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Abstract—Solidago canadensis L. is a typical invasive plant
that has become a significant threat worldwide and profoundly
impacts local ecosystems. An unmanned aerial vehicle (UAV)-
based semantic segmentation system can help in monitoring the
spread and location of Solidago canadensis L. To identify the
growth range of this species with greater efficiency, we employ
a high-speed multispectral camera, which provides richer color
information and features with limited resolution, in conjunction
with a high-quality RGB camera to construct a segmentation
dataset. We construct a validated UAV multispectral (UAVM)
dataset comprising 3260 pairs of calibrated RGB and multispec-
tral images. All the images in the dataset underwent semantic
annotation at a fine-grained pixel level, with 12 categories being
covered. In addition, other plant categories can be employed
in precision agriculture and ecological conservation. Moreover,
we propose a benchmark model, UAVMNet. With the aid of the
feature alignment module and the UAVMFuse module, UAVMNet
efficiently integrates multispectral and high-quality RGB image
information, enhancing its ability to perform semantic segmen-
tation tasks effectively. To the best of our knowledge, this is the
first model to colearn semantic representations via high-quality
RGB and paired multispectral information on a UAV platform.
We conduct comprehensive experiments on the proposed UAVM
dataset.

Index Terms—Semantic segmentation; UAV; Multispectral im-
ages; Solidago canadensis L.; UAVM dataset; UAVMNet.

I. INTRODUCTION

W ITH technological advances and innovations, remote
sensing platforms such as unmanned aerial vehicles

(UAVs) and satellites can easily acquire high-resolution im-
ages over a large geographic area. These advances have further
increased the progress of fields such as agricultural production
[2] and urban planning [3] and triggered the need for an
intelligent understanding (e.g., scenewise classification, object
detection, segmentation, data enhancement, etc. [4]) of remote
sensing images. Unlike object detection tasks with bounding
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boxes, semantic segmentation tasks need to distinguish the
class of the object at the pixel level [5]–[13]. Compared with
object detection or scenewise classification tasks, semantic
segmentation tasks can describe the boundary and spread
of the targets more precisely with pixelwise classification
outputs. Thus, semantic segmentation tasks based on remote
sensing images can be more suitable for precise monitoring
and investigation tasks (e.g., invasive species localization) than
identifying only bounding boxes.

Unlike satellites, UAVs can provide smaller but more precise
observations in a specified area. Owing to their outstanding
local observation capability, flexibility, and mobility, UAVs
are widely used in smart agriculture [14], precision agricul-
ture [15], etc. Although numerous datasets are available in
the field of UAV-based segmentation [16]–[21], there are only
a few datasets for invasive species [22]. Solidago canadensis
L. is native to North America and has become an invasive
plant worldwide. It has now spread to most European coun-
tries, Asia, Australia, New Zealand, and elsewhere, posing a
severe threat to local biodiversity and ecosystem function [23],
[24]. Therefore, monitoring its growth range is crucial for
preventing and controlling this invasive species. UAVs provide
a convenient way to measure the distribution of Solidago
canadensis L. on a small scale. Unfortunately, no public UAV-
based datasets correlate with Solidago canadensis L. thus far.
These factors drive us to construct a UAV-based multicategory
semantic segmentation dataset for Solidago canadensis L. and
vegetation monitoring. As a supplement to Solidago canaden-
sis L., we also label 11 other categories, such as pines and
bushes, which can be essential for precision agriculture.

Although many deep learning-based segmentation methods
can localize and characterize the distribution of vegetation
with RGB images [1], [6], [25]–[29], the RGB camera may
sometimes be insufficient to characterize the extent of the
vegetation due to shadows and the environmental complexity
of the vegetation itself. For example, the segmentation results
of the objects in the orange box are poor if only the RGB
camera is used (Fig. 1). In the early stages of growth,
Solidago canadensis L. is typically relatively small and often
intermixed with bushes or other similar vegetation. While it
is relatively easy to distinguish on the ground, it becomes
visually indistinguishable from the surrounding environment
when viewed from a UAV’s perspective. Additionally, the
variation in light and shadow on Solidago canadensis L. in
aerial imagery further complicates the segmentation of this
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Fig. 1. Segmentation results with RGB inputs and the DeepLabv3plus [1] model. The first row from left to right shows the input RGB image, the visualized
output of the RGB model, and the ground truth. The remaining rows show other images.

