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A Novel Parallel Timing Synchronization Scheme for High-Speed Receivers

Marco Morini , Alessandro Ugolini , Giulio Colavolpe ,
Tommaso Foggi , and Armando Vannucci

Abstract— We address the parallel implementation of a
closed-loop symbol timing synchronizer in digital receivers.
Starting from a serial timing recovery loop, we propose
a low-complexity parallel architecture which, unlike parallel
schemes available in the literature, employs a single numerically
controlled oscillator, and is practically suitable for high-speed
receivers. Numerical simulations are carried out to compare the
performance of serial and parallel implementations in terms
of bit error rate. Results show that the proposed architecture
achieves the same performance as the serial algorithm and is
robust enough to ensure good performance also with high order
modulations, which are critical for modern high throughput
applications.

Index Terms— Timing synchronization, parallel
implementation.

I. INTRODUCTION

THE design of parallel architectures in modern communi-
cation systems is becoming more and more important due

to the rapidly increasing data rates, that are eventually limited
by the processing speed of the hardware components [1].
In these architectures, the received signal is sampled by a high-
rate analog-to-digital converter (ADC), followed by serial to
parallel conversion, so that the samples can be processed in
parallel at a lower clock rate.

In this letter, we consider the problem of high-speed parallel
timing synchronization, which has been widely studied in
the literature. In [2], the authors implemented a parallel
Oerder and Meyr timing error detector (TED) whose archi-
tecture, however, requires an oversampling factor equal to 4,
thus demanding considerable hardware resources. Moreover,
the performance analysis was limited to 16-QAM, without
investigating higher-order modulations. A parallel architecture,
designed for optical coherent receivers, can be found in [3],
where the algorithm is tested in the presence of sampling
frequency offsets. Therein, only one error signal is exploited
by the loop filter, thus increasing the convergence time.
In [4], a parallel timing synchronization algorithm is proposed
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for 16-QAM only, for which the parallel model shows an
implementation loss compared to the serial case. Other related
works are, for example [5], [6], and [7], where the authors
specifically address FPGA implementations and high speed
processing. All of the cited architectures, however, adopt
multiple numerically-controlled oscillators (NCOs) to adjust
the timing estimate, and the performance evaluation is limited
to lower order constellations (at most 16-QAM).

Motivated thus by the complexity of hardware implemen-
tation for symbol timing synchronization at high baud rate,
we present a novel parallel timing recovery architecture suit-
able for high-speed receivers and able to operate with different
modulation formats. The novelties and most important aspects
of our proposed architecture can be summarized as follows:

1) Unlike other works in the literature, our parallel scheme
employs a single NCO, thus having the same complexity
as the serial algorithm, since the components of the cir-
cuit are exactly the same. The only complexity increase
is the replication of the branches in order to process
samples in parallel, but everything is controlled by a
single NCO, which is the main source of complexity
in a hardware implementation, and which represents the
main advantage and novelty of our solution with respect
to other parallel architectures proposed in the literature.

2) Being the algorithm exactly the same as the serial
one, there will be no performance losses, as we will
demonstrate through numerical simulations.

3) We also address the problems arising from the hardware
implementation of a division, by introducing an approx-
imation which ensures very limited performance losses.

4) Finally, unlike what is done in the literature, we present
results for high order modulations, which are critical
to achieve high throughput in modern communications,
showing that the proposed architecture is robust enough
to ensure excellent performance.

This letter is organized as follows. In Section II, the system
model is presented and in Section III the symbol timing
recovery scheme with its blocks is described. In Section IV,
the proposed parallel architecture is introduced, for which
numerical simulations are reported in Section V, to compare
the performance of serial and parallel algorithms. Finally,
some conclusions are drawn in Section VI.

