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Abstract— Linear and nonlinear impairments restrict the
transmission performance of high-speed terahertz (THz) com-
munication systems. To improve transmission performance,
we propose a two-stage nonlinear equalizer (NLE). In the first
stage, a memory-controlled long short-term memory (LSTM)
neural network learns channel nonlinearity and compensates for
it through nonlinear waveform regression. In the second stage,
a low-complexity deep random forest (RF) network identifies non-
linear boundaries among individual QAM symbols and adjusts
the standard hard decision thresholds of the QAM demodulator
to align with the distribution of received symbols. This study
experimentally validates the proposed two-stage NLE on a dual-
channel THz-over-fiber transmission system using an intensity
modulation and direct detection (IM/DD) scheme, achieving a
successful 20 Gbps line rate up to a 4.5-meter wireless link at both
125/300 GHz frequency bands. The proposed scheme outperforms
a Volterra nonlinear equalizer in all tested scenarios, surpassing
a linear equalizer (LE) by reducing the bit error rate (BER) from
2.47 × 10−3 to 2.61 × 10−4 in the 300 GHz link and from
3.42 × 10−3 to 5.64 × 10−4 in the 125 GHz link.

Index Terms— THz communication, OFDM, IM/DD, artificial
intelligence, non-linear equalizer, LSTM.

I. INTRODUCTION

THE rapid advancements in cloud computing, artificial
intelligence, and the internet of things challenge the band-

width and data rates supported by 5G technology, especially
given its reliance on constrained millimeter-wave spectrum.
To deal with the rising capacity needs of data-intensive
applications, the terahertz (THz) band, with its rich spectrum
resources, is explored for future 6G communications [1],
[2]. Among the diverse technologies for THz communication,
the photomixing method is particularly appealing due to its
compatibility with existing fiber communication through THz-
over-fiber technology and broad spectrum range tunability,
facilitating the seamless integration of THz communication
systems with current communication networks [3]. Over
the past decade, there has been a notable increase in the
experimental demonstration of photomixer-based THz com-
munication systems with wireless data rates ranging from few
Mbps to 100s of Gbps [4], [5], [6], [7]. In these systems,
advanced modulation formats, including quadrature amplitude
modulation (QAM) formats used in both single-carrier [4], [5]
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and multi-carrier orthogonal frequency division multiplexing
(OFDM) formats [6], [7], are applied to improve spectral
efficiency and, consequently, achieve higher data rates. More-
over, OFDM demonstrates robust resistance to THz channel
impairments, facilitating the acquisition of channel state infor-
mation and symbol detection compared to a single-carrier
system; nevertheless, coherent detection is typically required
for achieving high data rates. This involves sub-harmonic radio
frequency mixing with a frequency multiplier, significantly
increasing the system’s complexity and hindering practi-
cal implementation. In contrast, a direct detection approach
for THz communication, which involves a low-hardware-
complexity, time-resolved THz receiver to capture the signal
envelope of an intensity-modulated THz signal, offers a
straightforward solution. Unfortunately, linear and nonlinear
distortions originated from various system elements such as
the Mach-Zehnder modulator (MZM), optical and electrical
amplifiers, along with subcarrier-to-subcarrier-beating interfer-
ence (SSBI) induced by square detection, present a significant
constraint on intensity modulation direct detection (IM/DD)
OFDM transmission which are theoretically quantified in [7],
[8], and [9]. Therefore, advanced equalization methodologies
play a pivotal role in enhancing system performance and
meeting the demands of THz communication systems.

With the advancement of artificial intelligence, the neu-
ral network has been adopted as the advanced equalization
scheme, leveraging their robust learning and nonlinear map-
ping capabilities [10], [11], [12], [13]. However, the computa-
tional complexity associated with multi-layer equalizers [10],
[11], [12], and the necessity for a substantial amount of
training symbols for equalization tasks on received symbols
impose constraints on their application in high-speed THz
communication [13].

