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Task-oriented network design for visual tracking
and motion filtering of needle tip under 2D

ultrasound
Wanquan Yan, Raymond Shing-Yan Tang, and Shing Shin Cheng

Abstract— Needle tip tracking under ultrasound (US)
imaging is critical for accurate lesion targeting in US-
guided percutaneous procedures. While most state-of-the-
art trackers have relied on complex network architecture for
enhanced performance, the compromised computational
efficiency prevents their real-time implementation. Pure vi-
sual trackers are also limited in addressing the drift errors
caused by temporary needle tip disappearance. In this
paper, a compact, task-oriented visual tracker, consisting
of an appearance adaptation module and a distractor sup-
pression module, is first designed before it is integrated
with a motion filter, namely TransKalman, that leverages the
Transformer network for Kalman filter gain estimation. The
ablation study shows that the mean tracking success rate
(i.e. error <3mm in 95% video frames) of the visual tracker
increases by 25% compared with its baseline model. The
complete tracking system, integrating the visual tracker
and TransKalman, outperforms other existing trackers by at
least 5.1% in success rate and 47% in tracking speed during
manual needle manipulation experiments in ex-vivo tissue.
The proposed real-time tracking system will potentially be
integrated in both manual and robotic procedures to reduce
operator dependence and improve targeting accuracy dur-
ing needle-based diagnostic and therapeutic procedures.

Index Terms— Ultrasound imaging, needle tracking, mo-
tion filtering

I. INTRODUCTION

NEEDLE-based procedures are commonly performed in
minimally invasive surgeries (MIS), such as biopsy, drug

delivery and local target therapy, to reduce postoperative
pain and shorten recovery time [1]. In these procedures, it
is important to accurately track the needle tip’s position to
guide it to the desired location while avoiding vital structures
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such as blood vessels. The trackers are usually developed
based on intraoperative images, including magnetic resonance
imaging (MRI), computed tomography (CT), fluoroscopy, and
ultrasound (US). In these imaging modalities, US is the most
commonly used due to its ionizing radiation-free, real-time,
and portable characteristics. However, US images inherently
have poor image quality and low contrast. The needle tip often
has low visibility in US images, and sometimes may even
disappear due to occlusions and misalignment between the
US probe and the needle axis. These factors make the US
image-based needle tip tracking a highly challenging task.

The challenges in US image-based needle tip tracking can
be roughly summarized into three categories: 1) Dramatic
appearance changes of the needle tip throughout the course
of the needle motion. Most state-of-the-art visual trackers
achieve object tracking by comparing the similarity between
the target template and the candidate regions in the tracked
frame. However, the ever changing appearance of the needle
tip makes its template outdated [2], which undermines the
tracking accuracy and leads to the loss of target. 2) Strong
noise, bright speckles and artifacts in the background. The low
contrast of the US images causes low visibility of the needle
tip and unclear boundaries between the target and backgrounds
[3]. The strong distractors have an appearance similar to that of
the needle tip around the target. 3) Temporary disappearance
of the needle tip. The needle tip may completely disappear
from the current image due to occlusions caused by anatomical
structures, misalignment between the US imaging plane and
the needle axis [4], and poor transducer-skin contact. Pure
visual trackers would fail to obtain any useful information
about the target during such disappearance of the needle tip,
and thus sudden drift is highly likely to occur.

In this work, we introduce a new US image-based needle
tip tracking system, combining a visual tracker and a motion
filter, as shown in Fig. 1. The contributions of our work can
be summarized as follows:

• Designing a task-oriented visual tracking network that
contains a feature extraction module with attention neural
network, an appearance adaptation module, and a distrac-
tor suppression module. The feature extraction module
and attention neural network extract rich and global
semantic features from the input images. The appearance
adaptation module efficiently builds and updates a tem-
plate bank to save diverse appearance of the needle tip
to adapt to the target appearance changes. The distractor
suppression module suppresses distractors and highlights
the real target features.
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Fig. 1: Overview of the proposed task-oriented US image-
based needle tip tracking system, whereby a motion filtering
module is cascaded to a visual tracking network to postprocess
the visual tracking results.

• Introducing TransKalman, a Transformer neural network-
based motion filter that follows the design principles
of the Kalman filter. The Transformer network is used
to estimate the gain matrix used in the Kalman filter.
The filter then smooths the position data output by the
visual tracker when the needle tip can be clearly found,
suppresses the unwanted sudden drifts, and provides a
reasonable estimation of the target’s state when the needle
tip disappears.

Compared with existing works, most of which achieve im-
proved needle tracking performance by stacking sophisticated
architectures to build powerful feature extraction networks,
this is the first work that designs compact, independent mod-
ules in a visual tracking network to address effectively and
efficiently the specific challenges of the needle tip appear-
ance changes and strong distractors during US-based needle
tracking, thus achieving both high tracking robustness and
computational efficiency. Compared with the motion filter in
our previous work [14], which uses the Transformer network
to directly estimate the final tracking results and is thus prone
to drift error under noisy input data, the Transformer network
and Kalman filter are combined in this work to form a robust
motion filter that explores the inter-frame motion law in both
linear and non-linear motions from a long input sequence, thus
more robustly suppressing disturbances from unreliable visual
tracking results.

The rest of the work is divided into several sections: In
Section II, related work in pure US image-based and motion
information-integrated target tracking methods are introduced.
The proposed visual tracker and motion filter are described in
Section III and IV. Experimental results and discussions are
provided in Section V before a concise conclusion, and some
future work is offered in Section VI.

II. RELATED WORK

A. Visual tracking
In the early work, the needle tip in US images is mainly

tracked by using different image filters. For example, the
Gaussian and median filters are usually first used to denoise
US images; morphology operations, including dilation and
erosion, are then applied to enhance the needle axis [5]; next,
thresholding filters are used to binarize US images. Finally,
line detection methods, such as random sample consensus
(RANSAC) [6], or circle detectors, such as the Hough circle

transform have also been used to detect the needle axis [7] or
the needle tip, respectively. In other works, the Gabor filter
is used to highlight pixels along the needle insertion direction
[8] to improve the accuracy of the needle axis identification.
Many of these methods perform segmentation of the needle
axis before locating its tip. However, due to the poor quality
of US images, the needle axis is usually not continuous and
only partially visible [4], leading to failure of needle axis
segmentation. Furthermore, the needle tip sometimes looks
like an isolated part from the needle axis and is highly likely to
be regarded as noise [9]. Therefore, the performance of these
methods is generally poor.

Machine learning-based trackers have become the state-of-
the-art trackers for US image-based target tracking in recent
years. Raw pixel values are used in the template matching
method proposed in [2] to directly find the most similar regions
in the input frame to locate the needle tip. Some handcrafted
features are also designed to locate the target. The harr-like
featurese [10] and Log-Gabor features [8] are use to take
the advantage of online classifier and Adaboost respectively,
to track the target. Although some improvements have been
obtained, the design of handcrafted features requires specific
domain knowledge, and trackers which are only trained on
these manually designed features lack the adaptability to track
the needle tip in complex noisy environments.

Deep features, which can be automatically learned by deep
neural networks, can describe the target from different aspects.
They have shown great potential to significantly improve the
tracking performance in clinically realistic scenarios. Some
works based on UNet, convolutional neural network (CNN)
and fully convolutional network (FCN) have been proposed
to accurately segment the needle axis before other conven-
tional methods are deployed to locate the needle tip [4],
[11]. A spatial and channel ”Squeeze and Excitation” was
proposed in [12] to learn spatial information of the target
and locate the needle tip. A bootstrap resampling method
was proposed in [11] to facilitate the network training process
to obtain better tracking performance. However, these needle
axis segmentation-based methods still cannot correctly identify
the entire needle axis when it is only partially visible in
US images, leading to the failure of tracking. There are also
some works that proposed different neural networks to directly
locate the needle tip or landmarks in US images [9], [13].
Trackers in these works are still developed on the basis of
basic and general neural networks, which are not elaborately
designed according to the special characteristics of US images.

