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Abstract—The complexity of cellular networks makes them
difficult to manage and prone to failures. This has led to
the application of artificial intelligence mechanisms for failure
management tasks. Nevertheless, the availability of labeled data
on failure cases is limited, making unsupervised techniques
the most relevant to apply. However, these techniques require
network experts to analyze the results through a costly process
to link them to specific cases. Intending to ease the labeling of
cases, the present work proposes a framework to determine the
relevant metrics for any clustering. Furthermore, the framework
is evaluated using data from real cellular networks.

Index Terms—Cellular networks, Failure management, Label-
ing, Feature ranking, Jensen-Shannon Divergence

I. INTRODUCTION

Cellular networks are becoming increasingly complex with
the coexistence of different radio technologies and will grow
further with the adoption of future technologies. The in-
creasing number of technologies, network elements, and user
equipment make cellular network management a growingly
difficult task for operators, which might result in performance
degradation due to undetected problems. Moreover, newly de-
ployed technologies are expected to present their own possible
failures [1]. In order to make network operation efficient and
sustainable, the paradigm of Zero-Touch network and Service
Management (ZSM) [2] is proposed by the European Telecom-
munications Standards Institute (ETSI). This paradigm aims
to completely automate the management of networks and the
services on top, reducing Operation Expenditure (OpEx) and
Capital Expenditure (CaPex).

Here, the identification of the root cause of a problem can
be faced with different Machine Learning (ML) approaches.
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Some of the most common are analyzing network logs [3] and
the use of supervised classifiers with additional information,
such as users’ positioning [4], [5]. However, classifiers for
network failures have the shortcoming of needing vast amounts
of labeled data which is most commonly unavailable. For
this reason, failure detection techniques using unsupervised
learning are the preferred approach. Here, clustering methods
can group samples by types of network status based on the
statistical relationships found in the metrics (e.g., counters,
Key Performance Indicators (KPIs), alarms) [6], [7], [8].

Nevertheless, clustering algorithms’ output needs to be
manually labeled by network experts to be useful for failure
troubleshooting. To solve this, algorithms have been developed
to automatically label clusters [9], [10] in the field of computer
science. However, these do not consider the nature of metrics,
complicating their application in cellular networks.

Principal Component Analysis (PCA) [11] can be used to
determine the most important variables in the data. However,
this needs selecting the number of components, which can
vary with the data and special treatment for time series
[12]. Furthermore, time series relationships can be explained
using Dynamic Factor Analysis (DFA)[13], although this also
requires modeling based on the data.

Therefore, with the objective of easing the task of charac-
terizing cell degradations, this work proposes a framework to
establish the relevance of the metrics on a cluster basis. It aims
to provide the relevance of metrics across multiple iterations
of unsupervised failure detection on cellular networks from
an initial set of parameters. Thus, providing a higher level
of automation compared to previous approaches. Furthermore,
this work also proposes an automatic labeling scheme using
the metrics’ relevance based on generic, predefined rules.
Then, the results are evaluated against the labels defined by
network experts for a set of real cellular network data.

In this way, the remainder of this manuscript is organized as
follows. In Section II the proposed framework to automatically
characterize clusters is presented. Then, in Section III the
results obtained using clusters obtained from the data of a
live network is presented. Lastly, the conclusions of this work
are presented in Section IV.

II. FRAMEWORK

The proposed framework for the identification of the rel-
evant metrics is depicted in Fig. 1. This work parts from a
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Fig. 1. Proposed framework architecture.

scenario where the cellular network metrics are acquired and
clustered based on cell status by external systems. From this
point, “Metric normalization” normalizes the acquired metrics.
Then, “Cluster processing” associates metrics with their cor-
responding clusters and computes the probability distribution
function for each of the metrics in each of the clusters. In
this way, the metrics are in the desired format regardless
of the transformations applied to achieve the clusters. Next,
“Reference selection” establishes the cluster with the lowest
degradation as cluster with normal status. Finally, “Relevance
score computing” estimates the relevance for each metric.

A. Metric normalization and cluster processing

The first step of the proposed framework is the metric
normalization of the cellular data. Accordingly, the metrics
have been normalized using a process of min-max scaling, a
process that is usually present in most data pipelines. In this
particular case, the present work relies on a normalization pro-
cess previously implemented and refined by a team of network
experts. However, it is worth noting that the complementary of
the normalized metrics is used for those considered degraded
at low values. This is defined as

ŷi := 1− ŷi. (1)

In this way, the closer a metric is to 1 the more degraded the
metric is, simplifying the interpretation of any metric’s values.

