou University,
Fuzhou, China. She is also a Research Fellow with
the School of Computing and Information System,
Singapore Management University, Singapore.
She has published more than 60 papers in IEEE
TRANSACTIONS ON INFORMATION FORENSICS

AND SECURITY, IEEE TRANSACTIONS ON

DEPENDABLE AND SECURE COMPUTING, IEEE TRANSACTIONS ON

SERVICES COMPUTING, IEEE TRANSACTIONS ON CLOUD COMPUTING,
and IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS. Her research
interests are in the area of information security and privacy protection.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

