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Abstract— Grant-free access schemes, capable to reduce
control signaling and device complexity, are good candidates
to support future massive multiple access applications. In the
same direction, cell-free architectures promise to pave the way
to fairness in power consumption and performance among the
users. The combination of these two ingredients has the potential
to interconnect a large number of low-power devices to the
network. In this letter, a theoretical analysis tool for grant-free
coded random access, based on stochastic geometry and density
evolution, is developed in the context of cell-free architectures.
In sharp contrast with the cell-based scenario, we found out that
temporally repeating less packets is a valid option due to the
exploitation of spatial repetitions given by the cell-free topology.

Index Terms— Cell-free massive MIMO, coded random access,
density evolution, grant-free access, stochastic geometry.

I. INTRODUCTION

RECENTLY, cell-free network architectures have been
introduced in response to the challenges posed by

inter-cell interference in the context of the increasing network
densification and to the need of a higher user fairness in
terms of energy and performance [1], [2]. The appellative
“cell-free” refers to networks that comprise a large number of
geographically distributed access points (APs), connected to
processors which coordinate their activities through fronthaul
links. This new architectural approach shows great potential
for low-power devices by improving coverage and reducing
communication distances, allowing devices to operate with
lower power [2].

Stochastic geometry has proven effective in establishing
a mathematical framework for modeling diverse multi-user
wireless communication scenarios and assessing their perfor-
mance [3]. For example, sticking to its applications to cell-free
networks, the occurrence of channel hardening and favorable
propagation phenomena was investigated in [4]. Moreover,
both downlink achievable rate and coverage probability were
addressed in [5], considering a random placement of the
APs. Imposing a finite fronthaul capacity, the system energy
efficiency was analyzed in [6], varying the number of antennas
per AP. Another example is represented by [7], where the
blockage of mmWave fronthaul links between APs and central
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processing units was evaluated through stochastic geome-
try. In this context, our work addresses the medium access
control (MAC) layer analysis of grant-free uplink protocols.
In particular, we target coded random access (CRA) schemes,
where coding is used together with successive interference
cancellation (SIC) [8].

Density evolution is a fundamental tool for analysis and
design of modern channel codes with iterative decoding [9].
It was applied in [8] to design CRA schemes, in particular to
optimize irregular repetition slotted ALOHA (IRSA) over the
collision channel. This approach was extended to coded slotted
ALOHA (CSA) in [10]. The assumptions in [8] and [10] can
be summarized as: i) if multiple transmissions occur simulta-
neously, then the receiver is unable to successfully decode any
of the messages; ii) if there is only one transmission, then the
corresponding message is decoded with zero error probability;
iii) decoded messages and their replicas in other slots are
perfectly subtracted. These assumptions, usually referred to as
collision channel assumptions, permit to efficiently carry out
performance analysis and optimization of CRA schemes. This
optimization is often performed with respect to the traffic load
using evolutionary algorithms [11], [12], [13]. In other works,
optimization is carried out targeting different goals, such as
the total power consumption [14].

In this letter, we interconnect the three topics above by
developing a novel theoretical analysis, based on density
evolution and stochastic geometry, to design CRA schemes
in cell-free architectures. The derivation assumes that users
and APs follow homogeneous Poisson point processes (PPPs).
Each AP is able to receive user packets transmitted in its
coverage area, leading to a natural extension of the colli-
sion channel assumptions. Since the APs are connected, the
redundancy provided by spatial and temporal packet replicas
can be exploited by SIC. The proposed analysis can capture
both a path-loss only model, where the AP coverage area
has the shape of a disk, and a path-loss plus shadowing
model. The main contributions of the letter can be summarized
as follows: i) we derive stochastic geometry-based density
evolution equations for CRA in cell-free architectures; ii)
we derive lower bounds to estimate error floors, which are
not captured by density evolution analysis; iii) we show that
optimal IRSA distributions derived for the cell-based scenario
may turn sub-optimum in cell-free architectures, when the AP
density increases. Monte Carlo simulation results are shown
to prove the effectiveness of the proposed approach.