In our previous work [14], a visual tracking module was
designed based on the encoder and decoder of the Transformer
neural network to reinforce and propagate the appearance
features of the target. Two different sets of Gaussian-shaped
masks were designed to highlight the target features and
suppress background distractors, respectively. A discrimina-
tive correlation filter (DCF) and a computationally expen-
sive bounding box regression head were applied to obtain
the final tracking box. While the tracking system achieves
highly satisfactory performance, the complexity of the network
architecture increases the computational cost, leading to the
inability to offer real-time tracking performance. Besides, the
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template update strategy highly relies on the assumption that
the next target appearance is similar to its current appearance,
leading to the templates being not sufficiently diverse to
account for drastic appearance change.

The visual tracking network proposed in this work fully
takes advantage of the advanced Siamese neural network
and attention modules to design a compact feature extraction
architecture. An online appearance adaptation module and a
distractor suppression module are specifically designed to ef-
ficiently handle the problems of dramatic appearance changes
of the needle tip and strong background distractors. Instead
of segmenting the needle axis before detecting the needle tip,
our proposed visual tracker directly locates the needle tip from
the input US images, and the discontinuity of the needle axis
does not affect the performance of our visual tracker.

B. Motion filtering

In previous studies of US image-based target tracking, the
Kalman filter has often been combined with image filters to
remove noise in the visual tracking results. It improves the
tracking performance by integrating the motion information of
the target into the tracking process according to the predefined
motion models. In [15], the Kalman filter was used to filter the
noise and cope with outliers to improve the tracking accuracy.
In [16], the Kalman filter was applied to obtain the trajectory
of the target to track the target when occlusion occurs. In [17],
visual tracking results obtained from two different algorithms
were fused by the Kalman filter to filter noise. The work in
[10] used the Sage-Husa adaptive Kalman filter to adapt to
the unstable measurement noises in the visual tracking results.
In these works, the insertion velocity of the needle tip was
assumed to be constant, and thus a linear model was used
to describe the needle’s movement. However, this does not
describe needle motion under manual handling. Furthermore,
the predefined values of the state and measurement noise
matrices are crucial in the successful application of Kalman
filter. In US image-based needle tip tracking, the statistic
characteristics of the measurement noise are not stable under
different imaging quality and thus difficult to be accurately
estimated before tracking [10].

In learning-based trackers, limited works have attempted to
explore the target’s motion information between successive
frames to improve the tracking performance. Most of them
learn the temporal-spatio features of the target from several
input images [18], [19]. The works take several templates, in
which the target can be clearly found, as input and concatenate
them to extract the spatial and temporal features independently.
There are no fixed temporal patterns in the selection of
templates in the time domain, as they are sampled mainly
considering the image quality. Therefore, the sequential infor-
mation of across the frames is undermined, and the network
cannot learn rich motion information of the target. Trackers
proposed in [3], [20] appended a long short-term memory
(LSTM) recurrent neural network to a CNN to extract temporal
information. The input to them was a sequence of consecutive
plurality of frames. Due to the huge computational cost of
LSTM, the number of frames contained in the input sequence

cannot be large (less than five in most trackers). As a result,
the neural network may not be able to find the implicit motion
laws of the target from the noisy visual tracking results.

In our previous work [14], a motion filter based on a neural
network was proposed to filter the position of the needle tip
output by a visual tracking module. It assumes the position
of the needle tip in the next time step can be estimated
through a Gaussian distribution based on its current position.
The neural network is then used to estimate the parameters
of the conditional distribution. As the motion filtering only
relies on the input historical position data, it can be subject to
deteriorated performance when the input data are noisy.

There are other works that track the needle tip by analysing
the movement of the needle caused by the needle insertion.
The spectral analysis is used in [21], [22] to detect the
needle tip in US images by analyzing the small movement
of the needle tip caused by the natural hand tremors. This
method has no requirement on the visibility of the target
in US images. However, the minute tremor induced on the
needle tip will also be transferred to the tissues around it,
and the oscillated biological tissues will interfere with the
phase analysis Furthermore, this method can only be used in
situations when the US probe is stably fixed [23]. If the US
probe is manually held, the slight movement of the probe will
adversely impact image-based phase analysis, thus limiting
the clinical feasibility of this method. The optical flow has
also been used to track the needle tip [24] by analysing the
dynamic intensity changes of pixels in US images caused
by the movement of the needle. This method only performs
well when the intensity change of pixels associated with the
needle motion transitions smoothly. Furthermore, this method
assumes that the neighboring pixels in an image always belong
to the same features and move together [9]. These limitation
and assumption restrict the application of optical flow-based
method in the field of US image-based needle tip tracking,
especially during manual needle manipulation.

Unlike the abovementioned methods, our motion filter fol-
lows the design principle of the Kalman filter. It calculates
the gain matrix used in Kalman filer by using a Transformer
network which does not require knowing the distribution of
the state and measurement noises in advance. While the LSTM
and Transformer are both suitable for processing time sequen-
tial data, the parallel processing ability of the Transformer
allows input of large sequential data, facilitating the learning
of inner relationships between the parallel input data. The long
input sequence also allows a new movement model of the
needle to be robustly learned, enabling our motion filter to
handle the problem of model mismatch to a significant extent.

III. VISUAL TRACKING

An overview of our visual tracking neural network is shown
in Fig. 2. It consists of a feature extraction module, an
attention neural network, an appearance adaptation module,
and a distractor suppression module.

1) Feature extraction module: The feature extraction module
consists of a modified version of the ResNet-50 network
[25], which has shown great feature extraction ability, and a
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Fig. 2: Architecture of the visual tracking network. The red and purple arrows indicate appearance adaptation and distractor
suppression modules, respectively. The dashed red arrows represents that the update of the template bank was conducted when
at the end of tracking, and tracked results are used in the updating process.

1 × 1 convolutional block. Specifically, the last stage of the
ResNet-50 is removed and the output of the fourth stage is
used in the following computation. The convolutional stride
of the downsampling layer in the fourth stage is changed
from 2 to 1 to obtain high-resolution features. The 3 × 3
convolutional layers in the fourth stage are also changed to
dilation convolution with a stride of 2 to increase the receptive
field. The additional 1 × 1 convolutional layer is used to
reduce the number of channels of extracted features to reduce
computational loads in the following attention network. The
network parameters in the feature extraction module are shared
by the template and search branches. The outputs of the feature
extraction module of the template and search branches are then
T ∈ R(n+1)×C×w

s ×h
s and S ∈ RC×W

s ×H
s , where w, h, W

and H are the spatial size of the templates and the search
image (w = h = 128, W = H = 256); C is the channel
number (C = 256); s=8 is the stride of the feature extraction
module after modification; n is the number of templates in the
template bank, and the 1 in n+1 denote the template obtained
from the last frame (introduced in the III-.3).

2) Attention neural network: The attention neural network
contains two self-attention blocks which are separated into
the template and search branches independently, and a cross-
attention block which takes the outputs of the two self-
attention blocks as input to measure the similarity between the
templates and the search image. The inputs to the attention
block are assigned as Xq ∈ RNq×d and Xkv ∈ RNkv×d.
Similar to [26], the corresponding quarry (Q), key (K) and
value (V ) are defined and used to calculate the attention:
[Q,K,V ] = [(Xq + Pq)Wq, (Xkv + Pkv)Wk,XkvWv] (1)

Atten (Q,K,V ) = Softmax
(
QKT /

√
dk

)
V (2)

where Wq, Wk, Wv ∈ Rd×d′
are learnable parameter

matrices, and Atten ∈ RNq×d′
. Similar to [27], Pq, Pkv are

position embeddings, and are only added to the quarry and
key matrices. For multi-head attention:

Multi-Head = Concat (Atten1, · · · ,Attenh)Wo (3)

where h is head number (h = 8); Wo ∈ Rhd′×d; d′ = d
h .

For the self-attention block in the template branch, the
input matrices Xq = Xkv = T ′, where T ′ ∈ RNT×C is
the reshaped version of the template feature T , and NT =
(n+1)×w

s ×
h
s . Thus, in the attention block, Nq = Nkv = NT ,

and d = C. Similarly, for the self-attention block in the
search branch, Xq = Xkv = S′, where S′ ∈ RNS×C and
NS = W

s × H
s . For the cross-attention module, Xq and

Xkv are the outputs of the multi-head self-attention blocks in
the template and search branches, respectively. The residual
connection and feedforward layers after the attention blocks
are the same as those in the Transformer architecture [26].