II. SYSTEM MODEL

We assume a linear modulation transmitted over an additive
white Gaussian noise channel. The received signal before
matched filtering (MF) can be expressed as

r(t) =
∑

i

aip(t− iT − τ)ej(2πi∆fT+θ) + w(t) , (1)
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Fig. 1. Block diagram of the considered serial symbol timing recovery scheme.

where {ai} are the transmitted symbols belonging to an
M -ary complex constellation, p(t) is the shaping pulse, T
is the symbol interval, θ is a phase offset, and w(t) is a
complex Gaussian noise process. Parameters τ and ∆fT
identify the time offset and the normalized residual carrier
frequency offset, respectively, where τ is assumed to be in
the interval −T

2 ≤ τ ≤ T
2 . The received signal is sampled

at a fixed rate 1/Ts that is asynchronous with respect to the
symbol rate 1/T , i.e., the oversampling factor ν = T/Ts is in
general non-integer (in our simulations, we assumed it to be
ν = 2.25). The asynchronous samples thus obtained are not
aligned with the maximum eye opening. The role of symbol
timing synchronization is thus to compute samples that are
aligned with the optimum sampling instants.

III. SERIAL SYMBOL TIMING RECOVERY

The block diagram of the closed-loop symbol synchronizer
is reported in Fig. 1 [8]. After ADC conversion, with rate
1/Ts, a new sample enters a shift register with depth L. With
the same rate, the entire content of the register is filtered
by a polyphase filter, designed to efficiently combine MF
and interpolation [9]. The polyphase MF outputs samples
with rate 2/T . This can be accomplished by using proper
control signals, ℓ1(mTs) and ℓ2(mTs), whose dependence on
Ts will be omitted for the sake of simplicity. These signals are
generated by the NCO block, and their purpose is to label each
sample at the output of the interpolator either as an optimum
sample, when (ℓ1, ℓ2) = (0, 1), i.e., it is computed at instant
kT + τ̂ , or as a valid sample, when (ℓ1, ℓ2) = (1, 1), i.e., it is
computed at instant kT − T/2 + τ̂ .

Since we assumed a fractional oversampling factor, some
samples should be discarded: this occurs when neither the
sample at kT + τ̂ nor that at kT − T/2 + τ̂ are present in the
interval [mTs, (m + 1)Ts] and, as a consequence, the NCO
generates the control signal ℓ2 = 0 to notify the polyphase MF
block that no sample has to be generated at its output. Note
that the control signals ℓ1 and ℓ2 should also be available to
the TED block, which needs to know if the incoming sample
is either optimum or valid.

Going into the details of the block diagram in Fig. 1, the
main features of each block, i.e., the polyphase MF, the TED,
the loop filter and the NCO, are described hereafter.

1) Polyphase MF: timing adjustment is performed by fil-
tering and interpolating the asynchronous samples r(mTs) at
the output of the ADC, to obtain the samples at the optimal
sampling instants (y(kT + τ̂)) and the valid samples (y(kT −
T/2 + τ̂)). The sequence at the output of the interpolator can

Fig. 2. Relation between the NCO register and the optimal sampling instant.

be expressed as

z(mTs) = ℓ2y

[(
k − ℓ1

2

)
T + τ̂

]
. (2)

When the k-th filtered sample is within the interval
[mTs, (m + 1)Ts], the sample index m is called the k-th
basepoint index, and is denoted by mk. The optimal sampling
instant exceeds mkTs by some fraction of the symbol time
that we denote as µkTs, where µk is the k-th fractional index.
Therefore, the basepoint index mk identifies the closest sample
preceding the maximum eye opening instant, which can thus
be expressed, using the fractional index µk, as kT + τ̂ =
(mk + µk)Ts. This situation is represented in Fig. 2.

2) TED: the filtered samples at the output of the interpolator
can be used to generate an error signal according to a properly
selected TED. Without loss of generality, we will consider the
non-data-aided Gardner algorithm [10], which requires only
two samples per symbol, corresponding to the rate available
at the output of the polyphase MF. The error signal is given
by [10]

e(mTs) = ℜ{y∗ ((k − 1/2) T + τ̂)
· [y ((k − 1) T + τ̂)− y (kT + τ̂)]} (3)

if (ℓ1, ℓ2) = (0, 1), while it is e(mTs) = 0 otherwise.
3) Loop Filter: the error signal is filtered by a second order

proportional-plus-integrator loop filter to track out the symbol
clock frequency offset [11]. The noise equivalent bandwidth
of the filter is a function of the loop filter constants [12]. The
loop filter output, denoted by v(mTs), controls the amount by
which the NCO decrements.