plant in RGB images using the current methods. In the first
row, Solidago canadensis L. grows mixed with the bush, and
their colors are similar, so the model fails to identify Solidago
canadensis L. correctly. In the bush areas of the first and
second rows, owing to the similarity in color between the
weed and the bush, as well as the influence of shadows,
the segmentation results are incorrect. In the third row, the
distribution of reeds is more scattered and similar in color to
the surrounding environment, which makes the model unable
to correctly recognize reeds as vegetation types, resulting
in poor segmentation results. Previous studies have shown
that multispectral cameras with additional spectral bands can
provide more detailed spectral information from different plant
classes [30]. Although most multispectral cameras cannot
offer high-quality imaging results with a high sampling rate
simultaneously, multispectral cameras can collect more de-
tailed spectral information in the visible range for complex
vegetation distributions. These multispectral channels can help
differentiate objects with similar colors. Thus, we curate a
synchronous UAV multispectral semantic segmentation dataset
called the UAVM dataset, which includes 3260 synchronized
and calibrated high-quality RGB and multispectral image
pairs. All the images are densely labeled with fine-grained

semantic segmentation tags, constituting a rich collection of
12 object classes (Fig.2).

To simultaneously utilize the information provided by RGB
images and multispectral images, we develop a specialized
baseline model named the UAV multispectral semantic seg-
mentation network (UAVMNet). The key to our design of
UAVMNet is effectively synthesizing high-quality RGB and
multispectral information. Considering the diversity of multi-
spectral and high-quality RGB details, we design a two-branch
model and develop a novel UAVMFuse module with a cross-
spectrum attention mechanism to handle rich multispectral
information with a moderate memory footprint. Moreover, to
align the spectral information and promote the model to utilize
both RGB and multispectral information, we propose a feature
alignment module and further introduce a new UAVM align-
ment loss. We conduct comprehensive experiments on various
state-of-the-art semantic segmentation models on the UAVM
dataset. The experimental results validate the effectiveness of
our UAVMNet model and shed light on the importance of the
composite utilization of RGB and multispectral information in
semantic segmentation.

Overall, the main contribution of this paper consists of three
aspects:
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• We present a synchronous UAV multispectral semantic
segmentation dataset containing 3260 synchronized high-
quality RGB and multispectral image pairs, which can
be used to monitor the spread of the invasive species
Solidago canadensis L. and can be applied to precision
agriculture.

• We propose a new two-branch network architecture to
establish correlations across spectra. To effectively learn
to use high-quality RGB and multispectral information,
we introduce the UAVMFuse module and the feature
alignment module.

• We conduct comprehensive experiments on various state-
of-the-art semantic segmentation models on the proposed
UAVM dataset. The results show that our model is ahead
of all other models in terms of performance.

II. RELATED WORK

In this section, we review the most relevant literature on
semantic segmentation datasets on remote sensing platforms,
RGB semantic segmentation, multispectral semantic segmen-
tation, and remote sensing hyperspectral image classification.

A. Semantic Segmentation Datasets on Remote Sensing Plat-
forms

Semantic segmentation datasets on remote sensing platforms
can be roughly categorized into three types: those based on
RGB images, those based on multispectral images, and those
based on hyperspectral images. The semantic segmentation
datasets based on RGB images include Aeroscapes [16],
UAVid [17], and the ICG Drone Dataset [18]. For example,
the Aeroscapes [16] aerial semantic segmentation benchmark
consists of images captured via a UAV in the altitude range of
5 to 50 meters. The dataset provides 3269 720p images and 12
categories of true masks. The datasets based on multispectral
imagery include ISPRS 2D [31] and VddNet [19]. The ISPRS
2D [31] dataset contains urban aerial imagery with image
sizes of 2000×2000 or 6000×6000 and provides pixel-level
annotations with resolutions of 9 cm or 5 cm. To identify
land cover classes, this semantic annotation benchmark defines
six categories. The VddNet [19] dataset is designed to effi-
ciently and accurately detect early grapevine diseases to inhibit
disease spread in a timely manner, so only four categories
are defined in the dataset. There are many datasets based on
hyperspectral images, such as Houston [32] and WHU-Hi-
LongKo [33]. The Houston [32] dataset provides hyperspectral
imagery with a spatial resolution of 2.5 m and an image size of
349×1905, which contains 144 bands (with a range of bands
from 364 to 1046 nm). The study area of this dataset covers
15 feature types, such as roads, land, trees, highways, etc.
The WHU-Hi-LongKo [33] dataset uses a UAV platform, and
its study area is a simple agricultural scenario containing six
crops: maize, cotton, sesame, broad-leaf soybean, narrow-leaf
soybean, and rice. The UAV flies at an altitude of 500 m, and
the image size is 550×400, containing 270 bands in the 400
to 1000 nm range, with a spatial resolution of approximately
0.463 meters. However, none of these works consider invasive
species. Unlike these datasets, the proposed UAV multispectral

semantic segmentation dataset is a synchronous UAV multi-
spectral semantic segmentation dataset that can be used to
monitor the spread of the invasive species Solidago canadensis
L.

