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Abstract—In recent years, researchers and practitioners have
focused on Industry 4.0, emphasizing the role of cyber-physical
systems (CPSs) in manufacturing. However, the operationalization
of Industry 4.0 has presented many implementation challenges
caused by the inability of available technologies to meet industry
needs effectively. Furthermore, Industry 4.0 has been criticized for
the absence of focus on the human component in CPSs impact-
ing the concept of sustainability in the long run. Responding to
this critique and building on the foundation of the Industry 5.0
concept, this article proposes a holistic methodology empowered
by human expert knowledge for human-cyber-physical system
(HCPS) implementation. The proposed novel HCPS methodol-
ogy represents a more sustainable solution for companies that
consists of five phases to promote the integration of human ex-
pert knowledge and cyber and physical parts empowered by big
data analytics for real-time anomaly detection. Specifically, real-
time anomaly detection is enabled by industrial edge comput-
ing for big data optimization, data processing, and the indus-
trial Internet of Things (IloTs) real-time product quality con-
trol. Finally, we implement the developed HCPS solution in a
case study from the process industry, where automated system
decision-making is achieved. The results obtained indicate that an
HCPS, as a strategy for companies, must augment human capa-
bilities and require human involvement in final decision-making,
foster meaningful human impact, and create new employment
opportunities.

Index Terms—Artificial intelligence (AI), big data analytics
(BDA), edge computing, industrial Internet of Things (IloTs),
Industry 5.0, smart manufacturing.
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I. INTRODUCTION

HE fourth industrial revolution (i.e., Industry 4.0) marked
T the beginning of the digital transformation era [1], [2], [3].
Itis a widely discussed topic in both academia and industry, with
many manufacturing companies expecting it to revolutionize
their supply chains, operations, and business models [4], [5].
On the one hand, the implementation challenges of Industry 4.0
[11, [2] have proven to be more complex than expected, hindering
companies from fully deploying advanced technologies. While
Industry 4.0 has focused on creating smart, connected manufac-
turing systems using cyber-physical systems (CPSs) based on the
industrial Internet of Things (IloT), artificial intelligence (Al),
and big data analytics (BDA), it has been criticized for lacking a
human focus as its main shortcoming. This lack of research has
been reflected in the low level of expert knowledge integration
and data-driven approaches by designing systems that diminish
human capabilities and require limited human involvement in
decision-making.

With overwhelming evidence that industry change goes be-
yond mere technological transformation, in 2021, anew concept,
Industry 5.0, was introduced, emphasizing human centricity,
sustainability, and resilience as the core elements for indus-
trial progress [6], [7]. Industry 5.0 represents a paradigmatic
shift that emphasizes the harmonious integration of human and
technological capacities. This approach intends to ameliorate
the shortcomings of Industry 4.0 by establishing a synergistic
relationship between humans and advanced technologies. Thus,
Industry 5.0 not only mitigates the historical overemphasis on
automation but also augments adaptability and productivity
by fostering collaboration and human centricity; thus, the de-
velopment of human-cyber-physical system (HCPS) based on
human—machine integration is proposed.

Achieving human—machine synergy in an HCPS requires a
holistic methodology that combines human expert knowledge
with advanced technological solutions (i.e., BDA and IIoT) to
analyze large volumes of process data [8]. However, this synergy
is difficult to achieve under industrial conditions, especially in
real-time process data analysis [1], [2] for predictive mainte-
nance, processing, and product quality control. In this article,
we refer to real-time process data analysis as a time frame in
which the system operates with minimal or specifically defined
delay, ensuring timely and accurate handling of information to
meet the demands of industrial processes and control systems.

Furthermore, the challenges in human—machine integration
revolve around the need to change the human mindset and
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resistance to accepting and working with advanced technologies
[2]. Additionally, the lack of human trust in a technological
system is an issue since workers do not believe in data reliability
[9]. Therefore, these challenges raise the question of whom to
believe—the data or expert experience.

Thus, the main objective of this article is to support system
designers by developing a holistic HCPS design methodology
for real-time anomaly detection in a smart manufacturing envi-
ronment. Notably, the methodology aims to support the accep-
tance of advanced technology by implementing user-friendly
solutions, reducing employee resistance to change and incorpo-
rating human expert knowledge into each phase.

This novel holistic system design methodology (named the
HCPS design methodology for real-time anomaly detection)'
aims to create a smart manufacturing system empowered by
human-cyber-physical integration. The methodology develop-
ment is inspired by the Industry 5.0 data mining methodology
and informed by the research team’s practical experience in
implementing smart manufacturing systems. The implementa-
tion of the HCPS design methodology can help manufacturing
companies improve their operational efficiency, reduce waste,
and enhance product quality in real-time. These effects are made
possible through the integration of human expert knowledge and
cyber and physical parts via BDA, edge computing and the IToT.

Finally, the developed HCPS design methodology is applied
under industrial conditions in a case company in the process
industry sector (i.e., vinyl flooring production). In the case
study, automated real-time anomaly detection for monitoring
and control of manufacturing systems was achieved.

The rest of this article is organized as follows. Section II de-
scribes related work on the use of HCPS in Industry 5.0 and BDA
for anomaly detection, emphasizing the most commonly used
advanced analytical methods based on an imbalanced dataset.
Section III presents the proposed system design methodology.
Section IV provides the details on the settings in which the
developed methodology was tested. Section V describes the re-
sults of the developed system design methodology testing in the
industrial surroundings. Finally, Section VIdiscusses the results,
summarizes the contributions, and derives the conclusions of this
article.

II. RELATED WORK

The present section provides an overview of an HCPS within
the Industry 5.0 context. The role of BDA is explored via
different anomaly detection models in smart manufacturing.