In this letter, we propose a two-stage deep learning-assisted
nonlinear equalizer designed to counteract nonlinear distor-
tions effectively. In the first stage, the received sampled
time-domain OFDM signal is fed into a memory-controlled
long short-term memory (LSTM) unit for nonlinear wave
regression. Given that THz wireless systems operate with
highly directional beams under line-of-sight (LOS) condi-
tions, the impact of multi-path fading is negligible, enabling
equalization in the time domain with reasonable complex-
ity. Additionally, equalizing the received signal in the time
domain before subsequent processing routines avoids complex
value training and preserves the linear and nonlinear con-
nections between sample points, facilitating the equalizer in
discerning patterns of nonlinearity without requiring multi-
layer networks. In the second stage, a random forest (RF)
equalizer undergoes training to discern the optimal nonlinear
boundaries for QAM symbol classification. It categorizes
each received symbol into one of the M groups based on
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the modulation format, thereby equalizing the channel and
accomplishing the equalization task with ultra-low complexity.
Furthermore, to evaluate the performance of the uni-traveling-
carrier photodiode (UTC-PD) and pin-photodiode (PIN-PD) as
the two most established optoelectronic THz emitters, we con-
figured a dual-channel IM/DD OFDM THz communication
system. This system delivered OFDM signals at the optimal
operating frequency of each THz emitter. Using this setup,
we experimentally validated the proposed two-stage nonlinear
equalizer with a 16-QAM 5 Gbaud OFDM signal, considering
the limited THz detector bandwidth.

II. DUAL-CHANNEL IM/DD THZ COMMUNICATION
SYSTEM

Fig.1 illustrates the setup of the dual-channel THz com-
munication system. It incorporates three tunable distributed
feedback (DFB) laser diodes operating in the C-band. LD-1
generates the optical carrier signal at 1550 nm, while LD-2 and
LD-3, serving as local oscillators, generate optical signals at
1551 nm and 1552.4 nm, respectively. The optical signal from
LD-1 passes through a polarization controller before being
routed to a single-drive Mach-Zehnder modulator (MZM) for
performance optimization. Pre-generated 16-QAM 5 Gbaud
OFDM signals, used to modulate the optical carrier in the
MZM, are created offline using MATLAB code and then
converted to analog form by an arbitrary waveform generator
(AWG). To counteract MZM and optical link losses while
boosting overall optical power, the signal undergoes amplifica-
tion via an erbium-doped fiber amplifier (EDFA). Additionally,
an accompanying band-pass filter is employed to eliminate any
out-of-band amplified spontaneous emissions.

The amplified modulated signal is split into two equal-power
signals, each then combined with a respective local oscillator.
In the 125 GHz link, the optical signal is directed to a PIN-PD
for x-polarized THz signal generation. In the 300 GHz link,
the signal is directed to a UTC-PD for y-polarized THz signal
generation. With orthogonal polarizations in the two links,
radiated waves from one link do not interfere with the other.

In both links, polarization controllers precede heterodyning
for enhanced polarization-dependent conversion of THz emit-
ters. In our experiment, optical power is set to be 12 dBm in
both links for consistent device performance during long test-
ing trials. Each link in the free-space THz datalink integrates a
pair of THz lenses for collimating the THz beam and minimiz-
ing propagation losses. At the receiver end, two Fermi-level
managed barrier (FMB) diodes, each positioned to detect a
specific polarization, serve as envelope detectors. The received
THz signals are then captured by a high-speed real-time digital
oscilloscope. Following this, a digital signal processing (DSP)
algorithm is applied offline, encompassing down-conversion,
channel estimation, equalization, phase noise compensation,
and digital demodulation.

III. TWO-STAGE NONLINEAR EQUALIZER

Here, we propose the two-stage NLE to estimate and
compensate for nonlinear impairments in THz communication
systems. As presented in Fig.1, the first stage of the pro-
posed NLE features a memory layer and representative delay
units (z−1) that store present and preceding OFDM samples.
Prior to equalization, The OFDM samples are resampled

and time-synchronized to ensure the window begins with the
correct samples. The training sequence is then extracted from
the overall signal and utilized to train the model. The first
post-equalization stage utilizes a prolonged sequence model,
aiming to correlate the current output with the output states
of previous moments. For this purpose, we adopt an LSTM
network with H hidden units, which retains persistent memory
across multiple sessions. It prioritizes the latest data sequence
and maintains weights from the original model during training.
This lasting memory significantly enhances the LSTM’s ability
to compensate for nonlinear impairments through waveform
regression in the time domain. It is worth noting that the first
equalization stage is insensitive to the order of QAM and can
be directly applied to higher-order modulation formats.