B. RGB-based Semantic Segmentation

Since the release of public datasets such as Cityscape [7],
significant progress has been made in RGB-based semantic
segmentation. FCN [8] is a groundbreaking work that trans-
forms fully connected layers into convolutional layers, which
allows the network to predict dense, high-resolution outputs
directly from inputs of any size. Subsequently, the idea of
using only fully convolutional layers has been widely adopted
to develop a series of CNN-based semantic segmentation
methods [1], [6], [25]–[29]. Recently, transformer models that
use the self-attention mechanism have become popular in the
field of semantic segmentation [34]–[37]. While traditional
CNN models can only gradually expand the field of view
by increasing the receptive field layer by layer, transformer
models are able to focus on all parts of an image in a single
computation through the self-attention mechanism, which can
better capture the global contextual information. For remote
sensing platforms, MCAFNet [38] handles image details at
low resolution by introducing a global-local transformer block
(GLTB). A channel attention optimization module and a fusion
module are used in the decoder to strengthen the model’s abil-
ity to acquire small-scale semantic information. DenseU-Net
[39] uses cascading operations to connect features extracted
by the network and fuses shallow and deep features via a
symmetric structure to improve small object classes and the
overall accuracy. The ERN [40] uses two edge-loss enhance-
ment modules to preserve spatial information, which in turn
reduces semantic ambiguity and reduces shadow interference.
UnetFormer [41] develops a global-local attention mechanism
to model local and global information. The model runs faster
and has better segmentation. The clusterformer [42] contains a
spatial channel feed-forward network (SC-FFN) and a cluster
token mixer at the encoding stage to extract multiscale in-
formation and reduce interference information. This approach
is effective in identifying pine wilt disease and improves
accuracy. To intra-class variance in semantic segmentation,
Genze [43] et al. propose a UAV weed segmentation dataset
encompassing two classes and conduct comprehensive exper-
iments on this dataset, with the standard deviation of the
Dice Coefficient ranging from 0.0018 to 0.18. Li [44] et al.
introduce a novel method for field cotton detection, enhancing
the network’s robustness and accuracy through unsupervised
region generation and supervised semantic labeling prediction.
In their experiments, the minimum standard deviation of Inter-
section over Union (IoU) is 3.8. PFT [45] utilizes cross-scale
inter-query attention to exchange complementary information,
with the maximum standard deviation of mean IoU (mIoU) in
the ablation experiments reaching 0.7. PGNet [46] transmits
long-range dependence and global context information to
each pyramid-level feature, generating high-resolution feature
maps with high-level semantic information to segment small
and varying-sized objects. On the ISPRS Vaihingen dataset,
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the standard deviation of mIoU is 0.3. Although significant
progress has been made in image semantic segmentation,
most of these models only consider RGB images as inputs,
which restricts their ability to utilize multispectral data for
segmentation tasks. Nevertheless, our proposed method is
capable of utilizing both RGB and multispectral information
for semantic segmentation tasks.