A. Human-Cyber-Physical Systems in Industry 5.0

Before Industry 4.0 emerged, the human factor was central
to the design, maintenance, and supervision of manufacturing
systems [10]. However, the global Industry 4.0 hype somehow
neglected human factor and moved its focus to completely auto-
mated manufacturing [10], [11]. The goal of moving from tradi-
tional to smart manufacturing was the deployment of advanced

'In further text for readability reasons referred to as HCPS design methodol-
0gy.
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technologies [1], [2]. This interconnected bundle of advanced
technologies imagines CPSs with closely integrated physical
objects and software via the IIoT to enable information exchange
based on process data analysis among different components
[1], [2]. However, both industry and academia have frequently
pointed out the challenge related to the limitation of the human
aspect of the manufacturing process [12].

Hence, Industry 5.0 puts the human aspect back at the center
of manufacturing processes [6], [7], [13], proposing the devel-
opment of the HCPS [14]. The literature provides a definition of
HCPS within Industry 4.0 [15]. However, information on exactly
what the word “human” refers to in this term is lacking. Some
authors argue that the term “human” in an HCPS refers to differ-
ent roles of operators who should integrate and collaborate with
machines [16], [17]—such as collaborative robots [11], [18],
[19]—while others argue that the term “human” refers to human
knowledge implemented within a CPS [20], [21]. Moreover, the
role of data scientists as important links connecting cyber and
physical components with human expert knowledge based on
BDA has been neglected in the literature. Responding to this
lack of comprehensiveness in current definitions, we define an
HCPS as an advanced intelligent system comprising various
roles that humans may have in companies (i.e., managers [22],
experienced engineers [21], [23], and skilled shop floor workers
[24], [25]), and data scientists integrating expert knowledge into
a CPS to achieve smart manufacturing systems by using BDA
and manufacturing data [21].

B. Big Data Analytics for Anomaly Detection

Smart manufacturing has revolutionized various industries by
providing enhanced efficiency and innovative solutions. This
is made possible by processing the abundance of data gen-
erated during production for precise decision-making. How-
ever, smart manufacturing implementation encounters chal-
lenges when dealing with massive amounts of data [1], [2].
Thus, the use of BDA is expected to continue, as it enables
independent decision-making by production machines and the
creation of intelligent, flexible, and self-adaptive manufacturing
systems [26], [27].

When dealing with large datasets, selecting only the relevant
process parameters becomes critical due to the complexity of
BDA methods. Choosing an appropriate BDA method that ef-
fectively provides insight into the real state of manufacturing
systems depends heavily on the set of relevant process data. The
process data should consist of a balanced set of data containing
equal samples from when the manufacturing system functioned
smoothly and when problems occurred [28].

However, in companies where continuous improvement of
manufacturing systems is implemented [29], [30], anomalies
created during the manufacturing process are largely eliminated.
As a result, it becomes difficult to establish a balance between
the number of process data samples that did not lead to anomaly
occurrences and those that caused those anomaly issues. This
often leads to an imbalanced set of data where most of the col-
lected process data samples belong to one specific class without
providing information on the specific anomalies that need to



1310

be detected. Thus, detecting anomalies based on an imbalanced
dataset has attracted significant attention, highlighting that the
use of classic analytical techniques can be a critical error when
studying such problems [31], [32]. Notably, even though deep
learning techniques are used in many state-of-the-art applica-
tions for anomaly detection in Big Data [33], [34], dealing with
highly imbalanced real-world datasets, especially when acquir-
ing data in industrial settings, can pose significant challenges.
Classifying such datasets with imbalances may lead to issues
such as overfitting in minority categories and the dominance of
majority categories [35]. According to the relevant literature
[32], [33], [36], [37], [38], the advanced analytical methods
that are most commonly used for anomaly detection based on
an imbalance dataset include the Mahalanobis—Taguchi system
(MTS), the one-class support vector machine (OCSVM), the
isolation forest (IF), the local outlier factor (LOF), and the robust
covariance (RC).

1) The Mahalanobis—Taguchi system represents a pattern
recognition technology that integrates the Mahalanobis
distance (MD) and robust engineering via the Taguchi
method and is mainly used for process and product quality
control [39], [40], [41]. The MD is calculated based on
the correlation between parameters and different patterns
that can be identified and analyzed concerning a reference
dataset

MDj = % ZZ»AilZZ’j 1

and Z;; is determined by Z;; = “L )
where k refers to the total number of parameters; i is the
serial number of parameter (¢ = 1, 2,..., k); j repre-
sents the number of samples (j = 1, 2,..., n); T is the
transposed vector; Al is the inverted correlation matrix;
Z;; represents the standardized vector of normalized fea-
tures of x;;; x;; is the value of the ith parameter of the
jth observed sample; m; refers to the mean value of the
ith parameter; and s; is the standard deviation of the :th
parameter.

2) The OCSVM is an unsupervised machine learning (ML)
technique that involves fitting a hyperplane to most of
the training data. The OCSVM identifies anomalies by
minimizing the hyperplane of a single class of examples
in the training data and considers all the other samples
outside the hypersphere to be outliers or out of the training
data distribution [42]. The optimal hyperplane parameters
are found by solving an optimization problem

2 m
min 1+ LY & —p

w, p,§ i=1 )
stwp(z)>p—&,, i=12....m

&> 0

¢: R'Rd — R™Rn is a nonlinear mapping function

from the input to the feature space; w and p are the
parameters of the hyperplane; the slack variables £ =
[€1,..., &m] allow the presence of anomalous examples
in the training set; and v limits the fraction of training
examples classified as anomalies [43].