II. PRELIMINARY AND BACKGROUND

This section briefly reviews density evolution for IRSA
over the collision channel [8]. There are Ka active users
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that contend to transmit one message each in a frame with
Ns slots. Each active user transmits multiple replicas of its
packet in the frame, where the packet repetition degree r is
a random variable with probability generating function (PGF)
Λ(x) =

∑
r Λrx

r, drawn independently by each active user.
The system is represented by a bipartite graph with Ka user
nodes and Ns slot nodes: if a user sends r packet replicas in
the frame then its user node has degree r, i.e., r connected
edges, towards the r slot nodes associated with its chosen slots.
The degree of a slot node, c, is the number of users that have
picked the corresponding slot; its PGF is Ψ(x) =

∑
c Ψcx

c,
where Ψc is the probability that a slot node has degree c.
The probabilities that an edge is connected to a degree-r
user node and degree-c slot node are λr = Λr r/Λ′(1) and
ρc = Ψc c/Ψ′(1), respectively. We also define the polynomials
λ(x) =

∑
r λrx

r−1 and ρ(x) =
∑

c ρcx
c−1. The system load

G is defined as G = Ka/Ns [users/slot].
The single receiver processes the whole frame accord-

ing to an iterative SIC procedure. Under collision channel
assumptions, whenever a packet replica is not interfered, it is
successfully decoded; the receiver then cancels the interfer-
ence of the packet and of its twins from the corresponding
slots, possibly yielding new successful decoding attempts; the
procedure is repeated until no new messages can be decoded.
With perfect interference cancellation and in the asymptotic
regime Ka → ∞, Ns → ∞, and constant Ka/Ns, the SIC
process can be modeled by a simple recursion referred to as
density evolution for IRSA. Let: i) q

(r)
ℓ be the probability that

an edge is connected to a degree-r user node not yet decoded
at the end of SIC iteration ℓ; ii) p

(c)
ℓ be the probability that

an edge is connected to a degree-c slot node where a collision
persist at the end of SIC iteration ℓ; iii) qℓ =

∑
r λr q

(r)
ℓ and

pℓ =
∑

c ρc p
(c)
ℓ be the corresponding average probabilities.

It is easy to see that q
(r)
ℓ = pr−1

ℓ−1 and p
(c)
ℓ = 1−(1−qℓ)c−1.

Averaging over the probabilities λr and ρc yields the recursion

pℓ = 1− ρ(1− λ(pℓ−1)) (1)

with initial value p0 = 1 (no revealed edge at the beginning).
Moreover, in the asymptotic regime the polynomial ρ(x)
involved in (1) assumes the form ρ(x) = exp(GΛ′(1)(1−x)).

The asymptotic packet loss rate (PLR) at SIC iteration ℓ is
Qℓ =

∑
r Λrp

r
ℓ = Λ(pℓ). We can then define the asymptotic

load threshold of an IRSA distribution Λ(x) as

G⋆ = sup{G > 0 : Qℓ → Q∞ ≤ Q⋆ as ℓ →∞} (2)

where Q⋆ a target error probability. This threshold definition
allows us to capture also the behaviour of schemes with r = 1
(as for r ≥ 2 it is allowed to simply take Q⋆ = 0).

The above analysis is inherently cell-based, as it holds for
a single receiver. In the following, we extend it to cell-free
architectures using density evolution described in this section
to model the temporal processes, together with PPPs to model
the spatial processes of both users and APs.