Furthermore, the input data of the framework are daily sam-
ples of several time series of metrics derived from performance
counters gathered hourly at cell level. In this manner, each
sample contains 24 hours of values of several metrics obtained
from a single cell during a day. In order to overcome the
difficulties introduced by time series, the data of each cluster
is used to compute its probability distribution for each of the
metrics. Then, the Jensen-Shannon Divergence (JSD)[14] is
used to generate a relevance ranking for each of the clusters.

B. Reference selection
This block is responsible for establishing a cluster as a

reference for the calculation of the relevance metric. In order
to estimate the importance of a metric, it is necessary to use a
second distribution to compare against, therefore, it is required
to establish a cluster as a reference. In this manner, clusters
are compared pair-wise against the reference, allowing the
system to score the clusters regardless the total number of
these. Here, it is assumed that a cluster with samples without
degradation exists and can be taken advantage of to highlight
the degradation of other clusters. This will help to fulfill the
framework’s objective of easing the labeling of clusters by
network experts.

Therefore, the cluster identified as the one with a lower
level of degradation is selected as a reference to compute
the relevance of the metrics. This cluster can be chosen by
taking advantage of the normalization of the metrics, where
high values represent a higher level of degradation. Hence,
the level of degradation of each cluster can be estimated as
the sum of the average values of each metric. Therefore, the
selected cluster as reference is expressed as

c = argmin
j

(
∑
i

mean(ŷi,j)), (2)

where ŷi,j is the normalized samples of the metric i of cluster
j and c is the cluster selected as the reference. Here, the
sum of the means for each metric is the accumulated mean
degradation.

C. Relevance Score Computing
This block performs the calculations to obtain a metric to

measure the relevance of each of the metrics in each cluster.
For this reason, the use of a new figure of merit named RS
(Relevance Score) is proposed and defined as

rsi,j = jsdi,j sgn(ŷ
75th
i,c − ŷ

75th
i,j )

√
|ŷ75thi,c − ŷ

75th
i,j |, (3)

where rsi,j is the RS for the metric i in the cluster j, ŷ75thi,j is
its 75th percentile value, sgn is the sign operator and jsd is
the Jensen-Shannon Distance [14]. Here, the 75th percentile
aims to extract a representative value of the metric during
cell usage. This is chosen based on the rationale that cells are
usually loaded for 10-12 hours (i.e., daytime) and are expected
to be highly loaded during the busy hours, hence, values of
interest are expected to be between the 50th percentile and the
90th percentile. Moreover, the jsd is defined as

jsdj,i =
√
JSD(f(ŷi,j)||f(ŷi,c)), (4)

where JSD is the Jensen-Shannon Divergence obtained from
comparing the probability distribution of the metric i from
cluster j, f(ŷi,j) and the one for the metric i from cluster c,
f(ŷi,c). Furthermore, the JSD can be defined as

JSD(P ||Q) =
1

2
(D(P ||M) + D(Q||M)), (5)

where P and Q are probability distributions whose divergence
will be computed, and M is a probability distribution defined
following

M =
1

2
(P +Q), (6)
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Fig. 2. Comparison between the JSD and the RS.
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Fig. 3. Accumulated mean degradation for each cluster.

where D is the Kullback-Leibler Divergence [15], which is
defined as

D(P ||Q) =
∑
x∈X

P (x) log(
P (x)

Q(x)
). (7)

The adopted metric presents two significant properties. The
first one is that its absolute value is symmetric regardless
of the order the probability distributions are compared. This
symmetry is one of the advantages of the Jensen-Shannon
Divergence over the Kullback-Leibler Divergence. The second
property is that since the Jensen-Shannon Divergence and
the metric are normalized, the resulting value range of the
proposed metric is bounded between 0 and 1. These properties
simplify the process of comparing the different scores obtained
across all metrics and clusters.

In order to provide a vision of the objective of the RS, Fig. 2
presents an example where the probability density function
of a reference metric is shown to be highly different from
the metric of the class whose relevance is being measured.
Still, in both cases, the level of degradation is not high (i.e.,
metric value < 0.5). In this case, the legend shows that
the JSD value is high (0.81), but, in contrast, the RS value
is considerably lower (0.41). In the former, the difference
between both distributions is still taken into account, but,
since the level of degradation is not much higher than in
the reference class, this metric does not receive a very high
relevance (i.e., RS > 0.7), what indicates the advantages of
the defined RS over JSD.