3)

4)

5)
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The IF method is an unsupervised ML technique used for
anomaly detection in a dataset. The algorithm works by
randomly partitioning data units into binary trees until all
the data units are isolated in their leaf nodes. The anomaly
score for a data unit is then calculated as the average path
length from the root node to the leaf node in which the
data units reside [44]. The equation that provides a scoring
system facilitating the classification of samples as either
normal or abnormal is

_ E(h(x))

s(x, n) = 27 e 3)
where for a given x, h(x) corresponds to the length of the
path from the root node to the outer node that isolates x in
a given forest tree, E(h(x)) is the average length of paths
in the forest, and ¢(n) is the average length of the IF for
n samples, calculated as

¢cn) =2H(m —1) = 20n - 1)/n) &

where H is a harmonic number [45].

The LOF is an unsupervised ML technique used for
anomaly detection in datasets. It measures the local devi-
ation of a data unit with respect to its neighbors. The basic
concept behind the LOF is that outliers will have fewer
neighbors in their local neighborhood than nonoutliers
[46], [47]. The mathematical formula for the LOF can
be expressed as [46]

Z density (p) 5)

1
LOF(p) = — -
k Nk () density (q)
where p is the point of interest for which the LOF score
is calculated; N (p) is the set of k-nearest neighbors of p
(including p itself); and density(p) is the local density of
p defined as the inverse of the average distance between p
and its k-nearest neighbors, that is, [46]

1

densit = 6
v % quNk (D)N_k () 4 (p-a) ©
d(p, q) is the distance between points p and ¢g. The LOF
score of p reflects how much more or less dense its local
neighborhood is compared to the neighborhoods of its
neighbors. A point with an LOF score greater than 1 is
considered an outlier, a score of 1 indicates a typical point,
and a score less than 1 indicates a point that is denser than
its neighbors [47].

The RC is an unsupervised ML technique that estimates
the covariance matrix of a set of variables that is less
sensitive to the presence of outliers or nonnormality in
the data than traditional covariance estimation methods
are. The method identifies outliers by utilizing maximum
likelihood estimators (MLEs) to determine the mean and
covariance matrix of the normal data. Observations with
unusually high MD (1) are ci(lnsidered outliers. The mean

(/1) and covariance matrix (> ) estimated using MLEs are



BAJIC et al.: TOWARD A HUMAN-CYBER-PHYSICAL SYSTEM FOR REAL-TIME ANOMALY DETECTION

given as [47]

:=%§: ™
> i -

i=1

—

by

where A ={ay,...,a,} is an n -sample dataset of d
dimensions and each observation a; = {a;1, ..., aiq}-

ai—p)/(n=-1)  @®

III. DEVELOPED HCPS DESIGN METHODOLOGY

This section proposes a system design methodology for real-
time product anomaly detection in the HCPS environment.
The system design methodology emphasizes real-time quality
control improvement through the integration of human expert
knowledge and cyber and physical parts empowered by BDA
and connected with the IToT.

The developed methodology is inspired by human-cyber-
physical integration based on fuzzy expert systems and a data
mining approach. Notably, the methodology development is
informed by the practical field experience of the research team
in the implementation of smart manufacturing systems in the
industry. The developed HCPS system design methodology
consists of five phases (see Fig. 1).

1) Phase 1: Assessment of company readiness for smart

manufacturing implementation.

2) Phase 2: Edge computing integration of physical and

cyber components.

3) Phase 3: Edge computing dataset optimization.

4) Phase 4: Anomaly detection model establishment.

5) Phase 5: Real-time anomaly detection model deployment.

Noticeably, different types of human expert knowledge play a
critical role throughout all stages of the proposed methodology.
Specifically, human experts are called upon to give their input,
conduct analysis, and provide feedback on various phases of
the HCPS methodology. In this way, human expert knowledge
adds value to HCPS integration through the entire architecture
for real-time anomaly final decision-making (see Fig. 2). This
acknowledgment underscores the indispensable nature of human
expertise in guiding and informing decision-making processes
at various stages of the proposed methodology’s implementa-
tion. By incorporating different types of human expert knowl-
edge throughout the entire methodology, a holistic approach is
proposed, enabling a more accurate and insightful assessment
of anomalies, the formulation of effective strategies, and the
generation of valuable insights into anomaly occurrence. The
continuous involvement of human expertise guarantees that the
methodology remains adaptive, responsive, and aligned with the
evolving needs and challenges of the manufacturing system,
ultimately leading to more reliable outcomes. In the following
paragraphs, we describe the phases of the proposed HCPS design
methodology.

Phase 1. Assessment of Company Readiness for Smart Man-
ufacturing Implementation: This phase applies a fuzzy expert
system defined through the following criteria: acquisition of
human expert knowledge, usage of data analytics, application
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Fig. 1. HCPS design methodology for real-time anomaly detection in a smart
manufacturing environment.

of continuous improvement approaches, and level of equip-
ment automatization (see Fig. 1). The four specified criteria are
depicted as triangular membership functions because triangles
serve as the fundamental membership function for fuzzification.
These criteria are derived from the pillars of Industry 5.0, which
are resilience, sustainability, and human centricity. Each pillar
encompasses both technological and managerial solutions [48].
Technological solutions that contribute to enhancing resilience
in companies include edge computing. Sustainability is fos-
tered by technological solutions such as BDA and the IIoT,
while managerial solutions involve continuous improvement
approaches, such as lean, total quality management, and world
class manufacturing (WCM). Furthermore, human centricity
involves organizing manufacturing processes with humans (i.e.,
engineers, workers, and data scientists) at the center, where
managers derive the final decision regarding the acceptance
of the implementation process. This aspect is facilitated by
managerial solutions such as expert experience and industry—
academia collaboration. Drawing upon the managerial and tech-
nological solutions of Industry 5.0, the criteria for the maturity
model are established. These criteria are designed to be general,
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Fig. 2. HCPS integration architecture of the real-time anomaly detection
system for quality improvement.

ensuring the model’s ease of use. Each criterion represents the
organizational aspect of the company as a prerequisite condition
to proceed with subsequent phases of the developed methodol-
ogy. If the company reaches an acceptable level of readiness
(above 0.5—based on the designed fuzzy expert system—the
company is 50% ready to start the implementation of smart
manufacturing), it can move on to the next methodology phase.
If not, changes must be made first to meet the defined criteria.
Therefore, this phase is the eliminatory phase of the proposed
methodology.