C. Multispectral Semantic Segmentation

The RGB and thermal (T) imaging multispectral semantic
segmentation technique improves the robustness of the model
by integrating multimodal visible and thermal image infor-
mation. MFNet [47] and PST900 [48] are commonly used
datasets with pairs of visible and infrared light images. On
the basis of these two datasets, researchers have designed
various RGBT models via different strategies for semantic
segmentation of RGBT datasets. For example, Ha et al. [47]
proposed a multispectral fusion network (MFNet) with two
identical thermal and RGB image encoders and a decoder
block. Sun [49] et al. proposed an RGB-thermal fusion net-
work (RTFNet), which also uses two encoders and a decoder,
but the outputs of the encoders are fused into the RGB
encoder via elementwise summation of the thermal feature
maps. PSTNet [48], on the other hand, uses a serial structure
to train the RGB streaming network before the results are
fed into the fusion stream along with thermal images. In
addition to the models mentioned above, various other fusion
strategies exist for integrating multispectral information. These
include the domain adaptive approach [50], multilevel feature
fusion strategy [51], and multimodal multistage fusion [52].
On the remote sensing platform BLASeNet [53], to obtain
effective information from multispectral images, a 3D residual
block is designed to encode spectral-spatial features in the
encoding stage. Two matrices are used in the decoding stage
to adaptively adjust the fusion ratio of high-level semantic and
low-level detail features, improving the segmentation accuracy.
The DSCNN [54] uses a two-branch network to combine the
information from high-resolution panchromatic images and
multispectral images, which are used to segment the built-up
areas. PerceiverIO Conv3D [55] encodes multimodal features
via 3D convolution and reduces the number of model parame-
ters via PerceiverIO’s cross-attention mechanism. VddNet [19]
fuses RGB, near-infrared (NIR), and depth maps to monitor
grape diseases. WeedMap [21] uses a sliding window to fuse
RGB, red edge (RE), and NIR information to identify weeds.
However, the number of channels (4 or 5) in most of these
multispectral semantic segmentation datasets is limited. In
contrast, our multispectral camera is able to collect more
detailed spectral information, which significantly contributes
to improving the segmentation results. Our method extracts
advantageous features from more detailed spectral information
and integrates them with RGB information, thereby signifi-
cantly enhancing segmentation accuracy.

D. Remote Sensing Hyperspectral Image Classification

Remote sensing hyperspectral image classification (HSIC)
is similar to the semantic segmentation task, where the goal

is to assign unique labels to each pixel vector on the basis of
the spectral or spatial properties of the HSI cube [56]. This
technique has been widely used in environmental monitoring
[57] and land use [58]. At present, the primary methods on
the remote sensing platform for HSIC are based on deep
networks, including methods based on stacked autoencoders
(SAEs), convolutional neural networks (CNNs), and recurrent
neural networks (RNNs). Among these methods, classifiers
based on CNNs have a significant advantage in terms of
accuracy. For example, Zhong [59] et al. proposed a 3D
CNN with residual connectivity to improve the trainability and
classification accuracy of the network. Mei [60] et al. designed
two attention-based branches to extract discriminative feature
vectors from both spatial and spectral aspects. The overall
accuracy (OA) and average accuracy (AA) of both methods on
the Indian Pines dataset exceed 98%. In comparison, the OA
and AA of the SAE-based method are 85% and 86%, respec-
tively, whereas the OA and AA of the RNN-based method are
91% and 82%, respectively. Obviously, CNN-based classifiers
are significantly better than other classifiers. In recent years,
significant research has been conducted on transformer-based
frameworks. Zheng [61] et al. proposed a fast patchless global
learning framework that enables faster patchless inference
and learning from global spatial information, thus improving
accuracy. Although hyperspectral images have a relatively high
spectral resolution, they usually contain many redundant bands
and are not available in real time. In contrast, our high-speed
multispectral camera is capable of video acquisition with a
high frame rate (50 Hz), which can be more efficient and
flexible for invasive species monitoring. In addition, previous
methods fail to integrate RGB and multispectral information
effectively; hence, they are not suitable for multispectral
semantic segmentation tasks.

III. UAVM BENCHMARK DATASET

In this section, we focus on describing the construction of
the UAVM dataset and analyzing the statistical results.

A. Dataset Construction

Data collection. Our goal is to create a high-quality UAV
multispectral semantic segmentation dataset. The dataset com-
prises RGB and multispectral image pairs with high-quality,
dense annotations. We use a DJI UAV M300 for data acqui-
sition, which is equipped with an RGB camera and a Silios
Toucan T4 multispectral camera. The latter has ten channels,
with wavelengths ranging from 400 nm to 900 nm. Qingdao
West Coast Central Park is a pristine park that is in the early
stage of being affected by Solidago canadensis L., which is
crucial for prevention. The UAV captures all images at an
altitude of 15 to 40 meters. The spatial resolutions of the
RGB and multispectral images are 0.5167 cm to 1.378 cm
and 0.5156 cm to 1.375 cm, respectively, at altitudes ranging
from 15 to 40 meters, and the ratio of their spatial resolutions
is approximately 1:1. We manually select high-quality images
for the construction of our UAVM dataset. The dataset covers
a complex suburban scene during the daytime and dusk, and
we focus on the invasive species Solidago canadensis L. In
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Fig. 2. Example images and labels from the UAVM dataset. From left to right are RGB images and multispectral 0-channel to 9-channel images, with
corresponding ground truth labels.