3) Appearance adaptation module: In our visual tracker, an
appearance adaptation module, which consists of a template
bank, is proposed to save different templates of the needle
tip as diverse as possible. In this way, it is more likely to
find a highly similar template that has a similar appearance to
the needle tip in the current frame. Assign the output feature
vector of the multihead attention in the template branch as f ∈
Rw

s
h
s C×1. Mathematically, to enrich the target information in

the template bank is to maximize the volume Γ (f1, · · · , fn) of
the parallelotope formed by the encoded feature vectors in the
template bank [28]. The similarity between templates Ti and
Tj can be measured by calculating the convolution between
the corresponding encoded features: fi ∗ fj . Doing this for all
templates in the template bank, we can get a Gram matrix:

G (f1, · · · , fn) =

f1 ∗ f1 f1 ∗ f2 · · · f1 ∗ fn
...

...
. . .

...
fn ∗ f1 fn ∗ f2 · · · fn ∗ fn

 (4)

It has been shown that the determinant of the Gram matrix is
the square of the n-dimentional volume Γ of the constructed
parallelotope. Therefore, we can get the following relationship:

max
fi

Γ (f1, · · · , fn) ∝ max
fi

|G (f1, · · · , fn)| (5)

Increasing the number of templates in the template bank can
increase the determinant of the Gram matrix, as long as
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n < w
s

h
sC. However, to ensure high computational efficiency,

the number should be kept within a certain limit and fixed. A
new template is only added to the template bank when it can
increase the determinant of the Gram matrix by replacing an
existing one. However, if only the determinant is considered,
the template bank will finally end up with irreverent image
patches, as the background and noisy patches are much more
dissimilar to the needle tip than the target patch, and the
tracker will finally drift away. To fix this problem, the template
manually selected at the beginning of the tracking T1, which
is the only fully trusted template, is always saved, and then,
only when the new patch is similar to the initial template to
some extent is added to the template bank:

fi ∗ f1 > δdet f1 ∗ f1 (6)

where δdet is a hyperparameter.
The appearance of the needle tip in the last frame is

always the most similar to that in the current frame, and
a correct appearance model can significantly improve the
tracking accuracy. Therefore, the target template cropped from
the last frame should be combined with the templates in the
template bank to track the needle tip. However, when drift
occurs, the latest template may contain more background or
noise features, which will on the contrary undermine the visual
tracker. To address this problem, the intersection over union
(IOU) of the tracked bounding boxes of the current frame
and the template which has the highest classification score in
the template bank was calculated. If the IOU value is higher
than a predefined threshold δIOU , the template cropped from
the current frame is saved and concatenated with templates
in the template bank to track the target in the next step. The
appearance adaptation module is indicated by the red arrows
in Fig 2. The red dashed arrows indicate that the update of the
template bank was carried out when the tracking of the current
frame ended, and only the template cropped from the current
frame is passed to the template branch to perform update.

4) Distractor suppression module: During tracking, not only
is the target appearance model important, but the distractors
models are also useful. With the features of strong distractors
saved, they compete to explain every pixel in the input image.
In this case, the distractors are more likely to be correctly
identified by the saved distractor models, and the probability of
identifying them as the target will be suppressed. This can be
achieved by the explaining away method proposed in [29], and
was used in our visual tracking network to suppress distractors.

The distractor suppression module contains an online target
classification network followed by the explaining away method
(indicated by the purple arrows in Fig. 2). Inspired by the
work in [30], the online target classification network contains
a 1 × 1 and a 4 × 4 convolutional layers. The parameters of
these two convolutional layers are learned online through the
meta-learning proposed in [30]. The network takes the features
extracted by the feature extraction module and outputs a score
map of the target in the current search frame. The explaining
away method was then applied to suppress distractors and
highlight the potential target area. The detailed implementation
of the explaining away method can be found in [29].

5) Target localization and loss function design: There are one
classification and two regression heads. The output of the
attention network is passed through these heads to generate
a classification map and two regression maps to indicate
positions (P ), displacement offsets (O), and the size of the
bounding boxes (B) of the target, where P ∈ RH

s ×W
s ×1×n,

O ∈ RH
s ×W

s ×2×n and B ∈ RH
s ×W

s ×2×n.
The score maps output by the classification head are then

post-processed by adding a cosine window to them to sup-
press large displacements. Next, to fully make use of all the
templates, the score maps are weighted by the maximum
value in the corresponding maps before they are summed
together to form a weighted map Pw ∈ RH

s ×W
s . The distractor

suppression module also outputs a score map Pd ∈ RH
s ×W

s ,
which is then integrated with Pw to locate the target: P =
γPw + (1− γ)Pd, where γ, used to adjust the contributions
of the distractor suppression module to the target localization
task, was empirically set to 0.65. Although each template has
independent offset and bounding box regression maps, only
regression maps of the latest template are used to locate the
target, as the appearance of the target in this template is the
most similar to its real appearance at the current time step.
The target position and the size of the bounding box are finally
determined by

(xc, yc) = s (argmax (P ) +O′ (argmax (P ))) (7)

(wbb, hbb) = (W,H) ·B′ (argmax (P )) (8)

where argmax (P ) outputs the 2D position of the maximum
value in the score map P , and O′ and B′ represent the offset
and bounding box regression maps of the latest template.

The design of the loss function contains three compo-
nents [31]: the positioning error Lp, the offset estimation error
Lo and the size prediction error of the bounding box Lb.
Assume that the ground-truth position of the needle tip in
the current search patch is p ∈ R2, and a corresponding low-
resolution equivalent p̂ = ⌊p

s ⌋ can be used to represent its
position on the score map. Then, a Gauss function

P̂ = exp
(
−
(
(px − p̂x)

2
+ (py − p̂y)

2
/
(
2σ2

p

)))
(9)

centered at p̂ is used to calculate the focal loss [32]:

Lp = −
∑
x,y

(1− Pxy)
α log (Pxy) , P̂xy = 1(

1− P̂xy

)β
(Pxy)

α log (1− Pxy) , Otherwise
(10)

where σp is a size-adaptive standard deviation [31], Pxy is the
value of the score map P at position (x, y). α and β are two
hyperparameters set to 2 and 4, respectively.

The position offset and the size of the bounding box are
both trained using L1 loss functions and are defined as

Lo = |O′
p̂ − (p/s− p̂)| , Lb = |B′

p̂ − b̂| (11)

where b̂ =
(

wgt

W ,
hgt

H

)
, and wgt and hgt are ground-truth size

of the bounding box. The total loss function is defined as

L = Lp + Lo + Lb (12)
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IV. MOTION FILTERING

1) Kalman filter: When adopting the Kalman filter, the state
and measurement vectors of the tracking system are assigned
as X and Z, where Z = [x, y] represents the position of the
needle tip in the US image obtained from the visual tracker,
and X = [x, vx, y, vy] represents the estimated position of
the needle tip and the insertion velocities along the X- and
Y-directions. The tracking system can thus be described{

X (t) = FX̂ (t− 1) + V

Z (t) = HX̂ (t) +W
(13)

where F and H are the state and measurement transition
matrices; V and W are white Gaussian noises. The corre-
sponding covariance matrices of V and W are Q and R.
The filtering process of the Kalman filter can be divided into
two different phases:
(1) State update:

X̂ (t|t− 1) = FX̂ (t− 1|t− 1) (14)

P (t|t− 1) = FP (t− 1|t− 1)F T +Q (15)

where P is the error covariance matrix.
(2) Measurement update:

S (t) = HP (t|t− 1)HT +R (16)

K (t) = P (t|t− 1)HTS (t)
−1 (17)

X̂ (t|t) = X̂ (t|t− 1)+K (t)
[
Z (t)−HX̂ (t|t− 1)

]
(18)

P (t|t) = [I −K (t)H]P (t|t− 1) [I +K (t)H]−K (t)RK
′
(t)

(19)
where S is the innovation covariance matrix, K is the gain

matrix, and X̂ (t|t) is the estimated state value of the target.
2) TransKalman: TransKalman is designed based on the

principle of the Kalman filter, with the gain matrix directly
obtained by an attention-based neural network. Inspired by
the work in [33], the input in TransKalman includes four
components: the observation difference ∆Zt, the innovation
difference ∆Z̃, the state difference ∆X̂t−1, and the state
update difference ∆X̃t−1. The detailed definitions of them
are as follows:

∆Z (t) = Z (t)−Z (t− 1) (20)

∆Z̃ (t) = Z (t)−HX̂ (t|t− 1) (21)

∆X̂ (t) = X̂ (t|t)− X̂ (t− 1|t− 1) (22)

∆X̃ (t) = X̂ (t|t)− FX̂ (t− 1|t− 1) (23)

By concatenating these variables as a long input vector,
Xt

cat = [∆Z (t) ,∆Z̃ (t) ,∆X̂ (t− 1) ,∆X̃ (t− 1)] ∈ Rn

where n = 12, Xt
cat is then combined with a set of historical

input vectors before input into the TransKalman network
to obtain the Kalman gain matrix K (t). The parallel data
processing ability of the Transformer enables the gain matrix
to be properly learned from a long input data sequence. It
should be noticed that the differences in state and state update
in Xt

cat at time t are ∆X̂ (t− 1) and ∆X̃ (t− 1) as the value
of X̂ (t|t) is not available at the beginning. With the gain

matrix known, the target state value is estimated according to
Eq. (18).
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Fig. 3: Architecture of TransKalman. For simplicity, only one
of the three parallel attention module is shown and only one
of the detailed structure of the three stacked transform blocks
is plotted.