Phase 2. Edge Computing Integration of Physical and Cyber
Components: This phase involves the enhancement of interac-
tions among machinery, devices, sensors, and software [1], [2].
This integration is achieved using edge computing technology
and an IIoT network, enabling cyber-physical system creation
for real-time information exchange (see Fig. 2). Moreover, since
this research relies on BDA and the IloT, the data privacy
and security (e.g., encrypting sensitive and confidential infor-
mation, controlling access to data to repel the cybersecurity
threats, etc. [49], [50]) are additionally reinforced by the use
of edge computing. Thus, the use of industrial edge computers
within the proposed HCPS guarantees the protection of sensi-
tive and confidential information and reduces the possibility of
cyber-security threats since these solutions are deployed within
industrial settings (i.e., using secure Ethernet), preventing the
need for data transfer via the Internet.

IEEE SYSTEMS JOURNAL, VOL. 18, NO. 2, JUNE 2024

Phase 3. Edge Computing Dataset Optimization: This phase
focuses on optimizing the dataset through three steps (see Fig. 1):
smart manufacturing problem definition for a clear understand-
ing of the processes and activities; parameter identification based
on expert knowledge and experience; and preprocessing of the
data using edge computing. The main aim of this phase is
to streamline Big Data optimization and improve production
resilience by rationalizing power and processing resources using
edge computing technology. This is achieved by reducing the
amount of Big Data to a smaller, precisely selected dataset
that still contains crucial information from the original dataset.
The selected dataset serves as the foundation for the anomaly
detection model establishment phase.

Phase 4. Anomaly Detection Model Establishment: This
phase comprises three steps (see Fig. 1): dividing the dataset
into 80:20 training and testing datasets; developing models
for product quality improvement using state-of-the-art anomaly
detection methods (namely, MTS, OCSVM, IF, LOF, and RC);
and testing the anomaly detection models to compare the re-
sults. The final step evaluates the performance of the anomaly
detection model through a confusion matrix and measures
the following metrics based on true positive (TP), true nega-
tive (TN), false positive (FP), and false negative (FN) values
[36], [51], [52]:

a) accuracy, which measures the proportion of correct pre-

dictions out of the total number of predictions;

b) recall, which measures the proportion of TPs out of the

total number of actual positives; and

c) F1I score, which is the harmonic mean of precision and

recall. In addition, the F1 score is a good measure of
overall model performance, especially when the classes
are imbalanced [53].

These metrics are among the conventional evaluation meth-
ods [54] used in classification. The best-performing model is
implemented for the real-time validation of product anomaly
detection in the case study as the last phase of methodology
implementation.

Phase 5. Real-Time Anomaly Detection Model Deployment:
This phase involves deploying the model in real-time for prod-
uct quality detection at a specific manufacturing company.
The deployment process includes three steps: creating a CPS
environment by integrating an anomaly detection model into
edge computing; integrating human expert knowledge into the
anomaly detection model for final decision-making to create the
HCPS environment; and sending automated feedback from the
anomaly detection model to the programmable logic controller
(PLC) and from the PLC back to the machine sensors in real-time
through the IIoT (see Fig. 2). This integration leads to advanced
automation and real-time decision-making and the realization
of smart manufacturing by creating a closed loop in the HCPS
environment.

IV. CASE STUDY

The present section provides a detailed explanation of the case
study setup for developed methodology testing. Specifically,
it describes the case company, manufacturing equipment, and
generated dataset.
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A. Case Company

We applied the developed HCPS design methodology to
manufacturing data collected from a case company in the vinyl
flooring industry. A vinyl flooring company was selected for
application of the developed methodology for multiple rea-
sons: the process industry is characterized by high productivity,
high production complexity, high levels of automation, and high
volumes; the company has successfully implemented a high
level of WCM methodology for continuous improvement of their
manufacturing system; and the process industry sector (as one
of the most automated) is expected to be the first to embrace the
implementation of Industry 4.0 as well as to face Industry 4.0
implementation challenges.

Vinyl flooring is produced in the form of a roll on a con-
tinuous production line. The specific production line is 850 m
long and consists of 12 machines. The number of machines
increases the complexity of the manufacturing process and,
consequently, the complexity of the proposed methodology.
To reduce this complexity and make the whole production
process manageable, the production line is divided into five
clusters.