III. STOCHASTIC GEOMETRY-BASED DESIGN

We consider a slotted and framed grant-free uplink access
protocol in a cell-free network architecture. Active users
contend adopting the IRSA protocol over a frame composed

Fig. 1. Example of realizations of the spatial (AP and user positions) and
temporal (transmission of replicas in different slots) processes.

of Ns slots. Both APs and users are scattered in the area
covered by the network. To model their spatial positions we
use two homogeneous 2-dimensional PPPs [15] with densities
η [APs/m2] and ξ [users/m2], respectively. A pictorial repre-
sentation is provided in Fig. 1, where both the spatial and the
temporal processes are illustrated.

We initially model wireless connectivity using a disk model.
This simple model naturally arises when considering only the
path-loss. Letting α be the path-loss exponent, Pth be the
receiver sensitivity, P be the power received at a distance
of 1 m, and defining P̄th = Pth/P , we have the follow-
ing gating effect: receivers at a distance d greater than a
radius R = P̄

−1/α
th are not in wireless connectivity with the

transmitter, while receivers inside this radius are connected
to it. Furthermore, we assume a collision channel to model
the interference effect. Accordingly, APs receiving multiple
messages in a slot are not able to decode any of them.

Adopting this disk model over the described scenario with
two homogeneous PPPs, unavoidable decoding failures arise
due to spatial positions. In fact, if an active user has no APs
in connectivity, there is no possibility to decode its message,
leading to an error floor in the PLR curve. To avoid this bias,
we condition the active users’ process to generate users in the
coverage area of the APs network, resulting in users having
at least one AP in connectivity. Then, the probability that a
given user is in connectivity of k different receiving APs is

Pη(k) =
(η |A|)k

k!
e−η |A|

1− e−η |A| , k > 0 (3)

where the dependence on R is by |A| = πR2. An active user is
then connected to N̄AP = η |A|

1−e−η |A| APs on average. Next, the
probability that k active users are connected to a given AP is

Pξ(k) =
(ξ |A|)k

k!
e−ξ |A|, k ⩾ 0 . (4)

Note that, the generation of the users according to the con-
straint that each user is in connectivity of at least one AP does
not follow anymore a homogeneous PPP. However, for values
η |A| of interest [4], the process is practically homogeneous.

In presence of log-normal shadowing, two points at distance
ζ are in connectivity with each other if Pe2σX/ζα > Pth

where X ∼ N (0, 1) and σ is the shadowing parameter [16].
The Gaussian random variable X is modeled as independent
from user to user, leading to uncorrelated shadowing effects.
A user and an AP at a distance ζ are therefore in connectivity
with probability p(ζ), given by

p(ζ) = P
{

P
e2σX

ζα
> Pth

}
= Q

(
ln P̄th + α ln ζ

2σ

)
(5)

where Q(x) is the Q-function of the standard normal dis-
tribution. For each user (or AP), this selection based on the
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received power is independent for each point and gives rise
to an independent thinning of the PPP. We can compute an
“effective area” of this thinned PPP as [16]

|A| =
∫ ∞

0

∫ 2π

0

ζp(ζ)dθdζ = π exp
(

8σ2

α2
− 2 ln P̄th

α

)
. (6)

This way, we can analyze in a unified way both the disk model
and the shadowing scenario, by incorporating in (3) and (4)
the area |A| = πR2 or (6), respectively.

A. Density Evolution for Cell-Free Networks

In the following, we embody the spatial processes described
in Section III into the analysis reviewed in Section II by
extending (1) from a single receiver (cell-based) scenario to a
cell-free one. Hereafter we let B = η|A|. From Section II we
have that an active user transmits r packet replicas according
to the PGF Λ(x). Next, in a cell-free setting the user is also
in connectivity of k APs, according to (3), leading to a total
of n = r k repetitions per user. This way, the effective user
node degree n is a random variable with PGF

Γ(x) =
∑

n

Γnxn =
∑

r

∑
k

ΛrPη(k)xrk

=
e−B

1− e−B

∑
r

Λr(eB xr

− 1) (7)

leading to an equivalent edge-perspective user degree distribu-
tion γ(x) = Γ′(x)/Γ′(1). Hence, γ(x) plays the role of λ(x)
in (1) when the cell-free case is considered. Moreover, an AP
receives exactly c packets in a slot with probability