Each LSTM unit encompasses a forget gate fn determining
which information to discard, an input gate in responsible for
storing content in the cell, and an output gate on regulating
the information to be transmitted. The forward pass LSTM
cell equations for a time-step n can be concisely expressed as
follows [14]:

fn = σ(wfxn + Rfhn−1 + bf )
in = σ(wixn + Rihn−1 + bi)
on = σ(woxn + Rohn−1 + bo)
Cn = fn ⊙ Cn−1 + in ⊙ tanh(wcxn + Rchn−1 + bc)
hn = on ⊙ tanh(Cn) (1)

where wf,i,o,c, Rf,i,o,c, and bf,i,o,c vectors represent input
weights, recurrent weights, and biases, respectively, which are
trainable variables. σ denotes the logistic sigmoid activation
function and ⊙ is the element-wise product operand.

The stored temporal data sequence from the received OFDM
signal has the following form: xn,L = [xn−k, . . . , xn−1, xn],
where L represents the overall length of the sequence which
is equal to L = k + 1. Thus, at discrete time n, we feed
k preceding samples into the LSTM network to capture sys-
tem nonlinearities and establish temporal relationships among
adjacent samples. Following this, a single feedforward layer
systematically maps the weighted output of each LSTM cell,
providing an accurate estimate of the intact OFDM signal.

After waveform correction, the signal undergoes
down-conversion and low-pass filtering to capture the
baseband signal. The fast Fourier transform (FFT) block
transforms the time-domain OFDM signal into the frequency
domain for the second equalization stage to perform
equalization at the sub-carrier level. In contrast to the first
equalization stage, where LSTM networks aim to compensate
for channel nonlinearity by minimizing the mean square error
(MSE) of sequential sample points in the OFDM signal,
the second stage operates on the distributions of the entire
training set rather than individual data sequences. Its goal is
to minimize the entropy of the training set and align hard
decision boundaries with the distributions of received QAM
symbols, leveraging prior knowledge of the location of each
QAM symbol. This is accomplished by combining a linear
equalizer (LE) with an ultra-low complexity learning-based
random forest (RF). The RF determines decision boundaries
and classifies symbols into 16 groups based on modulation
format.
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Fig. 1. Dual channel THz communication system with proposed two-stage NLE. PC: Polarization controller. MZM: Mach-Zehnder modulator. OBF: Optical
band-pass filter. EDFA: Erbium-doped fiber amplifier. FMB: Fermi-level managed barrier diode. DSO: Digital storage oscilloscope.

The RF classifier employs bootstrap aggregation to construct
a model through an ensemble of decision trees. This process
involves growing classification trees on a random subset of fea-
tures, with node categorization determined by considering the
entropy-based splitting rule [15]. In our 16-QAM OFDM THz
communication system, the input features, denoted as N =
{N1, N2}, represent the in-phase and out-of-phase components
of each QAM symbol, while the candidate set for category
information is denoted as C = {C1, C2, C3, . . . , C16}. The
classification entropy can be calculated as follows:

H(D) = −
M∑

m=1

P (y = Cm) log2 P (y = Cm) (2)

where, P (y = Cm) represents the proportion of training data
associated with category Cm relative to the entire training
dataset. In the training process, the goal is to identify the
optimal decision boundary. This is achieved by calculating
entropy before and after splitting the nodes, resulting in the
computation of Information Gain (IG) from each individual
split using assigned thresholds for each feature. IG can be
formulated as:

IG(D,Nv
i ) = H(D)−H(D|Nv

i ) (3)

where Nv
i represents the different values of selected feature.

The condition with the highest IG is selected as the root node
of the decision tree. This splitting process continues until the
leaf nodes are accurately categorized and decision boundaries
are finalized.

In RF, the number of decision trees (N) and their depth (D)
are critical hyperparameters. Choosing too few trees leads to
coarse decision boundaries and reduced accuracy, while an
excessively large number increases complexity and training
time. Striking the right balance is essential for optimal RF
model performance.