A cluster is a part of the production line that includes one or
more machines to simplify the observed anomaly problems of
the product being of poor quality in the case company. Notably,
experience has shown that inconsistencies in the process pa-
rameters of one machine can potentially result in a poor-quality
product on a subsequent machine, which in turn means that the
first machine can influence the quality of the products exiting
from the last machine in the production line. Machines must
be grouped in the sequence of production, which is a limiting
factor for overall product quality attainment. Therefore, locating
the occurrence of poor-quality products is determined based on
expert knowledge following defined gaps and concerns. Thus,
it is concluded that poor-quality products in the manufacturing
system most often occur at the beginning of the production line.
The beginning of the line includes Cluster 1, which is composed
of three machines, namely, coating 1, coating 2, and printing.
Given that no errors occur on the printing machine that affect
the insufficient quality of the product, the cause of which is the
conformity of the process parameters (on the printing machine,
low-quality products occur where the cause is related to human
work), this machine is exempt from analysis and does not repre-
sent one of the locations of noncompliance. Further analysis of
the location of nonconformity (i.e., poor-quality products) led to
the conclusion that a negligibly small number of anomalies occur
on machine coating 1. Therefore, the location of the noncon-
formity of the parameters in the production system is machine
coating 2.

B. Manufacturing Equipment for Real-Time Product Quality
Control

The methodology is applied by designing the system
based on the integration of physical [i.e., machines, sensors,
and programable logic controllers—(PLCs)] and virtual (soft-
ware for data collection, anomaly detection model development,
and real-time monitoring and sending feedback back to the
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TABLE I
SYSTEM DESIGN ENVIRONMENT

Physical Machines, sensors, PLCs, industrial computer based on
assets edge computing
Python — developing ML models, namely: OCSVM, IF,
LOF, and RC
Virtual Real-time Statistic Diagnosis Tool — development of MTS
components model

Real-time Flow Designer — real-time monitoring and
sending feedback back to the manufacturing system

OPC UA

IIoT network

manufacturing system) components through open platform com-
munications unified architecture (OPC UA) as an IIoT standard
protocol (see Table I). The equipment used is an industrial com-
puter based on edge computing for real-time data collection and
analysis—a MELIPC MI5000 developed by Mitsubishi Electric.
The goal of using the MELIPC MI5000 is to systematically
reduce the amount of Big Data by optimizing it into a precisely
selected small dataset. Additionally, this approach is used for
the development of anomaly detection models for real-time
quality improvement and for sending feedback information to
production lines in real-time.

C. Dataset

The dataset was generated and collected from the real man-
ufacturing environment of the case company—vinyl floor pro-
duction. Therefore, the dataset is not publicly available due to
privacy restrictions.

The original dataset contained 15 selected influential process
parameters as the inputs. All process parameters are numerical
and related to various temperatures, line production speeds,
pressure(s) between rolling drums, and gap between rolling
drums. The dataset was collected for a 33-day period due to the
storage limitations of edge computing technology and because
most of the products belonging to the group of products with
a defined parameter configuration were produced during that
period (according to the production plan). During that time,
29 403 000 data units grouped into 6534 separate .csv files were
collected.

Notably, output data on final poor-quality products were
obtained only after the manufacturing process was completed.
Therefore, the output was subsequently added to the original
dataset. The output of the process parameters is defined in col-
laboration with the case company experts and has binary values
since the manufacturing problem is defined as classification.
Thus, the output has a defined value of “0” when the final product
has no defects (i.e., a good quality product). Accordingly, the
dependent parameter has a defined value of “1” when the final
product has defects (i.e., a poor-quality product). The generation
of the dependent parameter was performed in .csv data format.

V. DEVELOPED METHODOLOGY TESTING

This section describes the application of the developed HCPS
system design methodology. The five phases of the methodology
are described in detail.
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TABLE II
ASSESSMENT OF COMPANY READINESS FOR SMART MANUFACTURING
IMPLEMENTATION THROUGH INTERVIEWS WITH EXPERTS

. Assigned
- L . Membership g
Criterion Linguistic variable . value by
Function
experts
Low 0,0.3,0.6
Level of (©,03,06)
equipment Medium (0.5,0.7,0.9) 0.5
automatization .
High 08,1, 1)
Non-data-are-analyzed (0,0.3,0.6)
Usage of data Some-data-are-
ge of (0.5,0.7,0.9) 0.75
analytics analyzed
All-data-are-analyzed 08,1, 1)
Application of ~ Low (0,0.3,0.6)
continuous .
; Medium (0.5,0.7,0.9) 0.95
improvement
approaches High 08,1, 1)
. . Low 0,0.3,0.6
Acquisition of (©,03,06)
human expert Medium (0.5,0.7,0.9) 0.75
knowledge X
8 High 0.8, 1,1
NUMBER OF FILES AFTER REDUCTION OF COLLECTED |OPTIMIZATION AND CREATION OF
ELIMINATION OF INCONSISTENT{ PROCESS PARAMETERS USING | A PRECISELY SELECTED SMALL
CONSTANT AND NOISY DATA CORRELATION ANALYSIS  |DATA SET USING RANGE ANALYSIS
plxy) = SMXN) X) =Xmax-Xmin (3
aXoY
15 parameters
»
% ‘ 1 data file “;Iz parameters
£ % 1“datafile------- > 1% sample
g 2" data file 3 \
o I I 2™ data file ----- =24 sample 1y
-1 3 data file P=y S
— S 3“data file- - {+>3" sample b 12 p
A\
S W&
—t Y-
- up = N
A 5
o~
18
. . ;e 1 unique
15 parameters 12 parameters / data file
8 3 /
g 3802" data E' 3802 data - -H{ =3 802" sample |
3 file 3 file
8 8
o~ [l
Total amount of data: Total amount of data: ;‘;‘r:ln::;::;-m of data (without
3,802x300x15=17,109,000 data units | 3802x300x12-13,687,200 data units | FEREEED (o 0L
Fig. 3. Phase 3 involved the optimization of the collected data files without

losing significant information (adapted from [[55]).