Ψc
(a)
=

∞∑
k=c

(
k

c

)(
Λ′(1)
Ns

)c (
1− Λ′(1)

Ns

)k−c

Pξ(k)

(b)
=

(Λ′(1) G)c

c!
e−Λ′(1) G (8)

where: (a) follows from weighting the probability of c out
of k users picking the slot, given that the AP has k con-
nected active users, with the probability mass function of k,
Pξ(k); (b) follows from (4) and from re-defining the load as
G = ξ |A|/Ns [users/slot]. By ρ(x) =

∑
c ρcx

c−1 and ρc =
Ψc c/Ψ′(1), (8) leads to the same formal expression of ρ(x) as
in the cell-based case (Section II), ρ(x) = exp(GΛ′(1)(1−x)),
albeit with a different expression for G.

Replacing the polynomial λ(x) in (1) with the
edge-perspective user degree distribution γ(x) derived
from (7), after algebraic manipulation we obtain

pℓ = 1− exp

(
−G

∑
r

Λr r pr−1
ℓ−1 exp

(
B (pr

ℓ−1 − 1)
))

(9)

with p0 = 1. The load threshold G⋆ of an IRSA distribution
Λ(x) can thus be computed again by (2), upon re-defining Qℓ

as Qℓ = Γ(pℓ). Importantly, if Λ1 = 0 (the minimum repeti-
tion degree is 2 or larger) then the threshold is well-defined for
arbitrarily small Q⋆ in (2), since p∞ = 0 (so Q∞ = 0) up to
some G. In contrast, if Λ1 ̸= 0 then a fixed point p∞ = 0 can
never be reached for any G, and therefore we need to impose
some positive residual error probability Q⋆ > 0 to have a

well-defined threshold. Also note from (9) that, for given Λ(x)
and considering a disk model, G⋆ does not depend on η and
R separately, but on B = ηπR2. Moreover, regardless of the
connectivity model, each B maps bijectively to an N̄AP value,
so we can think of G⋆ as a function of N̄AP.

B. Convergence Analysis for Regular Distributions

In this section we want to elaborate on the analytical study
of G⋆, assuming a regular distribution Λ(x) = xr. In this
case we can derive the value of the fixed point pℓ = pℓ−1 = p
yielding a target Q⋆ as

p = Γ−1(Q⋆) =
[

1
B

ln
(
1 + Q⋆

(
eB − 1

))]1/r

. (10)

Assuming we are free from other constraints, the load thresh-
old from (9) would be

G⋆
free = − ln(1− p) eB(1−pr)

/
(rpr−1) . (11)

This load is not achievable if (9) has other fixed points
for larger p, which will inevitably stuck the recursion for
some G < G⋆

free. To see when this happens, we look for
the values of p where the function 1 − ρ(1 − γ(p)) (i.e.,
the right hand side of (9) with pℓ−1 = p) is tangent to
the bisector p. Manipulating (9), we obtain that to have
convergence of the iterations starting from p0 = 1 the load
cannot be greater than G⋆

stuck, defined as the minimum value of
G⋆

tan =
[
eB(pr−1) r(1− p)pr−2 [r − 1 + Brpr]

]−1
such that

p is a root of

B = h(p) =
(r − 1)(1− p) ln(1− p)− p

rpr(1− p) ln(1− p)
. (12)

Summarizing, we have that G⋆ = min{G⋆
free, G

⋆
stuck}, giving

rise to a possible phase transition effect.
It is interesting to note that, for the case r = 1, we have two

roots of B = h(p) represented by 1 + [BW0/−1(−1/B)]−1

where Wk(x) is the k-th branch of the Lambert W function.
This leads to

G⋆
stuck = −W−1(−1/B) exp (−1/W−1(−1/B)) . (13)

From the behavior of W−1(x) we also deduce that G⋆
stuck does

not exist if B < e. For the case r = 2, we have that G⋆
free =

eB/2 whenever Q⋆ → 0 (i.e., p → 0), meaning that we could
have phase transition effects. For the cases r ≥ 3, we have that
G⋆ = G⋆

stuck for Q⋆ → 0, due to the fact that G⋆
free → ∞,

meaning that those schemes may not exhibit phase transition
effects. These behaviours will be verified in Section IV.