The detailed architecture of TransKalman is shown in
Fig. 3. A series of input vectors are arranged in the
order of time to form an input sequence St

input =[
Xt−T+1

cat , · · · ,Xt−1
cat ,X

t
cat

]
, where T is the sequence length

that represents how far the historical data is taken into
consideration to influence the estimation of the current state
value (T was set to 30 in our experiments). The arranged
sequence first passes through a position embedding layer to
integrate the sequential information into each input vector. The
embedded input sequence is then processed by a multi-head
attention module, and for simplicity, only one head is shown
in Fig. 3. As Xt

cat is a one dimensional (1D) vector, the value
(Vh ∈ RT×n), query (Qh ∈ RT×n) and key (Kh ∈ RT×n)
matrices in the attention module are calculated by using the
1D convolution, where the subscript denotes the h-th head.
The attention of the h-th head is then calculated by:

Oh = Softmax
(
Qh (Kh)

T
/
√
n×M

)
Vh (24)

where Oh ∈ RT×n. Different from the attention equation
shown in Eq. (2), here, a mask matrix M with elements
in the upper triangle equal to negative infinity is used to
ensure that future data do not have an impact on the attention
calculation in the current time step. As the mask filters out
future data, TransKalman can work properly from the first
frame of tracking, and does not require special initialization
or waiting time to collect a long input sequence, as in [33].

The attention of each head is calculated in parallel and
concatenated together. There are a total of 3 heads, and
the final attention is expressed as Oset = [O1,O2,O3] ∈
RT×3n. Apart from the attention module, there are also linear,
normalize and feedforward layers in the transform block. The
concatenated attention is first reshaped by the linear layers to
RT×n and then processed by the rest of the layers. To fully
explore the temporal information, there are three transform
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blocks that stack together. The output of the last transform
block is processed by a linear layer to generate the gain matrix.

TransKalman does not rely on the process and measurement
noise matrices, Q and R, to estimate the target’s state value
and thus does not require these noises to obey Gaussian distri-
bution, which is usually not the case in US image-based target
tracking [10]. Therefore, it is more robust when combined with
the visual tracker to finish the tracking task. Furthermore, the
use of the attention mechanism enables the estimator to fully
explore the underlying motion law of the target from historical
data. The state and measurement transition matrices are not
used during the estimation of the Gain matrix, which also
enables TransKalman to handle model misidentification to a
certain extent.

V. EXPERIMENT RESULTS AND DISCUSSIONS

A. Experimental setup and procedures
An overview of the experimental setup is shown in Fig. 4.

In our experiments, the needle was manipulated both by
motors and human hands. The US images were collected
using the Vantage 32 LE system (Verasonics, Inc., USA)
and the C5-2 US probe (Mindary, Inc., China). The video
sequences collected from both motorized and manual needle
manipulation experiments were eventually used to test our
proposed tracking system. An 18-gauge sensorized needle
tool (Aurora Needle, NDI, Inc., USA) was used for the
needle insertion during the experiments. It has a 5 DOF
electromagnetic (EM) sensor embedded in its tip, such that
the ground-truth position of the needle tip can be obtained
by using the corresponding EM tracking system (NDI, Inc.,
USA). The root mean square error (RMSE) of the positional
accuracy of the needle tool in our experimental setup were
tested to be 0.76 mm±0.13 mm, respectively, which is slightly
larger than the position accuracy provided by the manufacturer
(0.57 mm). During the experiments, the needle was inserted
into both phantom and ex-vivo biological tissues. The phantom
was made according to the recipe in [15] with silica powder
added to simulate the speckles in the US images, and the
biological tissues were pork and chicken.

Fig. 4: Setup of the motorized needle insertion experiments.

During the motorized experiments, a 3-axis manipulator
(LiTai Technology, Inc., China) was used to hold the US

probe to follow the movement of the needle tip, and a linear
stage (LiTai Technology, Inc., China) was used to translate the
needle. The needle was inserted in three different scenarios,
namely, In-plane-static, In-plane-moving, and Out-of-plane.
In the In-plane scenarios, the needle axis stayed in the US
imaging plane, while in the Out-of-plane scenario, the needle
axis was perpendicular to the US imaging plane and only the
needle tip could be found in US images. The US probe was
moved with the needle tip in the In-plan-moving and Out-of-
plane scenarios, and kept static in the In-plane-static scenario.
In each scenario, the needle was inserted at three different
angles (0◦, 45◦, 60◦) with three different insertion velocities
(0.4 mm/s, 1 mm/s and 2 mm/s). These angles are commonly
used in biopsy surgeries, including breast and prostate [39].
A scenario with a specific insertion angle was called a case,
and there are a total of 9 cases. In each case, the needle tip
was tracked in both insertion and the withdrawal processes,
and each case was repeated at least 9 times. There are a total
of 114 and 105 video sequences collected in the phantom and
tissue experiments, respectively.

During the manual experiments, three individuals were in-
vited to insert the needle with one hand and hold the US probe
static with the other hand. Due to the imprecise operation of
the human hands, the insertion angles were roughly divided
into three categories: small (S, −10◦ ∼ 10◦), medium (M,
30◦ ∼ 45◦) and large (L, 60◦ ∼ 75◦). It should be noted that
the needle was only inserted in the In-plane-static scenario
in these manual experiments, because it is highly challenging
for humans to move the US probe to follow the needle tip in
either in-plane-moving or out-of-plane scenario. Each person
was required to repeat at least 15 times at each angle, and
a total of 283 video sequences were collected in the tissue
experiments.

B. Coordinate Registration

The ground-truth position of the needle tip could be ob-
tained directly from the embedded EM sensor in the needle
tip represented in the EM tracking coordinate system Φem.
To map it to the US image’s coordinate system Φus, a
coordinate registration procedure was implemented. According
to the method proposed in [40], an additional 6 DOF EM
sensor was attached to the US probe. The RMSE of the
position accuracy of the sensor reported by the manufacturer
is 0.48 mm, but it was tested to be 0.63±0.11 mm with our
own experimental setup. The transformation matrix T em

ref that
transforms the position of the needle tip pem from Φem to the
reference sensor’s coordinate system Φref can then be directly
calculated using the pose data of the 6 DOF sensor in the EM
tracking system. The position of the needle tip in Φus was
denoted as pus, and the relationship between pem and pus

can be expressed as:

pem = T em
ref T ref

us pus (25)

where pem could be read directly from the EM tracking system
and pus was the position located by our proposed visual
tracking system. Only the transformation matrix T ref

us was
unknown. With the relative position of the reference sensor
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to the US probe fixed, the value of T ref
us was fixed, and can

be calculated using the SVD method proposed in [40].