A. Phase 1: Assessment of Company Readiness for Smart
Manufacturing Implementation

The assessment of company readiness for smart manufactur-
ing implementation was performed based on a developed fuzzy
expert system. The fuzzy expert system serves as a tool for
assessing the degree of readiness of the manufacturing system
for the development of a model for real-time anomaly detection.
By applying the developed expert system, a phased inference
system is defined for each decision criterion. The defined cri-
terion was evaluated through interviews with case company
experts using linguistic variables to describe the current state
of the manufacturing system.

Each criterion is defined by one or more linguistic variables
that have quantitatively interpreted values (see Table II). The
quantitative value of each linguistic variable is presented using
a scale from 0 to 1 based on the knowledge of the manufacturing
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system experts. Therefore, by defining the associated functions
of the variables, a certain degree of uncertainty appears when
defining the boundaries of the area and evaluating the conve-
nience of the obtained values. Observing the uncertainty when
defining area boundaries in a fuzzy way allows the interpreta-
tion of data by defining intermediate areas and extreme areas.
The assessment of company readiness integrates the percentage
values of the variables into standardized criteria to support the
evaluation of the readiness of the smart manufacturing system to
assess its current state. An assessment of company readiness for
smart manufacturing implementation was developed for each
criterion using the Mamdani fuzzy inference system (FIS). The
associated functions were defined based on expert knowledge
and data integration using the FIS editor in the MATLAB soft-
ware package. The developed expert system is highly flexible,
making it easy to modify and adapt to different manufacturing
systems. This is because all systems share common features in
fuzzification and defuzzification, and the main differences lie in
the knowledge base. The knowledge base is expressed in terms
of phased IF-THEN rules, which form the core of the system.
The use of relations such as AND and OR was avoided when
defining the knowledge base to simplify it. According to the
assigned linguistic variables based on the expert-defined values
for each criterion (see Table II), a value of 0.779 was obtained,
which indicates that the degree of readiness of the manufacturing
system is almost 78%, which is acceptable for the development
of an anomaly detection model for real-time product quality
control.

B. Phase 2: Edge Computing Integration of Physical and
Cyber Components

Interconnection and intelligent collaboration among basic
manufacturing factors, including humans, machines, manufac-
turing equipment, methods, and the environment, were achieved
by implementing edge computing as middleware through an IToT
network. The OPC UA has established itself as an open and
platform-independent IIoT standard for data exchange in smart
manufacturing use cases. Therefore, implemented edge comput-
ing solutions enabled the integration of production machines,
industrial computers, and PLC devices as physical components
of the system and software solutions for automated analysis of
process data as virtual components via the OPC UA server (see
Fig. 2).

Furthermore, range analysis, which involved calculating the
difference between the maximum and minimum values of each
individual .csv file, was employed to assess parameter variability
to optimize the dataset. The optimized dataset consisted of one
.csv file with 3802 data samples for the 12 most important
process parameters, resulting in a final dataset of 45624 data
units (see Fig. 3).

C. Phase 3: Edge Computing Dataset Optimization

The dataset optimization phase was carried out following
the steps outlined in Fig. 1, resulting in the optimization of
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29403 000 data units of the 15 most important process param-
eters defined (based on expert knowledge) by 99.73% without
losing significant information contained in the big data. The
optimization was performed using edge computing technology
implemented in the real manufacturing environment of the case
company.

Upon visual examination of the data, it was observed that
most process parameter values fell within the defined toler-
ances. Consequently, the collected process parameter values pre-
dominantly represented data on the production of high-quality
“Class A” products (referred to as “good” data), with only a
small number of instances capturing information about poor or
inadequate product quality (referred to as “bad” data). As the
phase progressed, the monitoring and refinement steps led to a
significant reduction in the total number of data units collected.
This reduction can be attributed to the following factors.

1) Expert knowledge (both engineering and scientific) was
utilized to eliminate inconsistent, constant, and noisy data,
including the manual removal of timestamp data. This led
to an approximately 50% decrease in the total number
of data units collected, leaving a remaining count of
17109000 data units [55] (see Fig. 3).

2) Correlation analysis was also conducted to reduce the
number of collected process parameters. Based on the
Pearson correlation coefficient, parameters showing high
correlation (with p exceeding the values of 0.8 and —0.8)
were removed, resulting in a decrease from 15 to 12 in-
fluential process parameters and a reduction to 13 687200
data units [55] (see Fig. 3).

Furthermore, range analysis, which involved calculating the
difference between the maximum and minimum values of each
individual .csv file, was employed to assess parameter variability
to optimize the dataset. The optimized dataset consisted of one
.csv file with 3802 data samples for the 12 most important
process parameters, resulting in a final dataset of 45624 data
units (see Fig. 3). However, the dataset was highly imbalanced
because the case company mostly produced high-quality prod-
ucts. This imbalance determines the most suitable technique for
developing a predictive model for real-time product anomaly
detection.

D. Phase 4: Anomaly Detection Model Establishment

The dataset is divided into a training set and a testing set
at a ratio of 80:20, which has been proven to be the best
division for anomaly detection model development [56]. Here
80% of the optimized dataset is used for training the model,
and 20% is used for testing. The predictive models for real-time
product anomaly detection were developed based on the process
parameters collected from the selected company using methods
for anomaly detection on an imbalanced dataset that included
MTS, OCSVM, IF, LOF, and RC. To verify the applicability
of the proposed system design methodology, we compared the
performances of the five anomaly detection models using MTS,
OCSVM, IF, LOF, and RC on an imbalanced dataset. To ensure
the comparability of the experiments, the other experimental
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TABLE III
EVALUATION PERFORMANCES OF THE ANOMALY DETECTION MODELS

TP TN FN FP  Accuracy Recall F1 score
MTS 747 0 12 1 98.29%  98.41% 99.13%
OCSVM 732 0 28 0 96.32% 96.32% 98.12%
IF 683 0 77 0 89.87% 89.87% 94.66%
LOF 7220 38 0 95.00% 95.00% 97.44%
RC 684 0 76 0 90.00% 90.00% 94.74%

parameters were kept unchanged. Considering that a model with
better performance should be deployed in the manufacturing
environment, the developed models are compared based on
accuracy, recall, and F1 score. The experimental results are given
in Table III.