IV. RESULTS AND DISCUSSION

Fig.2 shows the BER contour map of the first equalization
stage as a function of the equalizer memory length and number
of hidden units in the LSTM network for the 125 GHz
channel and 300 GHz channel separately. As the network size
increases, the equalizer shows improved accuracy in estimating
channel impairments, leading to noticeable enhancements in
BERs across both channels. However, this enhancement levels
off beyond a certain memory length, indicating that the sys-
tem’s nonlinearity is limited within a specific range. Notably,

Fig. 2. BER as a function of memory length and number of hidden
units for 16 QAM-OFDM signal formats using first equalization stage for
(a) 300 GHz channel and (b) 125 GHz channel.

despite employing identical detection schemes, signals, and
optical systems, the size of the network and the memory
length required to reach saturation level vary between the
two channels. Furthermore, the radiated THz power from the
PIN-PD at the 125 GHz link is roughly 6 dB higher than
that from the UTC-PD at the 300 GHz link, suggesting an
expected higher SNR and, therefore, better performance in
the 125 GHz link [16]. However, the results do not align
with this expectation. This incongruity could be attributed
to the lower sensitivity of the FMB detector at 125 GHz.
Additionally, unlike the UTC-PD, where only electron carriers
contribute to the overall THz photocurrent and, consequently,
THz radiation, in the PIN-PD, both hole and electron carriers
participate in generating the total THz photocurrent [16].
Nonetheless, due to their higher effective mass, holes are 10 to
20 times slower, which might explain why a larger memory
length and network size are required by the 125 GHz link to
compensate for the channel distortion. Given the exponential
growth in complexity associated with larger networks, the
proposed equalizer scheme adopts memory lengths and hidden
units of (11,9) and (5,7) for the 125 GHz and 300 GHz links,
respectively.

To ensure a comprehensive evaluation, we compared five
different frameworks to handle the wave regression task within
the first equalization stage. Our candidate frameworks include
a two-layer artificial neural network (ANN), a sparse two-layer
artificial neural network (S-ANN) with sparsity factors of α =
0.53 and α = 0.48 for the 125 GHz link and 300 GHz link
respectively [17], a conventional third-order Volterra equalizer,
and a bidirectional long short-term memory (BiLSTM). It is
important to note that all methods underwent optimization
using the grid search method, with 25% of the OFDM samples
dedicated to training the equalizer. This allocation ensured that
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Fig. 3. Frequency spectrum of the OFDM signal before and after passing
through the channel, and BER of different frameworks as a function of
wireless link distance for (a) 300 GHz channel and (b) 125 GHz channel.

the network captured sufficient channel state information. The
optimal number of layers and the number of multiplications,
serving as indicators of the framework’s complexity, are sum-
marized in Table I.

Fig. 3 presents the performance of different frameworks in
terms of BER for various wireless link distances. As shown,
BiLSTM provides maximum gain in the 300 GHz link, while
in the 125 GHz link, the performance of all ANN, LSTM, and
BiLSTM frameworks for 1.5 meters is almost identical. How-
ever, with increasing wireless link distance, the performance
of all frameworks significantly drops. This could be attributed
to free path loss of THz waves and atmospheric attenuation.
In general, the effectiveness of a THz wireless link under the
LOS scenario heavily relies on its allocated power resources.
In shorter link distances, the system’s performance is primarily
affected by the nonlinearity of the channel. However, as the
link distance increases, the signal power decreases quadrati-
cally while the noise power remains constant [7]. Eventually,
the noise effect on the channel becomes dominant. In this sce-
nario, the system’s performance is mainly determined by the
power budget rather than systematic nonlinearity. To address
this issue, higher optical pump levels can be employed on THz
emitters, or THz amplifiers can be utilized.

Despite the initial equalization in the time domain through
the first equalization stage, traces of nonlinearity linger in
the OFDM signal. In Fig. 3 the spectrum of the transmitted
(black) and received (red) 5 Gbaud 16-QAM OFDM signal for
both channels can be seen. Without equalization, the received
signal experiences significant attenuation at higher frequen-
cies, indicating the presence of frequency-fading effects. This
implies that subcarriers with higher frequencies contribute
substantially to the overall BER of the system. Fading is more
pronounced in the 125 GHz link, accompanied by a lower SNR
at longer wireless link distances compared to the 300 GHz
link. The first equalization stage compensates for channel
effects on the signal by optimizing equalizer hyperparameters
to minimize the MSE of the received samples. This means
that compensating for faded subcarriers in the first equalization
stage is more effective in reducing MSE than compensating
for others, resulting in a decreased SNR for other subcarriers.