4) NCO: the role of the NCO is to select the polyphase
MF depending on the k-th fractional index µkTs, and label the
filtered samples as optimum or valid. It consists of a modulo-1
decrementing counter, called η(mTs), that is updated as [12]

η[(m + 1)Ts] = η(mTs)−W (mTs) mod 1 , (4)
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Fig. 3. Block diagram for parallel symbol timing recovery with P = 4.

where W (mTs) = 1/ν + v(mTs) is the control word at
the output of the loop filter. The fractional index µkTs is
computed each time an underflow of the NCO occurs. When
the NCO underflows, it also generates the control signals
(ℓ1, ℓ2) = (0, 1) to notify the polyphase MF that a new
optimum sample should be computed. The sample index is the
actual basepoint index mk, while the value of the fractional
index µkTs can be computed from the content of the NCO
register at instant mkTs, i.e., the time instant immediately
preceding the interpolation instant (mk + µk)Ts, as can be
seen from Fig. 2. From simple geometrical considerations,
it follows that [12]

µkTs =
η (mTs)
W (mTs)

. (5)

When in the interval [mTs, (m + 1)Ts] the NCO does not
underflow, it generates the control signals (ℓ1, ℓ2) = (1, 1)
to notify the polyphase MF that a valid sample should be
computed. Finally, if the underflow does not occur neither in
the interval [mTs, (m + 1)Ts] nor in the following interval,
the NCO generates the control signal ℓ2 = 0 to notify the
polyphase MF that no samples should be computed.

As said, the entire digital timing recovery scheme operates
with a clock rate 1/Ts. However, for a proper computation of
the error signal, at the output of the interpolator we need a
new sample every T/2. Similarly, the TED needs to compute
a new error signal e(mTs) every T , while the loop filter has
to be activated every Ts.

IV. PARALLEL SYMBOL TIMING RECOVERY

The block diagram of the proposed architecture for the
parallel symbol timing recovery algorithm is reported in Fig. 3,
for a parallelization factor P = 4.

After ADC conversion, with rate 1/Ts, a new sample enters
a shift register with depth L. With the same rate, a selector
extracts all the samples from the register, and provides them
as input to one of the polyphase MFs. Then, with rate
1/ (Ts · P ), the P polyphase MFs are activated to produce the
corresponding filtered samples, which are then labeled either
as optimum or valid by the NCO.

Note that the samples at the polyphase MFs outputs are
characterized by a rate equal to 2/T , since the Gardner TED
requires two samples per symbol. This is possible thanks to
the introduction of P sets of control signals, similarly to
what has been described in Sec. III, denoted by (ℓ(p)

1 , ℓ
(p)
2 )

(p = 1, . . . , P ), not reported in Fig. 3 for the sake of visual
clarity, each provided to the p-th polyphase MF.

The control signals are generated by the NCO, as described
below, and their purpose is to label each sample at the output
of the polyphase MFs, either as an optimum sample or a
valid sample. Note that, in the parallel architecture, at the
output of the bank of polyphase MFs we have P samples,
each corresponding to a different time instant. In particular,
optimum samples are associated either at instants kT + τ̂ or
(k − 1)T + τ̂ , while valid samples are associated either at
instants (k − 1

2 )T + τ̂ or (k − 3
2 )T + τ̂ . Control signal ℓ

(p)
1

identifies the instant corresponding to the sample at the output
of the p-th polyphase MF. In order to consider all the possible
time instants, signal ℓ

(p)
1 can take discrete values in [−2, 3].

Therefore, when ℓ
(p)
2 = 1 and ℓ

(p)
1 is even, the sample is

optimum, when ℓ
(p)
2 = 1 and ℓ

(p)
1 is odd, the sample is valid,

while when ℓ
(p)
2 = 0 the sample at the output of the p-th

polyphase MF is not computed, regardless of the value of
ℓ
(p)
1 . Note that, when ℓ

(p)
1 is negative, the sample at the output

of the p-th polyphase MF will be used in the computation of
the error signal at the next clock cycle.

The functional blocks are conceptually similar to those in
Fig. 1, while the operational differences are further detailed
in the points that follow, except for the loop filter, which is
exactly the same as in Sec. III.