The results of the accuracy, recall, and F1 score measurements
(see Table III) suggest that the MTS model outperformed all the
other ML models. Notably, the accuracy, recall, and F1 score are
different performance metrics, and they each measure a different
aspect of an algorithm’s performance. Additionally, the F1 score
is a widely used performance metric in practical applications,
especially under industrial conditions when managing an imbal-
anced dataset. Given the results of the performance evaluation
and the significant weight of the F1 score, it is justifiable to
implement the MTS model in the manufacturing environment
and assess its performance in real-time.

E. Phase 5: Real-Time Anomaly Detection Model Deployment

The validation of the developed HCPS methodology for real-
time anomaly detection involved deploying a predictive model
with the best evaluation performance in a specific manufacturing
company. Therefore, the validation of the developed system
design methodology for real-time anomaly detection involved
the deployment of the predictive model based on the MTS at
the case company in the vinyl flooring sector for a defined
period of 33 days. The validation focused on a specific group
of products and aimed to detect the insufficient quality of the
product based on deviations from the defined MD limit. During
the validation period, notifications of crossing the defined MD
threshold were monitored. Checks were performed on the quality
of the resulting errors in the specific group of products in the
case company. During the defined validation period, 145 .csv
files with 300 data units for each of the 12 influential process
parameters were generated. Therefore, the MTS was validated
on 522 000 process data units.

The real-time deployment of the anomaly detection model
involves automating the analysis of the MTS model at the exact
time when the process parameters are collected. The results
obtained from this analysis provide new information that is sent
back to the machines, referred to as feedback. This feedback
signal is sent to the PLC device via the OPC UA after real-time
detection of any noncompliance with the process parameters
using the MTS model. The application of edge computer tech-
nology and Real-Time Flow Designer software (see Table I)
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enabled the sending of feedback back to the machines at the
manufacturing site. To facilitate the recording of the new value
of the feedback parameter, it was necessary to define it as a
binary data type in the edge computing system.

The activation of the feedback parameter is triggered when
the MTS model for anomaly detection provides information
that the MD has exceeded the defined limit value. At a given
moment, the value of the feedback parameter is changed in the
OPC UA server; that is, its value changes to 1 so that information
is automatically sent back to the PLC device. Modifying the
value of the feedback parameter within the OPC UA server
serves as an activation element, triggering the resetting of all
influential process parameters to their defined mean values in
the PLC device. This reset mechanism is necessary because
it is possible to detect process parameter noncompliance even
when all parameter values are within their specified tolerances.
The adjusted parameter values are subsequently sent to the
machine to enable automated analysis of process data in the
manufacturing system of the case company.

Based on the analysis of the obtained results, it was concluded
that during the validation period in the case company, two
products were produced that were characterized as poor-quality
products that occurred on the observed machine, where the MTS
correctly detected the anomalies of those two products that led
to the production of products of insufficient quality.

Furthermore, given that the validation of the MTS model was
performed based on a real industrial problem, going deeper into
the analysis we encountered the problem of the appearance of
false alarms. When discussing the results with the company
experts, it was concluded that in addition to errors related
to poor product quality, system errors are also present in the
manufacturing system (referring to the justified occurrence of
product quality errors). The developed MTS model predicted
not only product quality issues but also system errors, which
were initially classified as false alarms, although they refer
to quality errors generated during the machine configuration
process. However, this does not diminish the fact that system
errors lead to the occurrence of product anomalies detected by
the MTS model.

VI. DISCUSSION AND CONCLUSION

The present research is built on two fundamental issues. The
first issue is related to the critique of the Industry 4.0 concept,
which puts the human factor out of the focus while striving
toward technological development. The second issue, important
both for industry and academia alike, relates to the lack of
examples of fully implemented Industry 4.0, Industry 5.0, and
smart manufacturing solutions in practice.

To address these two issues, we developed a new HCPS design
methodology for real-time anomaly detection. The developed
methodology provides a holistic approach for system designers
to implement smart manufacturing solutions in companies that
involve various stakeholders (i.e., managers, engineers, work-
ers, and data scientists) by considering human knowledge and
experience, cyber systems, and physical objects connected via
the IIoT. Since a CPS is not flexible enough when a problem
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occurs, the human aspect of an HCPS adds value to the entire
decision-making system—a human expert can recognize real
mistakes based on expert knowledge and distinguish what is
important from what is not.

The proposed methodology for detecting product anomalies in
real-time strongly emphasizes enhancing quality control through
human-cyber-physical interactions, utilizing the power of BDA,
and edge computing in the IIoT environment. Thus, the con-
vergence of all these elements empowers the creation of an
HCPS achieved through the implementation of five phases of
the proposed methodology described in Section III.

In the following paragraphs, we summarize the main contri-
butions of this article.

The proposed HCPS design methodology relies on human
expert knowledge: The proposed HCPS design methodology
places strong emphasis on harnessing the full potential of dif-
ferent kinds of human expert knowledge, contrary to other
reported methodologies that discuss the interaction between
human experts and machines [13], [14], [19]. Additionally, the
proposed methodology is designed to include expert knowledge
in various domains (i.e., managers, engineers, workers, and data
scientists) to enable knowledge transfer and thereby strengthen
the entire system design process. In addition, this methodology
contributes to the continuous participation of human experts, not
only in phase 1, where the initial state of the company’s readiness
for smart manufacturing implementation is assessed, but also
through all phases of the system design process. Thus, we expect
that the HCPS system design methodology can help system
designers leverage expert insights to improve and optimize their
manufacturing systems.