Fig. 3. On the left are examples of all categories in the UAVM dataset, and
on the right are the visualization colors corresponding to each category.

Fig. 2, we show examples of RGB and multispectral images;
in Fig. 3, we show examples of all the categories in the UAVM
dataset and the colors corresponding to the labeling of each
category.
Classes and annotations. To identify the categories to be
labeled, we follow the guidance of [16] and consider the
relevance of each category to the application, the frequency
of occurrence, and the difficulty of the actual labeling work.
We carefully checked the RGB and multispectral videos. We
selected 12 categories that are worthy of annotation, includ-
ing Solidago canadensis L., person, road, pine, bush, reed,
stone, cypress, building, vegetable garden, electric bicycle,
and background (unlabeled pixels). Since RGB images and
multispectral images have different resolutions (the native res-
olution of RGB images is 1920×1080 and the native resolution
of multispectral images is 512×512), we must image align
them. As shown in Fig. 4, we use the scale-invariant feature
transform (SIFT) algorithm [62] for feature point extraction
for RGB and multispectral images. Feature point matching
is performed via a brute-force matcher (BF). We compute

the transformation matrix between the images on the basis
of the matched feature point pairs. Finally, we apply the
transformation matrix to the image to be matched and crop
the image to a resolution of 512×512 to align it with the
reference image.

Fig. 4. Schematic of image matching via the SIFT algorithm.

The segment anything model (SAM) [63] has recently
attracted much attention because of its strong zero-shot gen-
eralization capability. Therefore, to reduce the labeling effort,
we adopt the interactive segmentation tool [64] based on the
SAM [63] as an auxiliary tool in the annotation process.
First, we roughly label the UAVM dataset via the interactive
segmentation tool [64]. Subsequently, we manually adjust the
boundaries for regions with inaccurate boundaries. Moreover,
we adopt the adjacent image annotation approach, which
ensures the consistency of annotations between neighboring
images. Although the adjacent frame annotation step increases
the annotation time, this approach makes it easier for the
annotator to detect different annotations and unlabeled objects.
Moreover, when labeling a specific frame, we have to refer
to the video surrounding this frame, which can help the
inspector determine the category of the labeled object by
judging the height of the labeled object. For these reasons,
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TABLE I
TOTAL PIXEL VOLUME (TPV), IMAGE SIZE, AND NUMBER OF IMAGE CHANNELS IN 8 DATASETS. B STANDS FOR BILLION, M STANDS FOR MILLION, AND

PX MEANS PIXELS IN SIZE.

Dataset Number of image channels Image size Number of classes Volume TPV

Aeroscapes [16] 3 1280×720Px 12 3269 9.0B

UAVid [17] 3 4096×2160 or 3840×2160Px 8 300 7.8B

ICG Drone Dataset [18] 3 6000×4000Px 20 600 43.2B

VddNet [19] 5 4626×3904Px 4 1 90M

MFNet [47] 4 640×480Px 9 1569 1.9B

PST900 [48] 4 1280×720Px 5 894 3.2B

Houston [32] 144 1905×349Px 15 1 95M

Xiongan New Area Dataset [65] 250 3750×1580Px 19 1 1.4B

UAVM (ours) 13 512×512Px 12 3260 11B

Fig. 5. Percentage of the number of pixels in each category (y-axis). The background category is not shown.

coupled with the complexity of challenging suburban scenes,
annotating the UAVM dataset and quality control are very
time-consuming. An average of thirty minutes per image is
required for annotation.
Dataset splits. The UAVM dataset consists of 3260 synchro-
nized and calibrated RGB and multispectral image pairs. To
ensure that the training and validation sets have the same data
distribution, we manually divided the dataset into training and
validation sets, each consisting of 2704/556 annotated image
pairs.