C. Network training
The visual tracking and the TransKalman networks were

trained independently in this work because they are responsible
for different tasks. Training splits sampled from publicly
available object tracking datasets, including TrackingNet [34],
COCO [35], LaSOT [36], GOT-10K [37] and ImageNet VID
[38], were first used to train the visual tracking network. There
were a total of 5,000 images in each split and the batch
size was set at 40. The network was trained for 80 epochs
with the initial learning rate set at 0.01, and decayed by 0.2
every 15 epochs. The network was then fine-tuned on a self-
collected US image-based needle tip tracking dataset under
motorized needle manipulation consisting of 5,000 images.
The dataset was collected in the same experimental setup
shown in Fig. 4. At the beginning of each fine-tuning epoch,
500 images were randomly selected from the dataset for the
purpose of validation and the rest were used for training.
The total training epoch, initial learning rate and the decay
factor in the fine-tune process were set to 50, 1 × 10−4

and 0.35, respectively. The dataset used to train and validate
TransKalman contains two different parts, including computer-
simulated needle motion and actual needle motion under
manual manipulation. 1) To simulate the movement of the
needle tip with constant velocity (inserted by motors) in 2D
plane, a simulated dataset was collected by using Matlab. The
simulated needle velocity ranges from +2 mm/s to -2 mm/s,
where the positive and negative signs represent the insertion
and withdrawal of the needle. Two sets of Gaussian noises
which obey N (0, 0.12) and N (0, 0.14) were then added to
the simulated positions and velocities in each time step. The
sequence length of each trajectory was set to 1,000 and a total
of 5,000 trajectories were simulated. 2) During the manual
insertion and withdrawal experiments, an 18 gauge Aurora
Needle (NDI, Inc., USA) with a 5 DOF electromagnetic (EM)
sensor embedded in the tip was used, and the movement of the
needle tip was recorded. In each data sequence, the needle was
inserted or withdrawn about 10 cm in around 2 minutes, and a
total of 422 data sequences were collected. The TransKalman
network was trained on this hybrid dataset with 1200 epochs
and batch size set to 16. The Adam optimizer was used during
the training with the initial learning rate and the decay factor
set to 1×10−3 and 1×10−5, respectively. This hybrid dataset
was also randomly split into 90% for training and 10% for
validation.

D. Ablation study and performance comparison of the
visual tracking network

To show the effectiveness of each module (attention mod-
ule, appearance adaptation module, and distractor suppression
module) in the visual tracking network, an ablation study was
conducted. A performance index named ”success rate” was
proposed to quantitatively evaluate the tracking performance.
The success rate of a tracker in a particular case was defined as
the ratio of the number of successfully tracked video sequences

to the total number of video sequences in a particular case.
The tracking of a video was recognized as successful if the
Euclidean distance tracking error of 95% frames in the video
was less than 3 mm, which is in the range of acceptable needle
targeting error in percutaneous procedures [41].

Before performing the ablation study, the optimal number
of templates, n, in the template set should be determined,
considering its impact on the tracking success rate and tracking
speed. Fig. 5 shows the change of the tracking success rate
and the tracking speed by TO visual of the needle tip during
the motorized insertion experiments in the tissue when n is
set to different values. It can be observed that an increase in
n leads to improvement in the success rate. This is mainly
because the more diverse the template set is, the probability
of finding a template which has most similar appearance to
the needle tip’s current appearance increases, thus enhancing
the tracking accuracy. However, when n > 14, the success
rate does not experience significant increase while the tracking
speed continues to decrease. To achieve a balance in achieving
high tracking success rate and high tracking speed, the value
of n was set to 14.

                     

                      

  

  

  

  

  

  

  

 
 
 
 
 
 
 
  
 
  
  
 
 

  

  

  

  

  

  

  

  

 
  
 
 
  
 
  
  
  
 
 

Fig. 5: Tracking success rate and tracking speed when n is
set to different values in motorized needle experiments in the
tissue.

During the ablation study of the visual tracking network,
the tracking success rates of the attention module solely (Att),
attention with appearance adaptation modules (Att + AppAda),
attention with distractor suppression modules (Att+DisSpp)
and the complete task-oriented visual tracking network (TO
visual or Att+AppAda+DisSpp) in the motorized insertion in
tissue experiments are shown in Table I. The highest success
rate in each case is highlighted in red.

TABLE I: Comparison in the tracking success rate (%) during
ablation study of the visual tracking network in the motorized
needle insertion experiments in tissue

Scenario In-plane-static (%) In-plane-moving (%) Out-of-plane (%) Mean
0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean

Attention (Att) 28.6 50.9 81.8 53.7 66.7 71.4 50.0 62.7 81.80 70.0 91.7 81.2 65.9
Att+AppAda 57.1 63.6 90.9 70.5 66.7 85.7 71.4 74.6 100.0 70.0 91.7 87.2 77.5
Att+DisSpp 57.1 63.6 90.9 70.5 75.0 85.7 78.5 79.7 100.0 80.0 91.7 90.6 80.3
TO visual 71.4 76.3 90.9 79.5 75.0 85.7 78.6 79.7 100.0 70.0 91.7 87.2 82.2
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The addition of either the appearance adaptation and distrac-
tor suppression modules improves the tracking success rate
compared to using the attention module only. The success
rate increases in each case except the Out-of-plane-60◦ case,
where the attention module is already able to achieve a
high success rate (91.7%). The appearance adaptation and
distractor suppression modules improve the visual tracker
from different aspects. In In-plane-static-30◦, both the success
rates of Att+AppAda and Att+DisSpp are 63.6%, but the
combination of them results in a success rate of 76.3%, which
is higher than either of them. Compared to Attention, the
improvements in the success rate of Att+AppAda+DisSpp are
significant in the In-plane-static and In-plane-moving scenarios
at 48.0% and 27.1%, respectively. Without specific annotation,
the differences in the success rate are denoted in the relative
term in the following analysis. The overall success rate of TO
visual in the motorized needle experiment in tissue is 82.2%,
which increases by 24.7% compared to the network with the
attention module only.

TO visual has also been compared to our previously
proposed learning-based visual tracking module (LR visual)
[14] in terms of the tracking success rate in the motorized
needle insertion experiments in tissue in Table II. Significant
performance improvement can be observed in nearly all cases.
The tracking success rate increases by the highest (32.2%)
in the In-plane-moving scenario. The improvement in the
overall success rate is 23.2% (66.7% vs. 82.2%), verifying
the superiority of TO visual when compared to LR visual.

TABLE II: Comparison in the success rates (%) by TO visual
and our previous work (LR visual) [14] in the motorized
needle insertion experiments in tissue

Scenario In-plane-static (%) In-plane-moving (%) Out-of-plane (%) Mean
0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean

LR visual 54.2 60.8 75.3 63.4 50.4 71.4 59.1 60.3 66.4 71.9 91.7 76.6 66.7
TO visual 71.4 76.3 90.9 79.5 75.0 85.7 78.6 79.7 100.0 70.0 91.7 87.2 82.2

E. Evaluation of TransKalman motion filter
1) Effect of TransKalman on the overall tracking system:

To show the performance improvement boosted by the ad-
dition of TransKalman, the success rates of TO visual and
TO system (TO visual+TransKalman) are compared in the
motorized needle insertion in tissue experiments, as shown in
Table III. With the addition of TransKalman filter, the mean
success rate increases in every scenario, and the overall mean
success rate increases by 6.3% (87.4% vs. 82.2%). The largest
increase (28.6%) is found in the Out-of-plane scenario when
the insertion angle is 30◦.

TransKalman helps to robustly track the needle tip not only
by filtering the visual tracking results but also by providing
reasonable position estimation when the needle tip temporarily
disappears from the US images. Fig. 6(a) shows the tracking
results of TO visual and TO system when the needle tip
disappeared from US images. Fig. 6(b) shows some snapshots
of the tracking results. It can be seen that the needle tip
completely disappeared from Frame 671 to 679. During this

TABLE III: Comparison in the tracking success rate between
TO visual and TO system (TO visual+TransKalman) in the
motorized needle insertion experiments in tissue

Scenario In-plane-static (%) In-plane-moving (%) Out-of-plane (%) Mean
0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean

TO visual 71.4 76.3 90.9 79.5 75.0 85.7 78.6 79.7 100.0 70.0 91.7 87.2 82.2
TO system 85.7 75.0 90.9 83.9 88.9 85.7 78.6 84.4 100.0 90.0 91.7 93.9 87.4

period, as the visual tracking network could not get any useful
visual information of the target from the current US images,
TO visual suddenly drifted away from its original insertion
path to a noisy distractor, as seen by the large displacement
shown in Fig. 6(a) and the green bound box shown in Fig. 6(b).
In contrast, TransKalman in TO system correctly estimated
the needle tip’s real position and suppressed the drift. With no
target-similar structures contained in the estimated bounding
box, the template update process was stopped and the template
bank was not contaminated by the distractors. Therefore, when
the needle tip reappeared, the visual tracking network in TO
system correctly found the target, as shown in Fig. 6(b)
Frame 730. The same phenomenon occurred again when
TransKalman suppressed the large drift at Frame 754 and the
visual tracking network re-detected the needle tip at Frame
773.