The proposed HCPS system design methodology is holistic:
The proposed HCPS design methodology for real-time anomaly
detection in a smart manufacturing environment is holistic. This
can also be seen when compared with other focused approaches
available in the literature. Although focused approaches have
high value for the introduction of real-time anomaly detection
in smart manufacturing environments [42], [57], they usually
focus on and describe one of the phases based on Industry 4.0
and Industry 5.0 concepts. We expect that the holistic method-
ology proposed in this article will have high value for industry
and researchers connecting the various phases as a coherent
whole.

The proposed methodology was developed based on an im-
balanced process dataset collected in industry: The proposed
methodology was developed and tested based on industrial
application through process data collection, optimization, model
development, and automated data analysis for real-time anomaly
detection in a case study. At the time of this article, there is a
gap in practical proof in the relevant literature on the developed
theoretical methodologies for both Industry 4.0 and Industry 5.0
[2], [5], [58]. Specifically, evidence of the implementation of
data analytics, such as Industry 4.0 and Industry 5.0 technology,
is scarce [59], [60], [61]. The main reason for the lack of imple-
mentation evidence is related to the lack of dataset quality [1]. In
other words, an obstacle to implementing smart manufacturing
solutions in the process industry is encountered in the form of
an imbalanced set of generated data. An imbalanced dataset
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indicates homogeneity, where the quality of the process data
is significantly reduced. Such cases significantly complicate the
application of data analysis methods. To address this gap, in
this article, we demonstrated that by using imbalanced process
data from a manufacturing system, it is possible to achieve
automated real-time anomaly detection analysis in the HCPS
environment.

The traditional anomaly detection model outperformed state-
of-the-art ML methods: During the development of the model,
five different state-of-the-art anomaly detection methods were
used for imbalanced datasets, namely, MTS, OCSVM, IF, LOF,
and RC. Notably, OCSVM, IF, LOF, and RC represent unsuper-
vised ML methods, while MTS is an advanced statistical process
control method [62]. Interestingly, the developed MTS model
outperformed all the other ML models in terms of accuracy,
recall and F1 score. Noticeably, the obtained results indicate
that although ML models tend to perform better than advanced
statistical methods [63], [64], advanced statistics have been
increasingly applied to solve specific engineering problems by
analyzing process data to detect and diagnose anomalies in
manufacturing systems [40], [42].

The proposed methodology provided an automated real-time
analysis of the MTS model: Since the current literature lacks
real industry testing cases [65], [66], the validation of the HCPS
design methodology was performed in an industrial environ-
ment. The validation involved the real-time application of the
proposed methodology in a process industry company from the
vinyl flooring sector. During the validation, the MTS model was
deployed as the best-performing model via the integration of
hardware and software elements, namely, production machines,
industrial computers, PLC devices, and data analytics software,
via the OPC UA server as the IIoT standard. Notably, the MTS
automated data analysis model correctly detected anomalies in
poor-quality products that occurred during the manufacturing
process in real-time. Additionally, the obtained results of the
poor-quality product based on the MTS model were automat-
ically sent back to the PLC device as an activation element,
triggering the resetting of all influential process parameters to
their defined mean values.

The methodology was developed based on researchers’ prac-
tical experience in smart manufacturing implementation: The
significance of collaboration between industry and academia for
developing a real-time anomaly detection smart manufacturing
system has been emphasized in the article. Therefore, the HCPS
design methodology was developed based on real industry needs
for smart manufacturing implementation. Notably, the manufac-
turing system objectives were considered in the development
of the HCPS methodology for real-time anomaly detection.
In this specific case, the company noted that it had issues
maintaining the good product quality without knowing what
caused quality issues. Thus, by combining industry know-how
with data-driven predictive models developed by researchers,
successful industry—researcher synergy was achieved for the
development and implementation of automated real-time data
analysis based on the proposed methodology. An additional
benefit for the industry lies in the targeted benchmarks, where
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we managed to successfully detect 50% of the poor-quality
products that occurred during the real-time anomaly detection
model deployment phase, thereby contributing to cost savings
for the company.

Moreover, we designed the HCPS design methodology to
ensure that the use of Al was transparent and accountable. We
did this by taking a careful and principled approach to involve
humans in decision-making within the HCPS, ensuring the ethi-
cal integration of Al and fostering fairness. In our HCPS design
methodology, we specifically incorporate the human presence
approach in each phase of the model, emphasizing transparency
and accountability to uphold ethical standards. Hence, conclud-
ing remarks suggest that the implementation of the HCPS design
methodology should aim to enhance human capabilities and
involve human participation in the final decision-making process
for anomaly detection.

The main limitation of the article is that the HCPS design
methodology was applied in only one case study. However, with
the lack of research that presents real case scenarios of Industry
4.0/Industry 5.0 in the relevant literature, we expect that this
application case will be highly valuable to system designers.

To enhance the outcomes of the proposed methodology
for real-time anomaly detection implemented in an industrial
setting, further research needs to be conducted. Thus, the
HCPS system design methodology should be tested in addi-
tional companies from different industries. Moreover, contin-
uing the research and analyzing the factors that could im-
pact the performance of the proposed methodology in other
manufacturing systems and industrial sectors, as well as in
small and medium enterprises are necessary. In this way,
the generalizability and scalability of the proposed HCPS
system design methodology can be confirmed and further
optimized.
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