B. Statistical Analysis

Table I shows the number of images and the total pixel
volume (TPV) for our UAVM dataset and several public
remote sensing datasets (we consider only the source images
and do not consider the data augmentation cases). Our UAVM
dataset contains 3260 annotated image pairs of 12 categories.
The hyperspectral dataset has a high number of image channels
but a low number of TPVs due to its sampling rate. With
respect to the UAV dataset, the number of TPVs in the ICG
dataset [18] is greater than that in our UAVM dataset. This
is because the multispectral camera we used can provide only
512×512 resolution for each channel, which is much less than

the 6000×4000 resolution of the ICG dataset. Notably, these
UAV datasets have fewer channels, which means that they
contain less spectral information than our dataset does. The
RGBT multispectral datasets [19], [47], [48] are similar to ours
in terms of dataset type but are much smaller than our UAVM
dataset in terms of dataset size. Fig. 5 shows the percentage
of the number of pixels in each category of the UAVM dataset
(excluding the background category). The proportions of the
different categories in the UAVM dataset are imbalanced,
similar to those in any other semantic segmentation dataset.
Vegetation pixels account for a large portion of the UAVM
dataset, and most of the pixels come from pines, bushes, and
roads, with fewer pixels coming from people, buildings, and
electric bicycles. The invasive species Solidago canadensis
L. also has a high occupancy, which is consistent with its
distributional characteristics.

IV. METHODOLOGY

A. Motivation

Various network models have been constructed for multi-
spectral semantic segmentation [21], [47]–[49], [53], [54],
[66]. These models focus on feature fusion techniques for

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3457674

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 7

Fig. 6. The architecture of the proposed UAVMNet. The inputs consist of RGB and multispectral image pairs. UAVMNet contains a feature extraction module,
a UAVMFuse module, and a feature alignment module. ConvA and ConvB are 1×1 convolution and 3×3 convolution, respectively.

RGB and NIR or IR, and a variety of excellent feature fusion
methods have been devised. These models consider a two-
branch structure that has shown significant advantages in
improving segmentation accuracy and robustness by resorting
to near-infrared or infrared imaging information. However,
there are two specific problems with this generic scheme:

i) There is a lack of alignment between independent en-
coders. Using independent encoders may lead to dis-
jointed and inconsistent extracted features when applied
to dozens of pieces of spectral information, decreasing
accuracy due to insufficient information fusion ability.

ii) There is an inherent difference between high-quality
RGB and multispectral modalities. High-quality RGB
data provide detailed visible appearance information and
high-quality imaging. In contrast, multispectral methods
can provide richer spectral information. This difference
in modality results in feature embeddings of RGB and
multispectral images being distributed in different em-
bedding spaces, and suboptimal cross-spectral features af-
fect the full utilization of cross-spectral complementarity.
Therefore, addressing the modality difference problem
is essential for effectively utilizing the complementary
information of RGB and multispectral images.

In Section IV-B, we present a well-designed baseline called
UAVMNet to address these problems. It solves the two prob-
lems mentioned above and thus enables better exploitation of
RGB and multispectral information for semantic segmentation
tasks.

B. Overall Architecture

We first illustrate the list of symbols and abbreviations
mentioned in our paper in Table II to provide better readability.

TABLE II
LIST OF SYMBOLS AND ABBREVIATION.

Notation Description

CE loss Cross entropy loss
Q Query maps generated by encoding layers
K Key maps generated by encoding layers
V Value maps generated by encoding layers
R Feature map of RGB stream
M Feature map of multi-spectra stream
CAF Cross-spectrum attention fusion module
BGM Balance guidance module
Add Element-wise summation operation

RGB images are high quality, whereas multispectral im-
ages contain rich spectral information. Both sides have their
strengths and weaknesses. To achieve complementary ad-
vantages, we first employ a feature alignment module that
allows the RGB branch to learn additional spectral information
from the multispectral branch. During the decoding stage,
the RGB branch queries required information from the rich
spectral information of the multispectral branch, while the
multispectral branch queries required information from the
high-quality RGB branch. Therefore, we construct comprehen-
sive feature representations through this bidirectional querying
process, achieving complementary advantages between the two
modalities.

The network structure of the proposed UAVMNet is shown
in Fig. 6. The structure contains three parts: the feature
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extraction module; the feature alignment module for problem-
solving i); and the UAVMFuse module for problem-solving
ii).

Given the input RGB and multispectral image pairs, we
feed them into their respective backbone networks for feature
extraction. Moreover, we employ the feature alignment module
to ensure consistency between the features and further enhance
the fusion effect by calculating the UAVM alignment loss.
Then, we feed the feature maps extracted from the two-branch
backbone into the proposed UAVMFuse module for decoding.
The UAVMFuse module fuses RGB and multispectral features
via a cross-spectral attention mechanism and is able to gener-
ate the final segmentation maps.