Frame 652 Frame 671 Frame 679 

Frame 730 Frame 754 Frame 773 

Target disappear

Target disappear Target disappear

Frame 671

Frame 754

(a)

(b)

Fig. 6: (a) Ground truth trajectory of the needle tip and
tracking results by TO visual and TO system (TO vi-
sual+TransKalman) (b) Snapshots of the tracking results by
TO visual and TO system.

2) Comparing TransKalman and Kalman filter: A simulation
study was performed to first compare the performance of
TransKalman and the Kalman filter in terms of their conver-
gence speed in nonlinear motions in a manual needle insertion
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experiment. The input to the filters was the ground truth
of needle tip’s trajectory with noise added to simulate the
noisy measurement data obtained from the visual tracking
network. The covariance matrix of the added noise was set
to 4I2×2 where I2×2 is a 2 × 2 identity matrix. The Monte
Carlo experiment was performed by repeating the filtering
process 100 times for each filter to obtain the corresponding
RMSE values. It can be seen from Fig. 7 that the RMSE

Fig. 7: RMSE of the Kalman filter and the proposed Tran-
sKalman in the case where the needle is manually inserted
with nonlinear velocity.

of the TransKalman filter converges quickly until it reaches
about 0.25 mm. The RMSE of the Kalman filter stays around
2.2 mm, which is slighter larger than the magnitude of the
added noise. Its inability to converge is mainly due to a
mismatch between the Kalman filter model built based on
a constant velocity assumption and the actual motion of the
needle tip.

To show the superior characteristics of TransKalman against
the Kalman filter in estimating motions caused by nonlinear
velocity, both TransKalman and Kalman filter were concate-
nated to TO visual before comparing their tracking perfor-
mance in the manual needle manipulation experiments. It
should be noted that the optimal initial values of Q and R
matrices for TO visual+Kalman filter were determined by a
grid search method. Fig. 8(a) shows the change of needle
insertion velocity against time in one of the experiments. The
needle was first inserted forward by the human hand and
withdrawn by a short distance before it was inserted forward
again. During this process, the needle insertion velocity was
constantly adjusted by the human operator to make sure the
needle tip was visible in the US images. Fig. 8(b) shows the
ground truth, the tracking result of TO visual, TO system (TO
visual+TransKalman) and TO Kalman (TO visual+Kalman
filter) in the US image coordinate system in both horizontal
(X) and vertical (Y ) directions. It can be seen that TO
Kalman was able to robustly track the needle tip for a longer
period of time than TO visual. However, when the needle
insertion velocity experienced a dramatic nonlinear change
around 76 s, the Kalman filter failed to adapt to this change
and provided inaccurate filtering results, leading to increase
in the tracking error thereafter, as shown in Fig. 8(c). Under
TO system, the tracking error was constantly maintained at a
low level, as shown in Fig. 8(d). The strong adaptability of
TransKalman in TO system to the nonlinear needle velocity
can also be validated during the transition phases between
the needle insertion and withdrawal processes. It was able to

Insertion Insertion

Insertion

Withdrawal

Insertion

Insertion

Withdrawal

Insertion

Insertion Withdrawal Insertion

Insertion Withdrawal Insertion

(a)

(b)

(c)

(d)

Fig. 8: (a) The needle insertion velocity against time. (b)
The tracking results with respect to the ground truth of the
TO visual, TO system (TO visual + TransKalman), and TO
Kalman (TO visual + Kalman filter) in both horizontal (X)
and vertical (Y ) directions.(c) Tracking error of TO Visual
and TO Kalman. (d) Tracking error of TO System.

quickly adapt to the motion direction changes and provided
robust filtering results to suppress drift. As shown in Table IV,
the overall mean success rate of TO system is higher than TO
Kalman by 33.0%, validating the significantly greater tracking
robustness of the proposed TransKalman filter over the Kalman
filter during manual needle manipulation.

3) Comparing TransKalman filter and LR motion: To further
demonstrate the state-of-the-art performance of the Tran-
sKalman filter, the motion filter (LR motion) proposed in our
previous work [14] was concatenated to the TO visual to form
a new tracking system called TO LR motion which was then
used to compared with TO system. As seen in Table IV, TO
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system (TO visual+TransKalman) outperforms TO LR motion
(TO visual+LR motion) in nearly all cases and increases the
overall mean success rate by 4.9%. LR motion only relies
on the historical coordinate data of the target to estimate its
current position, while TransKalman makes use of not only the
historical coordinate data, but also other data differences (i.e.,
∆Z,∆Z̃,∆X̂,∆X̃) to filter the target’s current position.
Furthermore, instead of directly estimating the current position
of the needle tip, TransKalman estimates a Gain matrix first
before filtering the target’s position by following the data
filtering principles in the Kalman filter, which helps to increase
its robustness.

TABLE IV: Tracking success rates of TO Kalman, TO LR
motion, and TO system to compare the effect of Kalman
filter, LR motion, and TransKalman filter in robust needle
tip tracking during the manual needle insertion in tissue
experiments

Case User 1 (%) User 2 (%) User 3 (%) Mean

Small Medium Large Mean Small Medium Large Mean Small Medium Large Mean

TO Kalman 48.3 64.3 59.3 57.3 59.4 71.4 63.2 64.7 50.0 65.6 80.8 65.5 62.5
TO LR motion 63.3 75.2 59.3 65.9 91.2 82.1 83.5 85.6 84.6 87.5 86.4 86.2 79.2
TO system 65.5 81.0 70.4 72.3 93.8 85.7 86.8 88.8 84.6 87.5 92.3 88.1 83.1

F. Evaluation of the overall tracking system performance
Figure 9 shows some snapshots of the tracking results of TO

system (TO visual + TransKalman filter). The figures in the
first row of Fig. 9 are sampled from the phantom experiment in
the Out-of-plane scenario with the needle insertion angle equal
to 0◦, and the small figures in the right-bottom corners show
the appearance of the needle tip in the current frames. It can be
observed that the appearance of the needle tip experienced dra-
matic changes throughout the tracking process. Since there was
not much noise in the background in the phantom experiments,
most trackers could handle this appearance change even with
inaccurate target templates. However, when the background
noise was strong with a lot of distractors surrounding the
needle tip (as shown in the figures in the second and third
rows of Fig. 9), the inaccurate target template would adversely
affect the needle tip tracking results. Figures in the third row
of Fig. 9 are sampled from the tissue experiments in the In-
plane-moving scenario with the insertion angle being 60◦. It
can be seen that the needle tip even disappeared from the US
images in some frames. In such cases, a sudden huge drift
occurred, and without other information, most trackers were
likely to be trapped with the distractors. In our experiment,
TO system successfully tracked the needle tip even in the
most challenging scenarios in the last two rows. The proposed
appearance adaptation and distractor suppression modules
successfully updated the template bank and suppressed the
strong noise in the background. TransKalman then provided
a reasonable estimation of the needle tip’s position when it
temporarily disappeared.

To quantitatively evaluate the tracking robustness of TO sys-
tem, its tracking success rates were compared against several
state-of-the-art trackers, including ICTKF [10], Prdimp [42],
SiamBan [43], Stark [18], AiATrack [44], KeepTrack [45]

and LR tracking [14], in both motorized and manual needle
insertion experiments with the results shown in Table V, VI
and VII. The p-values calculated using the paired t-test were
displayed to show the statistical significance of the difference
in the success rates when comparing the different tracking
methods against TO system. The first, second and third best
performing trackers in each case are highlighted in red, green,
and blue.

According to Table V, in the motorized phantom experi-
ments, both our proposed TO system and the LR tracking
share the highest mean success rate, which is 3.8% and
10.9% higher than the third and fifth trackers (ICTKF and
AiATrack) respectively. Without their respective motion filters,
TO visual and LR visual also performed well with the second
and fourth highest success rates. The overall mean success
rates of other trackers are all above 60%, and nearly 100%
in the Out-of-plane scenario. As shown in Fig. 9, the US
images in the phantom experiments had relatively high quality,
and the needle tip in the Out-of-plane scenario was highly
distinguishable from the background noise. Such idealized
testing conditions do not demand strong requirements on the
noise suppression and appearance adaptation abilities of the
visual trackers. Therefore, most trackers were able to obtain
highly promising tracking results. Our proposed TO visual and
TO system only showed minor improvement in the success
rate over other trackers, which does not truly demonstrate the
advantages of our proposed trackers. Furthermore, the needle
tip often disappeared for a significant period of time during
the initial stage of the needle insertion. The TransKalman filter
integrated in TO system might not have sufficient time to
acquire enough accurate historical position data of the needle
tip to estimate its motion law, limiting its positive impact on
the tracking success rate.