Fig. 4. (a) and (c) BER performance of THz communication system with the
first post-equalization block and two-stage NLE for 125 GHz and 300 GHz
channels, respectively. (b) and (d) Accuracy of RF classifier as a function
of maximum depth and number of estimators for 125 GHz and 300 GHz
channels, respectively.

Fig. 5. Gain of the first and second equalization stages separately for different
NLE frameworks for (a) 125 GHz channel and (b) 300 GHz channel.

The limitations of the first equalization scheme in handling
this residual nonlinearity prompt the deployment of the second
NLE at the sub-carrier level. This secondary NLE discerns
nonlinear boundaries between individual QAM symbols and
adjusts the standard hard decision thresholds of the 16-QAM
demodulator to align with the distribution of received symbols.
To determine the optimal number of decision trees in the
second post-equalization block and the maximum depth of
each individual decision tree, the real and imaginary parts of
the received signals are concatenated as two features in the
training dataset. A two-dimensional target area is defined for
the final decisions. Subsequently, a cross-validation approach,
based on the accuracy score, is employed to ascertain the ideal
number of decision trees and required depth for classification,
as depicted in Fig. 4(b) and (d). The optimal settings for the
estimators and the depth of the decision trees are determined to
be (20, 20) for the 125 GHz link and (15, 20) for the 300 GHz
link. Fig. 4(a) and (c) demonstrates the enhanced performance
resulting from the integration of the second post-equalization
block for both THz links. The two-stage equalizer effectively
improves the communication system’s performance by deter-
mining optimal decision boundaries.

Fig. 5 compares the gain of the two-stage NLE when
utilizing different frameworks under their optimum design.
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TABLE I
SUMMARY OF THE COMPLEXITY ATTRIBUTES FOR EACH

EQUALIZATION FRAMEWORK

The gain of the second equalization stage when the first
stage is shut down is also provided for reference. As seen
from the figure, in both links, BiLSTM+RF offers the best
performance. While BiLSTM+RF appears to be the best
option in terms of performance, it only tells part of the
story. Another important consideration is the complexity of the
proposed NLEs. We must balance performance and complexity
to achieve high performance while maintaining manageable
complexity.

Overall, the total complexity relies on the number of param-
eters each network must compute, including the number of
hidden units and memory length. To directly compare various
frameworks, it’s essential to compute the computational com-
plexity in terms of the number of real multiplications (NM).
For LSTM, this can be calculated as follows [18]:

B[H(H + F ) + H]L + (H + 1)L (4)

where B = 4 for LSTM and 8 for BiLSTM,F = 1 represents
the number of input features, H is the number of hidden units,
and L is the memory length of the network. For ANN, we can
calculate the number of multiplications as follows:

Ln1 + n1n2 + n2n3 + n1 + n2 + n3 (5)

where n1, n2, and n3 are the number of hidden units in the
corresponding layers.

Table I presents a comparison between the five frame-
works in terms of the number of multiplications in both
channels, along with their processing time (PT) and training
time (TT). All neural network algorithms were implemented
using TensorFlow version 2.1.0 and tested on an Nvidia
RTX 2060 GPU. Although BiLSTM achieves the best BER
performance, its network complexity surpasses all competi-
tors. Conversely, while S-ANN has lower complexity, its
performance is inferior. Considering this trade-off between
complexity and performance, we opt for a dual-stage NLE
with LSTM+RF.

V. CONCLUSION

In this letter, we propose a two-stage nonlinear equalizer
scheme employing an LSTM neural network to recognize the
pattern of nonlinear behavior in the channel and compensate

for it, along with a deep RF network to adjust the decision
boundaries of the QAM modulator. This two-stage NLE
effectively addresses the linear and nonlinear impairments
introduced by the optical and wireless channels on the OFDM
signal. Experimental validation on a dual-channel THz-over-
fiber system achieves a 20 Gbit/s line rate over a 4.5-meter
link at 300 and 125 GHz. The versatility of the proposed
method enables its application to various communication sys-
tems, effectively compensating for the nonlinear behavior and
boosting the performance of the communication channel.
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