The training process of our UAVMNet for multispectral
semantic segmentation (MSS) is shown in Algorithm 1.

Algorithm 1 Training of UAVMNet for MSS

Input: {(Inr , Inm, Y)}Ndata
n=1 , a dataset of sequence pairs.

Input: Θ, the initialized parameters.
Output: Θ̂, the trained parameters.
for i = 1, 2, ..., Nepoches do

for n = 1, 2, ..., Ndata do
Compute UAVMNet(Inr , I

n
m,Θ) via forward propa-

gation
Compute ltotal via loss function
Update Θ via backward propagation

end
end
return Θ̂ = Θ

C. Feature Alignment

We propose a simple but effective alignment module for
feature learning during training. Since we use two independent
encoders with the same structure, both encoders include the
same scale features. Thus, the feature alignment loss can easily
match the features in the two encoders. As shown in Fig. 8,
the feature alignment module convolves stage 3 and stage 4
features in the two backbones separately to reduce the number
of channels. Then, UAVM alignment loss is applied to the
features to align the channel information.
UAVM alignment loss. To align the spectral information,
we need an alignment loss function. Inspired by channelwise
distillation loss (CWD loss) [67], we further design a tailored
UAVM alignment loss for the UAVMNet model. Formally, the
UAVM alignment loss is defined as:

Φ (Xi,j) =
exp

(
Xi,j

T

)
∑C

j=1 exp
(

Xi,j

T

) (1)

lAli =
T 2

S

S∑
i=1

C∑
j=1

Φ
(
Xm

i,j

)
· log

[
Φ
(
Xm

i,j

)
Φ
(
Xr

i,j

)] (2)

where i = 1, 2, ..., S represents the spatial location index and
j = 1, 2, ..., C denotes the channel index. T is a hyperparam-
eter (temperature). The larger T is, the softer the probability
distribution is. A larger T means that we are concerned with

a wider range of channels for each spatial location. Following
[67], we set the temperature T = 4. Xm and Xr ∈ RS×C

are the feature maps of the multispectral and RGB branches,
respectively. Φ(·) transforms feature activation into a proba-
bility distribution of spatial location directions. According to
the above equation, if Φ(Xm

i,j) is large, Φ(Xr
i,j) should also be

as large as Φ(Xm
i,j) to minimize the loss function. However,

when Φ(Xm
i,j) is small, the loss function is less concerned

with minimizing Φ(Xr
i,j). Since the RGB channel has higher

image quality and the multispectral channel contains richer
color information, we design UAVM alignment loss to take
advantage of multispectral information to support the RGB
branch. This alignment mechanism forces the RGB branch to
learn additional channel and global context information for the
multispectral branch.

D. UAVMFuse Module

We have developed a UAVMFuse module in Fig. 6, which
consists of encoding layers, downsampling, a cross-spectrum
attention fusion module, and a balance guidance module. Each
component is described below.
Encoding layers. Considering the backbone structure (e.g.,
ResNet-50), the dimension of the feature maps obtained after
two independent backbone extractions can reach 2048, which
is a large value. Therefore, feeding them directly into the
decoder is both time-consuming and expensive. A suitable way
to reduce the computational effort is to restrict the number
of channels. Generally, a 1×1 convolution is a common
solution for reducing the number of channels. However, a
1×1 convolution cannot capture the related features among
neighboring pixels, which are crucial for segmentation tasks.
Although a larger convolution kernel can capture spatial in-
formation among neighboring pixels, it increases the number
of parameters and computational cost. Considering the above
factors, inspired by the bottleneck in ResNet [68], we suggest
an approach that balances performance and computational
cost. We first reduce the channels via a 1×1 convolution. Then,
a 3×3 convolution captures spatial information for spatial
information coding. After encoding, to establish correlations
across spectra, we generate query (Q), key (K), and value (V)
maps corresponding to the RGB stream and the multispectral
stream. The features of the RGB stream are denoted as R, and
the features of the multispectral stream are denoted as M. We
denote these features as I = {R,M}.
Downsampling. The two branches are encoded to obtain the
corresponding query, key, and value maps, and we use a simple
but effective strategy to downsample the data. As shown in Fig.
6, we apply the maximum pooling operation ψn(·) with stride
size n to the query, key, and value maps of the two branches
to obtain the downsampled features ψn (IQ) , ψn (IK) and
ψn (IV ):

Iq = ψn (IQ) , Ik = ψn (IK) , Iv = ψn (IV ) (3)

Using the downsampling module, we can effectively re-
duce the computational complexity while preserving the key
features. Our experiments have shown that n = 2 is the
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Fig. 7. Illustration of the balance guidance module. σ(x) denotes the sigmoid function. Conv stands for a
1×1 convolution. BN stands for batch norm.