The superiority in the tracking robustness of our proposed
TO system can be more clearly observed in the tissue exper-
iments. As seen in Table VI, the overall mean success rate
of TO system increases by 5.7% and 11.5%, compared to
the second and fourth best performing trackers, namely LR
tracking and SiamBan. TO system outperforms LR tracking in
a majority of cases, especially in the In-plane-static-0◦ case,
where the success rate increases by a significant 23.1% (85.7%
vs. 69.6%). It should be noted that TO visual obtains the
third best performance by only relying on our proposed task-
oriented visual tracking network. Most of the other trackers
achieve mean success rates below 52% in the tissue ex-
periments, which are a significant performance degradation
compared with those in the phantom experiments. This is
mainly due to the inability of these trackers to overcome the
more complex noise and stronger distractors in the tissue under
US imaging compared to the phantom.

In the manual needle insertion experiments in the tissue,
TO system achieves the highest overall mean success rate
of 83.1%, which is 5.1% and 30.6% higher than those of
the second and fourth best trackers, namely LR tracking and
SiamBan, as shown in Table VII. It should again be noted
that TO visual outperforms other pure visual information-
based state-of-the-art trackers to a large extent with an in-
crease of 4.4% over its closest competitor (i.e. SiamBan).
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Fig. 9: Tracking results of TO system in three different scenarios. Snapshots in the first row are sampled from phantom
experiments and snapshots in the second and third rows are sampled from tissue experiments.

TABLE V: Success rates and p-values of the proposed TO system and other trackers in the motorized needle insertion in
phantom experiments

Scenario In-plane-static (%) In-plane-moving (%) Out-of-plane (%) Mean (%) p-value
0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean

LR visual 75.0 76.9 83.3 78.4 83.3 93.3 85.7 87.4 91.7 100.0 100.0 97.2 87.7 0.031
TO visual 75.0 76.9 83.3 78.4 91.7 93.3 92.9 92.6 100.0 100.0 100.0 100.0 90.3 0.045
PrDimp 41.7 38.5 66.7 48.9 41.7 80.0 92.9 71.5 100.0 100.0 91.7 97.2 72.6 <0.01
SiamBan 66.7 30.8 33.3 43.6 50.0 93.3 92.9 78.7 100.0 100.0 100.0 100.0 74.1 <0.01
Stark 33.3 30.8 33.3 32.5 33.3 66.7 92.9 64.3 83.3 75.0 100.0 86.1 61.0 <0.01
AiATrack 50.0 76.9 66.7 64.5 75.0 86.7 100.0 87.2 100.0 100.0 100.0 100.0 83.9 0.041
KeepTrack 58.3 30.8 58.3 49.1 66.7 93.3 92.9 84.3 100.0 91.7 100.0 97.2 76.9 <0.01

ICTKF 83.3 76.9 83.3 81.2 83.3 86.7 92.9 87.6 100.0 100.0 100.0 100.0 89.6 0.029
LR tracking 81.3 83.1 86.9 83.8 92.1 98.0 95.3 95.1 100.0 100.0 100.0 100.0 93.0 0.048
TO system 75.0 84.6 91.7 83.8 91.7 93.3 100.0 95.1 100.0 100.0 100.0 100.0 93.0 -

TABLE VI: Success rates and p values of the proposed TO system and other trackers in the motorized needle insertion in tissue
experiments

Scenario In-plane-static (%) In-plane-moving (%) Out-of-plane (%) Mean (%) p-value
0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean 0◦ 30◦ 60◦ Mean

LR visual 54.2 60.8 75.3 63.4 50.4 71.4 59.1 60.3 66.4 71.9 91.7 76.6 66.7 <0.01
TO visual 71.4 76.3 90.9 79.5 75.0 85.7 78.6 79.7 100.0 70.0 91.7 87.2 82.2 0.049
PrDimp 28.6 16.7 63.6 36.3 33.3 71.4 28.6 44.4 36.4 40.0 91.7 56.0 45.6 <0.01
SiamBan 78.6 66.7 72.7 72.7 77.8 92.9 64.3 78.3 90.9 70.0 91.7 84.2 78.4 <0.01
Stark 28.6 33.3 45.5 35.8 22.2 57.1 21.4 33.6 45.5 40.0 66.7 50.7 40.0 <0.01
AiATrack 28.6 25.0 36.4 30.0 22.2 85.7 21.4 43.1 45.5 40.0 66.7 50.7 41.3 <0.01
KeepTrack 28.6 33.3 54.5 38.8 77.8 85.7 14.3 59.3 27.3 50.0 91.7 56.3 51.5 <0.01

ICTKF 42.9 66.7 72.7 60.7 66.7 57.1 71.4 65.1 81.8 80.0 91.7 84.5 70.1 0.013
LR tracking 69.6 79.4 85.5 78.2 80.6 75.2 81.1 79.0 91.6 86.5 94.5 90.9 82.7 0.041
TO system 85.7 76.3 90.9 83.9 88.9 85.7 78.6 84.4 100.0 90.0 91.7 93.9 87.4 -

TABLE VII: Success rates and p-values of the proposed TO system and other trackers in the manual needle insertion in tissue
experiments

Case User 1 (%) User 2 (%) User 3 (%) Mean (%) p-value
Small Medium Large Mean Small Medium Large Mean Small Medium Large Mean

LR visual 46.5 48.8 58.1 51.1 71.4 72.3 66.7 70.1 52.3 65.6 78.3 65.4 62.2 <0.01
TO visual 53.4 66.7 59.3 59.8 74.5 72.3 69.2 72.0 50.0 71.3 80.8 67.4 66.4 <0.01
PrDimp 44.8 50.0 40.7 45.2 71.9 64.3 68.4 68.2 50.0 65.6 76.9 64.2 59.2 <0.01
SiamBan 41.4 61.4 55.6 52.8 78.1 68.6 68.4 71.7 56.2 65.6 76.9 66.3 63.6 <0.01
Stark 10.3 33.3 18.5 20.7 34.4 46.4 23.7 34.8 18.8 37.5 34.6 30.3 28.6 <0.01
AiATrack 13.8 42.9 33.3 30.0 43.8 42.9 39.5 42.0 37.5 53.1 46.2 45.6 39.2 <0.01
KeepTrack 20.7 40.5 37.0 32.7 56.2 57.1 50.0 54.5 43.8 65.6 73.1 60.8 49.3 <0.01

ICTKF 20.7 59.5 48.1 42.8 46.9 71.4 55.3 57.9 50.0 75.0 73.1 66.0 55.6 <0.01
LR tracking 63.3 69.0 63.8 65.4 93.8 82.1 81.6 85.8 82.4 87.5 88.5 86.1 79.1 0.001
TO system 65.5 81.0 70.4 72.3 93.8 85.7 86.8 88.8 84.6 87.5 92.3 88.1 83.1 -
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TABLE VIII: Tracking errors of different trackers in the
motorized needle insertion in tissue experiments

Scenario In-plane-static (mm) In-plane-moving (mm) Out-of-plane (mm)

Mean Std 95%ile Mean Std 95%ile Mean Std 95%ile

PrDimp 1.76 0.58 2.37 1.75 0.81 2.65 1.34 0.60 1.90
SiamBan 1.75 0.46 2.60 1.71 0.99 2.85 0.95 0.46 1.63
Stark 2.30 1.60 2.86 2.15 0.71 2.88 2.18 1.27 2.47
AiATrack 2.26 1.03 2.72 2.25 1.42 2.99 1.90 1.19 2.74
KeepTrack 2.09 1.25 2.62 2.36 1.27 2.87 1.65 0.72 2.58

ICTKF 2.32 1.21 2.40 2.08 1.70 2.81 1.59 0.70 2.55
LR tracking 1.67 0.95 2.45 1.20 1.30 2.68 0.87 0.54 1.65
TO system 1.36 0.40 1.65 1.71 0.63 2.38 1.12 0.40 1.69