C. Lower Bound Analysis for Disk Model

In this section we derive a lower bound for the PLR
assuming disk model connectivity. To derive it, we have to
compute the probability that an unresolvable collision occurs.
To this aim, we choose the event in which a user and its closest
interfering neighbor are in connectivity by exactly the same
APs. For interfering user we mean that it is transmitting in the
same time slots of the user under examination. For the sake
of simplicity, hereafter, we consider N̄AP sufficiently large to
have a homogeneous PPP for user locations.
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Let us consider a general IRSA scheme defined by Λ(x).
Given r replicas, the users have in total

(
Ns
r

)
slot pattern

choices for transmission. Therefore, Λrξ/
(
Ns
r

)
represents the

spatial density of the interfering users. This process is still
homogeneous since it arises from a uniform independent thin-
ning of the active users process. Then, considering a generic
user, its closest interfering user distance is a random variable
δ distributed according to the probability density function

fδ(δ; r) =
2πΛrξδ(

Ns
r

) e−πΛrξδ2
/
(Ns

r ) δ ⩾ 0 . (14)

On the other hand, given δ, the probability to share the same
APs under the disk model assumption (no shadowing), is the
probability that at least one AP resides in the intersection of the
two disks Aint with centers the two users, and no APs reside
in the non-overlapping region. The constraint that at least one
AP is in Aint derives from the hypothesis that all users are in
connectivity of at least one AP. Solving the geometric problem
we have that the intersection area is

|Aint| = 2 R2 arccos
(

δ

2R

)
− δ

√
R2 − δ2

4
(15)

for δ ≤ 2R and zero otherwise. Finally, the probability of the
described collision event, given r, is

P (r) =
∫ ∞

0

e−η(2πR2−2|Aint|)
(
1− e−η|Aint|

)
fδ(δ; r) dδ

(16)

and the lower bound on the PLR is PL ≥
∑

r ΛrP (r).

IV. NUMERICAL RESULTS

As main numerical outcomes: i) we show the dependency
of the asymptotic load threshold on the average number of
APs in connectivity; ii) we assess the consistency between
the proposed analysis tools and Monte Carlo simulations.

A. Density Evolution Analysis
To perform density evolution analysis, we designate a value

of G as achievable (i.e., G < G⋆) when the density evolution
recursion yields Q∞ < Q⋆ = 10−4. We utilize the recursive
equations outlined in Section III-A for various distributions
Λ(x), both regular and irregular. The value of G⋆ is depicted in
Fig. 2 as a function of N̄AP. Firstly, we observe that, as η → 0
(i.e., N̄AP → 1), G⋆ converges to the load threshold over
the collision channel in the cell-based setting, as reviewed
in Section II. This is due to the fact that, for η → 0, the
few APs generated by the PPP are scattered far away from
each other, causing users to perceive only one AP: in this
scenario, we revert to the cell-based architecture. Secondly, we
note that repeating more times seems to degrade G⋆, for N̄AP

sufficiently larger than one. This phenomenon, peculiar of cell-
free architectures, results in the optimal distributions observed
in cell-based architectures becoming sub-optimal in distributed
environments. This occurs as packets are repeated, leverag-
ing both the spatial and temporal dimensions. The effective
repetition distribution Γ(x), therefore, deviates significantly
from Λ(x), hindering a straightforward reuse of the optimal
distributions derived, e.g., in [8].

Fig. 2. Dependency between asymptotic traffic threshold and the average
number of access points in connectivity of an active user in a cell-free scenario.