The output of the framework is the score for each metric
in each cluster. These scores can be used to determine the
most relevant metrics, helping to analyze the underlying issues
contained in each cluster. In this manner, these scores could
be used for tasks such as feature selection or the labeling
of failures. However, the present work focuses on the latter,
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Fig. 4. Silhouette score per sample and closest cluster representation
(Maximum of 250 samples per cluster).

demonstrating in the evaluation the labeling capabilities of
applying predefined rules.

III. EVALUATION

The evaluation of the proposed framework has been carried
out using a dataset from a live cellular network with more
than 25000 daily samples available, each of them composed
of 33 metrics with 24 hourly values each, amounting to a
total of more than 600000 hourly samples. The daily samples
are gathered at cell level from cells all over a country over
a period of two weeks. These samples have been assigned
into 13 different categories using a deep learning classifier
based on a Long Short-Term Memory (LSTM) network [16]
external to this work. This model was trained using a training
dataset obtained using a Deep Embedded Clustering (DEC)
model [17] and manual refinement by network experts. In
this way, the categories from the classifier can be used as
ground truth to evaluate the results, given that specific labels
for failure/normal status were established for each of them by
network troubleshooting experts.

In order to provide a deeper level of insight into the data
used for the evaluation, Fig. 4 shows the distributions of
silhouette score values for the samples in the different clusters,
with each of the samples being colored according to the cluster
they are closest to. The distance to a cluster is defined as
the Euclidean distance from to sample to the centroid of the
cluster. In this manner, it is possible to observe if a sample
corresponds to the cluster was assigned to or if, otherwise, it
might have been misclassified.

Furthermore, Fig. 4 shows that, although silhouette values
are not very high, samples have a positive value of silhouette
and are in the closest cluster even in cases where the silhouette
value is negative. These low values in silhouette might be
caused by the complexity introduced by using time series and
by grouping samples by general type of issues rather than
by very specific issues, which would result in a high number
of clusters with fewer samples. Lastly, it can be seen that
cluster 3 has many samples that are closer to other clusters
and cluster 12 also has some. The former is caused by the
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Fig. 5. Obtained Relevance Scores.

definition of the cluster, which is being an umbrella cluster that
gathers samples that are too degraded to be deemed normal
but are not degraded enough to be considered an issue. The
latter’s misclassification rate is due to being a cluster without
an outstanding degradation pattern, as will be seen later.

In the first step of the evaluation process, the reference
cluster for the dataset has been determined according to
(2). Consequently, the accumulated mean degradation of each
cluster can be seen in Fig. 3, highlighting the minimum value,
which in this case corresponds to cluster 4 and, therefore, is
chosen as the reference cluster.

Next, the proposed relevance score computing process is
applied, calculating the RS for each metric for all clusters
compared to cluster 4, shown in Fig. 5, where the x-axis
indicates the cluster number, and the y-axis corresponds to
the metrics. Moreover, although the value of the RS already
quantifies the degradation, it might not provide a clear vision
of what it means for the proposed use case. Therefore, to
solve this, four additional ranges of values have been defined
to categorize the results. These ranges are [−1, 0], [0, 0.4],
[0.4, 0.7], and [0.7, 1], which correspond to less degraded
than usual, normal, impacted, (i.e., partially degraded), and
degraded metric, respectively.

Then, applying these ranges to the RS values obtained
several conclusions can be drawn. Firstly, observing rows
presented in Fig. 5, it can be seen that metrics 12, 31, and
32 are filled with zeroes, which means that those metrics have
a value that is the same throughout the dataset and can be

removed from it as they do not provide relevant information.
In addition to this, every score within metrics 1, 2, 3, 20, and
24 are in the second RS range ([0, 0.4]), which means that
those metrics’ values are normal and, therefore, they could be
taken out of the dataset for the detection of these issues without
affecting the performance. Moreover, if a row has many values
in the third ([0.4, 0.7]) or fourth ([0.7, 1]) RS ranges, it might
be indicative that the metric is degraded globally across the
network.