TABLE IX: Tracking errors of different trackers in the manual
needle insertion in tissue experiments

Case User 1 (mm) User 2 (mm) User 3 (mm)

Mean Std 95%ile Mean Std 95%ile Mean Std 95%ile

PrDimp 1.61 0.63 2.64 1.41 0.48 2.45 1.39 0.64 2.65
SiamBan 1.56 0.74 2.68 1.41 0.45 2.52 1.43 0.64 2.49
Stark 1.94 0.55 2.65 1.49 0.51 2.45 1.66 0.73 2.72
AiATrack 1.87 0.72 2.68 1.54 0.60 2.61 1.47 0.52 2.63
KeepTrack 1.54 0.62 2.62 1.52 0.61 2.72 1.54 0.49 2.52

ICTKF 1.41 0.69 2.40 1.34 0.42 2.26 1.53 0.80 2.87
LR tracking 1.31 0.63 2.23 1.03 0.41 1.99 1.10 0.40 1.78
TO system 1.34 0.57 2.06 1.12 0.42 1.73 1.11 0.45 1.72

The ICTKF, that integrates the Kalman filter shows advanced
tacking performance than many other trackers in the motorized
phantom and tissue experiments, but only ranked seventh in
the manual experiments. This is mainly because the needle
insertion velocity in the manual experiments often varied
greatly in both magnitude and direction, rendering the constant
motion model in ICTKF ineffective in capturing the real-time
movement of the needle tip. While TO system and LR tracking
both include a nonlinear motion filter, the former outperforms
the latter in nearly all cases. The motion filter in LR tracking
solely relies on interpretation of the historical position data to
directly estimate the tracking results, easily leading to drift
error when the visual tracking results are inaccurate for a
short period of time. In contrast, the use of the TransKalman
to estimate the gain matrix and the updating of the filtered
results by following the filtering principles in the Kalman
filter enables our proposed TO system to have stronger noise
identification and suppression abilities.

The tracking errors of these trackers in both motorized
and manual needle insertion in tissue experiments are shown
in Table VIII and IX, respectively. It should be noted that
the tracking errors are computed only based on successfully
tracked (i.e., error < 3mm) videos of each tracker, and thus
the mean tracking error for each tracker in each scenario is
always less than 3 mm. The TO system and the LR tracking
offer the smallest mean errors in all scenarios in these tissue
experiments. Both also offer the smallest standard deviations,
especially in the manual needle insertion experiments, mainly
because that they have integrated an effective motion filter that
smooths out the tracking trajectory. It should also be observed
that the 95 percentile error for the TO system is the smallest in
nearly all scenarios, validating its most consistently accurate
tracking performance.

Furthermore, TO system achieves a tracking speed of 23
fps, which is 46.5% higher than that of LR tracking (15.7 fps).
The significantly improved tracking speed is achieved largely
due to the compact network architectures in the task-oriented
modules and the use of three independent 1× 1 convolutional
layers to obtain the position of the needle tip and the size of the
bounding box in the visual tracking network. The high tracking
speed of TO system facilitates its integration into US image-
guided procedures that requires real-time position feedback of
the needle tip.

G. Comparison with other state-of-the-art trackers

As most existing tracking algorithms in the field of US-
guided needle tip tracking are not open sourced, and the
datasets used to evaluate their trackers are commonly self-
collected and not publicly available, a rough comparison of
our proposed task-oriented visual tracking and motion filtering
system (i.e. TO system) has been made with these state-of-the-
art trackers according to the results reported in their works.
The detailed information can be found in Table X.

The method in [47] obtains similar tracking error as our
proposed TO system, at slightly above 1 mm. However, its
tracking success rate and tacking speed are less than 45%
and less than 2 fps, respectively, which are significantly lower
than TO system. Methods in [21], [22], [48] detect the needle
tip by leveraging the needle tremor motion, induced by the
operator’s hand holding the needle base. Tested with 3600
evaluation images, these methods achieve similar tracking
success rate and tracking error as TO system. However, their
tracking speeds are extremely low at less than 1 fps. These
methods sequentially analyze the phase change of pixels in
US images from several successive frames to obtain the
tremor information. This computationally expensive process
significantly lowers the achievable tracking speed. Therefore,
these trackers were designed for needle detection instead of
real-time tracking throughout a clinical procedure. The works
in [2], [11] achieve small tracking errors, but they were only
tested on small datasets in the idealized gelatin/agar-based
phantoms, which feature significantly higher image quality
and much less noisy background than the ex-vivo biological
tissue under US imaging. They also do not offer acceptable
tracking speed for real-time tracking. The tracker in [49]
uses the appearance information of the needle axis to track
the needle tip and shows 100% tracking success rate and
real-time tracking performance (28.6 fps). However, these
results are obtained from just 38 images in an agar-based
phantom experiment. Furthermore, as highlighted previously,
the needle axis in US images is usually not continuous and the
needle tip can sometimes appear as an independent part. This
phenomenon is extremely serious in challenging real-world
cases where the background noise in US images is strong
and the visibility of the needle axis is poor. In these cases,
the appearance information-based trackers may not be able to
correctly identify the entire needle axis, potentially leading
to inaccurate detection of the needle tip. In general, except
the tremor-based trackers, all the other state-of-the-art trackers
have a strict requirement on visibility of the needle tip at all
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TABLE X: Comparison with state-of-the-art US-based trackers

Tracker Tracking
clue

Experimental
environment

Insertion
mode

Needle tip
visibility

Size of evaluation
dataset

Success
rate

Tracking error
(mm)

Tracking
speed

[47] Intensity change of needle tip Chicken breast tissue Manual insertion Yes 200 44% 1.04± 0.36 1.8 fps
[21] Tremor Porcine tissue Manual insertion No 3,600 81% 1.69± 1.54 -
[22] Tremor Porcine tissue Manual insertion No 60 100% 1.21± 1.47 0.85 fps
[48] Tremor Porcine tissue Manual insertion No 3,600 84% 1.78± 2.20 0.11 fps
[2] Appearance of needle tip Gelatin-based phantom Motorized insertion Yes 245 - 0.68± 0.21 7.1 fps

[11] Appearance of needle axis Agar-based phantom Motorized insertion Yes 20 - 0.7 0.46 fps
[49] Appearance of needle axis Agar-based phantom Motorized insertion Yes 38 100% 1.22± 1.22 28.6 fps
TO

system
Appearance of needle tip
and its position history Pork/Chicken tissue Manual insertion No∗ > 250, 000 83.1% 1.19± 0.48 23 fps

* Temporary invisibility of the needle tip in US images can be handled by the TO system.

times, and cannot obtain any useful visual information of the
target when the needle tip disappears from the US images for
a short period of time, leading to complete tracking failure
or a large drift error that cannot be recovered. Taking into
account various important evaluation metrics simultaneously,
our proposed TO system has shown to be the only real-time
tracking system that achieves both state-of-the-art tracking
success rate and tracking error under the most challenging
environment (i.e. ex-vivo biological tissue) with more than
250,000 evaluation images (>400 needle insertion video se-
quences). It is also uniquely capable of performing robust and
smooth tracking when the needle tip is temporarily not visible
due to its incorporation of the TransKalman motion filter. It
leverages the understanding of the the motion information of
the needle tip to provide reasonable estimation during the
needle tip disappearance in both linear and nonlinear needle
motions, significantly increasing the tracking robustness to
address different challenging scenarios in real-world practice.

VI. CONCLUSION

In this paper, a needle tip tracking system under US imaging
has been developed, combining a visual tracker with various
concise, task-specific modules and TransKalman as a motion
filter for the visual tracking results. A comprehensive set
of ablation and evaluation studies validates the significant
improvement brought by the proposed individual modules in
the visual tracker and TransKalman, and the superior tracking
robustness and accuracy of the overall tracking system against
other state-of-the-art trackers in both motorized and manual
needle manipulation experiments in ex-vivo tissues. All these
were achieved by the tracking system at a tracking speed more
than 20fps, leading to its real-time tracking capability under
US imaging. In the future work, the tracking system will
be integrated with advanced anatomical target segmentation
algorithm and an effective control strategy to develop an image
guided surgical navigation framework, potentially enabling a
fully automated needle-based percutaneous procedure.
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