1) Polyphase Filter: interpolation is performed by a bank
of P parallel polyphase MFs, designed as described in Sec. III,
which, every Ts ·P , output the corresponding samples, that are
then labeled either as optimum or valid by the NCO. The total
number of filtered samples, and therefore of timing estimates,
that are computed every Ts · P , is equal to the number of
optimum and valid samples. The sample at the output of the
p-th polyphase MF can be expressed as

z(p)(mTs) = ℓ
(p)
2 y

[(
k − ℓ

(p)
1

2

)
T + τ̂

]
, (6)

which is identical to Eq. (2) when P = 1.
We define by Ip = [(m + (p − 1))Ts, (m + p)Ts], with

p = 1, . . . , P , the set of P intervals in which a new sample can
be computed. The sample in the p-th interval will be provided
by the p-th polyphase MF.

When the k-th filtered sample is within the p-th interval of
Ip, the sample index m

(p)
k = [m + (p− 1)] is called the k-th

basepoint index. The optimal sampling instant exceeds m
(p)
k Ts

by some fraction of the symbol time, µ
(p)
k Ts, where µ

(p)
k is
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called the k-th fractional index. Therefore, the basepoint index
m

(p)
k identifies the closest sample preceding the maximum

eye opening instant, which can thus be expressed, using the
fractional index µ

(p)
k , as [k+(p−1)]T + τ̂ = (m(p)

k +µ
(p)
k )Ts.

2) TED: the expression of the error signal depends on the
number of optimum samples at the output of the polyphase
MFs. It turns out that we can have either 1 or 2 optimum
samples. In the former case, the error signal is computed as
in the serial algorithm, according to Eq. (3). In the latter case,
instead, the error signal is computed as

e(mTs) = {ℜ{y∗ ((k − 1/2) T + τ̂)
· [y ((k − 1) T + τ̂)− y (kT + τ̂)]}
+ ℜ {y∗ ((k − 3/2) T + τ̂)
· [y ((k − 2) T + τ̂)− y ((k − 1) T + τ̂)]}}/2.

(7)

3) NCO: the NCO consists in a modulo-1 decrementing
counter that is recursively updated, every Ts ·P , according to

η[(m + P )Ts] = η(mTs)−W (mTs) mod 1 . (8)

Its role is to provide the p-th polyphase MF with the k-th
basepoint index m

(p)
k and the k-th fractional index µ

(p)
k , and

label the corresponding filtered sample either as optimum or
valid. This can be accomplished according to these steps:

1) Define the following vectors of ordered horizon-
tal threshold values: IO ≜ [0.5, 0,−0.5], IV ≜
[0.75, 0, 25,−0.25,−0.75], and It ≜ 1− 0.25 · t (t =
1, . . . , 7). Odd and even values of t refer to elements in
IV and IO, respectively.

2) Determine the number of intersections between the NCO
register and the horizontal thresholds in It. Define It′

as the vector containing the elements of It that intersect
the content of the NCO. If an intersection occurs in the
p-th interval of Ip, the NCO generates a control signal
ℓ
(p)
2 = 1 to notify the p-th polyphase MF that a new

sample should be computed. Otherwise, if in the p-th
interval there are no intersections, the NCO will generate
a control signal ℓ

(p)
2 = 0 to notify the p-th polyphase MF

that the corresponding sample should not be computed.
Intersections with thresholds in IO and IV are associated
to optimum and valid samples, respectively. The last
element of It′ belonging to IO is associated with the
sample computed at instant kT + τ̂ .

3) For each intersection found at the previous step, compute
the timing estimates µ

(p)
k . From geometrical considera-

tions, it can be seen, for example by looking at Fig. 4 (a),
that W (mTs)/P = [η(mTs)− It′ ]/µ

(p)
k . Thus, the p-th

timing estimate can be computed as

µ
(p)
k =

η(mTs)− It′

W (mTs)
· P . (9)

In Fig. 4 we report a graphical representation of how to
compute the timing estimates µ

(p)
k and how to assign labels to

the samples, for two different scenarios.
In Fig. 4 (a), there are 2 intersections between the

NCO and the vector IO, i.e., 2 optimum samples, and
2 intersections between the NCO and the vector IV, i.e., 2

valid samples. Therefore, It′ = [0.5, 0.25, 0, − 0.25] and
(ℓ(1)1 , ℓ

(2)
1 , ℓ

(3)
1 , ℓ

(4)
1 ) = (2, 1, 0, − 1).