Secondly, focusing on the columns of the matrix, it can be
seen that all the values of cluster 4 are 0 because it is the
reference cluster. Furthermore, it is observed that in cluster 3
the values are low as well because this cluster corresponds to
a network status where metrics’ values are slightly higher than
in the optimal status, but still not considered a degradation in
performance. For instance, clusters 0, 2, 11, and 12 are related
to traffic (metrics 4 to 13). In this case, cluster 0 has degraded
metrics related to signaling and data usage in both uplink and
downlink (metrics 7 to 10). In contrast, cluster 2 only has
a degradation in the data usage in the downlink (metric 7),
cluster 11 in the signaling (metrics 9 and 10), and cluster 12
in the data usage in the uplink (metric 8).

Thirdly, the defined value ranges could be used to provide a
simple description of the degradations found in a cluster. For
example, cluster 9 has degradation in metrics related to the
noise and interference in the uplink (metrics 26 and 27) and
slight degradation in user throughput (metrics 16 and 17) and
random access success rate (metric 19). In this manner, “strong
degradation in metrics 26 and 27, and slight degradation in
metrics 16, 17, and 19” could be used as a preliminary label
for the cluster.

Finally, Table I summarizes all the impacted and degraded
metrics along with the label defined by experts. It can be seen
in the table that most of the automatically selected metrics
could be expected according to the expert label. Moreover, it
is worth noting that cluster 3 does not present any particular
metric as it was defined as a cluster to gather samples that
cannot be considered normal but either correspond to a type
of failure. Hence, the proposed RS shows to be a relevant
measure for the importance of the different metrics for each of
the clusters obtained using clustering techniques. This allows
the identification of the degradation presented in each cluster,
as well as the key differences among similar clusters, being a
key complement to provide value to unsupervised clustering
results.

IV. CONCLUSIONS & OUTLOOK

This work has proposed a framework and associated mech-
anisms to automatically establish the relevance of metrics in
different clusters obtained using clustering algorithms, via a
proposed importance score derived from the Jensen-Shannon
Divergence. The provided score is able to estimate metric im-
portance considering the divergence between the distribution
of its values as well as its overall degradation compared to a
reference cluster. Furthermore, the cluster used as reference is
obtained automatically based on the degradation of the metrics
so, the cluster chosen as reference is the one considered to be
the normal status of the network.
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TABLE I
COMPARISON OF EXPERT LABELS AGAINST AUTOMATICALLY SELECTED IMPACTED AND DEGRADED METRICS.

No. Expert label
Automatic label

Impacted Degraded

0 Overloaded cell DL Active Users, RRC connected users, DL PRB
Utilization, CCE Load and Pathloss.

RRC Connection attempts, DL/UL Data Volume,
DL/UL Signaling Volume and Random Access Attempts

1 Coverage problems CQI, UL Throughput, Random Access Success, UL
Retransmissions and PUSCH SINR Pathloss

2 Downlink overload
RCC Connection Attempts, DL†/UL Data Volume,

DL/UL Signaling Volume, Random Access Attempts
and Pathloss

-

3 No issue - -

4 Normal - -

5 Overshooting CQI, UL Throughput, PUCCH SINR and Pathloss† -

6 Noisy PUCCH Noise plus Interference in PUSCH and Pathloss Noise plus Interference in PUCCH

7 PUCCH Degradation UL Throughput, Noise plus Interference in PUCCH
and Pathloss PUCCH SINR

8 Noisy PUSCH CCE Load, CQI, Random Access Success and Pathloss Noise plus Interference in PUSCH and Pathloss

9 Noisy PUSCH and PUCCH DL/UL Throughput and Random Access Success Noise plus Interference in PUSCH/PUCCH

10 Degraded RACH CQI, Retransmissions and Pathloss Random Access Attempts and Success

11 Signaling Overload RCC Connection Attempts, CQI, Random Access
Attempts and Pathloss DL/UL Signaling Volume

12 Uplink overload Pathloss, UL Data Volume† -

† Most degraded metric, although not in the degraded range.

The results obtained have proven that the proposed frame-
work can properly provide information on the relevancy of
metrics in each cluster. This information is useful to facilitate
to network experts the process of labeling clusters obtained
using unsupervised mechanisms. Once clusters are labeled, the
information can be used in the detection and troubleshooting
of problems in live networks. Furthermore, the score provided
is useful to establish which metrics do not add information for
the detection of issues. In this manner, avoiding those metrics
can improve the performance of the detection method and save
resources in a production environment.

Future work will focus on developing a system capable of
using the information provided by the RS to automatically
generate labels that can be understood by network experts.
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