Special attention is warranted for the scheme with a single
packet transmission, i.e., Λ(x) = x. This scheme, performing
poorly in a cell-based scenario, can exploit the AP density to
spatially repeat packets in a cell-free architecture, achieving
favorable threshold values. The analysis reveals that for a
sufficiently large AP density, it can outperform other distribu-
tions. However, the range of N̄AP values for which Λ(x) = x
yields good results is highly dependent on the target Q⋆.
Indeed, a phase transition behavior is evident in the figure,
as detailed in Section III-B. As N̄AP progressively increases,
we initially observe an exponential trend, as expressed by (11).
However, at a certain value of N̄AP, a marked shift in
trend occurs, leading to a transition in the achievable load,
now characterized by (13). A similar phase transition can be
observed for Λ(x) = x2, with the first exponential behavior
G⋆ = eB/2 predicted in Section III-B.

B. Simulation
To illustrate the accuracy of the proposed load threshold

analysis, we use a simulator to evaluate the PLR metric.
In particular, the generation of APs and users occurs in a
square with a side length equal to 20R, where the disk
model radius is R = 100 m, value that could represent an
equivalent cell-based scenario adopting picocells. To mitigate
edge effects, we adopt a wrapped geometry. Specifically,
we envelop a square area around the edges to simulate a
network with infinite area [17]. Moreover, when shadowing
is considered, we set σdB = 10 log10(exp(2σ)) = 6 and
α = 3.67. The threshold P̄th is computed according to (6)
to have the same effective area |A| of the disk model. This
ensures that the density evolution threshold is valid for both
disk and shadowing-based models. The frame length is set to
Ns = 50 slots.

In Fig. 3 and in Fig. 4, we report the results for: the
simulations with and without shadowing; the corresponding
asymptotic thresholds derived in Section III-A; and the lower
bounds derived in Section III-C for the scheme without shad-
owing. In particular, we show results imposing N̄AP = 5 and
N̄AP = 15. Firstly, we emphasize that the lower bounds
accurately estimate the error floor regions of the performance
curves under disk model assumptions, while the density evolu-
tion analysis successfully predicts the locations of the waterfall
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Fig. 3. Performance analysis of CRA schemes against the average traffic per
slot fixing N̄AP = 5. Curves with marker: simulation.

Fig. 4. Performance analysis of CRA schemes against the average traffic per
slot fixing N̄AP = 15. Curves with marker: simulation.

regions. Secondly, we observe a slight discrepancy between
the density evolution analysis and the simulation curves. This
gap can be attributed to the fact that density evolution does
not account for spatial correlations between users and APs.
In reality, users transmit replicas only to nearby APs, creating
an effect during SIC akin to spatial coupling [18], [19]. To sub-
stantiate this claim, we conduct a simulation where, after users
and APs generation, we shuffle their adjacency matrix to break
this correlation. The results, reported in Fig. 4, perfectly align
with the density evolution analysis. Thirdly, we observe the
beneficial effect arising from uncorrelated shadowing. This is
because the unresolvable collision discussed in Section III-C
could become resolvable in the presence of shadowing. The
probability that two users transmitting in the same slots are
seen by the same APs is lower in this context, resulting in
PLRs smaller than the disk model lower bound. Finally, it is
worth stressing that the ALOHA case Λ(x) = x, typically
ineffective in cell-based scenarios, could play a crucial role
in the SIC-enhanced cell-free architecture for interconnecting
low-power devices, depending on the reliability target.

V. CONCLUSION

The growing interest in cell-free architectures and grant-free
protocols for next-generation wireless networks necessitates
reliable design tools to optimize and compare various solu-
tions. In pursuit of this goal, we introduce a novel density
evolution-based tool designed for both a disk model connec-
tivity and one in the presence of shadowing. Key findings
from our analysis suggest that adopting low repetition degrees
is advisable when AP density is high.
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