In Fig. 4 (b), instead, there are 2 intersections with vector
IO and 1 intersection with vector IV, i.e., 2 optimum samples
and 1 valid sample. Therefore, It′ = [0.5, 0.25, 0] and
(ℓ(1)1 , ℓ

(3)
1 , ℓ

(4)
1 ) = (2, 1, 0). We can see that in the interval

[(m + 1)Ts, (m + 2)Ts] there are no intersections between
the NCO and the thresholds in It. In this case the NCO will
generate a control signal ℓ

(2)
2 = 0, so that the second sample

will not be computed.
We note that the computation of the timing estimates µ

(p)
k

requires a run time division by W (mTs), as can be seen
from (9). The control word W (mTs) is a time varying quantity,
since it depends on the output of the loop filter v(mTs). Since
the division by a time varying quantity can create problems in
the hardware implementation, we propose a different method
to compute the values of µ

(p)
k . Since v(mTs) is the filtered

error signal, it will tend to zero once the loop has con-
verged. Therefore, to the purpose of computing (9), we replace
W (mTs) with the constant value 2/ν, i.e. we assume that
W (mTs) = 2/ν + v(mTs) ≈ 2/ν.

Indicating with µ̃
(p)
k the new fractional index, Eq. (9)

becomes

µ̃
(p)
k =

η(mTs)− It′

2/ν
· P. (10)

The relation between µ
(p)
k and µ̃

(p)
k can be derived as follows:

µ
(p)
k =

η(mTs)− It′

W (mTs)
· P =

η(mTs)− It′

2
ν + v(mTs)

· P

= µ̃
(p)
k · 1

1 + v(mTs)ν
2

≈ µ̃
(p)
k ·

(
1− ν

2
· v(mTs)

)
,

(11)

where the last approximation exploits a first order Taylor
expansion.

V. NUMERICAL RESULTS

We evaluated the performance of the proposed symbol
timing synchronization algorithm in terms of bit error rate
(BER), both for the serial and for the parallel implementation.
Performance was compared with that achievable by a receiver
operating in the absence of timing offset, i.e., τ = 0, denoted
as Ideal in the figures that follow.

We considered three ModCods foreseen in the DVB-S2X
standard [13] (64APSK with rate 128/180, 128APSK with
rate 140/180, and 256APSK with rate 135/180) using low-
density parity-check (LDPC) codes.

We set ∆fT = 0.01, as the maximum uncompensated
residual offset after coarse frequency synchronization, a sam-
pling clock offset (SCO) of 100 parts-per-million (ppm) and a
shaping pulse having root-raised cosine spectrum with roll-off
factor α = 0.2. We also assumed perfect carrier frequency off-
set and phase offset compensation before the LDPC decoder.

Fig. 5 (a) shows the BER in a case where only a time offset
τ is present, i.e., perfect sampling clock, carrier frequency,
and phase recovery are assumed. Both serial and parallel
algorithms achieve close to ideal performance, for all the
modulation formats. More importantly, we can see that the
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Fig. 4. Timing estimates computation: (a) 4 intersections corresponding to 2 optimum samples (green) and 2 valid samples (red). (b) 3 intersections
corresponding to 2 optimum samples (green) and 1 valid samples (red).

Fig. 5. BER for serial and parallel algorithms, (a) ∆fT = 0, SCO = 0 ppm
and (b) ∆fT = 0.01, SCO = 100 ppm.

parallel algorithm shows no performance losses with respect
to the serial architecture.

Fig. 5 (b) reports the BER assuming a residual carrier
frequency offset and a non ideal sampling clock frequency.
In this case, a slight performance degradation can be noticed
for higher-order modulations, for both serial and parallel
algorithms. In particular, the parallel algorithm shows a gap of
approximately 0.1 dB, at BER = 10−6, from the ideal case.
The serial and parallel algorithms achieve almost the same
performance, with a difference below 0.1 dB.

VI. CONCLUSION

We proposed a parallel algorithm for symbol timing syn-
chronization for high data rates receivers. We evaluated the
algorithm with modulations and codes foreseen in DVB-S2X
standard. The proposed architecture is derived from the serial

structure, and uses a single NCO to update the timing estimate
provided to a bank of parallel interpolators. We evaluated the
performance in terms of BER, in the presence of both a resid-
ual carrier frequency offset and a sampling clock offset. For
all the considered scenarios, the proposed parallel algorithm
achieves the same performance as the serial implementation.
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