Fig. 8. Illustration of the feature alignment module. Conv stands for a 1×1
convolution.

most appropriate. Moreover, the spatial information can be
well maintained while reducing the computational amount and
improving the model’s inference speed.
Cross-spectrum attention fusion module. Next, we propose
a new approach to attentional fusion. In this approach, we
combine the RGB and multispectral streams to construct a
complete feature representation of the respective streams. In-
spired by spatiotemporal attention [69], we compute the cross-
spectrum attention information for the RGB and multispectral
streams separately. For example, for the RGB stream, the
attention is fused in the following way:

R̂v = Softmax
(

RqMT
k√

dk

)
Mv + Rv (4)

where Rq,Rv,Mk,Mv represents the downsampling mapping
features, as shown in Equation 3, and dk represents the
dimensions of the query and key. Similarly, the fusion of
multispectral streaming attention can be obtained as:

M̂v = Softmax
(

MqRT
k√

dk

)
Rv + Mv (5)

where Mq,Mv,Rk,Rv represents the downsampling mapping
features, as expressed in Equation 3.

Next, we obtain the complete feature representations of
the RGB and multispectral streams, named R̂v and M̂v ,
respectively. The RGB stream can retrieve critical information
from the multispectral stream through this elaborate attention
mechanism. Moreover, the multispectral stream is able to
retrieve the desired information from the RGB stream. This
interactive attention mechanism allows the two streams to
complement each other in the information exchange process
and can effectively capture the nonlocal correlations between
cross-spectral pixels.
Balance guidance module. We introduce the balance guid-
ance module (BGM) to fuse the value maps obtained from
the two branches more efficiently, inspired by the attention
mechanism [70]. As shown in Fig. 7, this module allows
the RGB branch to selectively fuse valuable features from
the multispectral branch. We define the RGB branch and
multispectral branch value maps as R̂v and M̂v , respectively;
then, the output of the sigmoid function can be expressed as:

P = Sigmoid
(
φ
(
φ
(

R̂v

)
· φ

(
M̂v

)))
(6)

where φ(·) denotes the convolution and batch norm (BN)
computation. P denotes the probability that these two pixels
belong to the same object. A larger P means that the model
would trust the RGB branch rather than the multispectral
branch. Therefore, the output of the BGM can be written as:

OBGM = PR̂v + (1− P)M̂v (7)

E. Loss Function

We inherit ResNet-18/50 [68] to build our backbones, which
include 4 stages, for feature extraction. Following [71], we
place a segmentation head at the output of stage 3 for each
of the two backbones. The additional segmentation head can
generate additional semantic losses l1, l2, which can better
optimize the whole network, where l1 and l2 are calculated
using cross-entropy (CE) loss. The CE loss is defined as
follows:

lCE = −
N∑
i=0

yi ln (pi) (8)
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Fig. 9. Qualitative results on the UAVM dataset. We highlight the details with orange boxes.

where p is the model prediction, y is the label, and N is the
number of categories.

Finally, the final loss of the whole UAVMNet is:

ltotal = λ0l0 + λ1l1 + λ2l2 +

1∑
i=0

λiAlil
i
Ali (9)

where i represents stage 3 and stage 4 of the backbone when it
is 0 and 1, respectively. Empirically, we refer to PIDNet [72]
and set the hyperparameters of UAVMNet to λ0 = 1, λ1 =
0.4, λ2 = 0.4. Additionally, we apply a greedy search strategy
to choose λAli = [5, 5] for stage 3 and stage 4.

V. EXPERIMENTS

In this section, we build a benchmark for the UAV multi-
spectral semantic segmentation task and evaluate the proposed
UAVMNet.

A. Implementation Details and Evaluation Metrics

Our code is implemented on the PyTorch platform. The
model parameters are initialized via the ImageNet [74] pre-
training model, which is then trained on a single GeForce
RTX 3090 GPU and converged for optimal performance. The
batch size is set to 4. The data augmentation strategies include
random resizing, random horizontal flipping, random cropping,
and padding to avoid potential overfitting. We use the Adam
optimizer with an initial learning rate of 6e-5 and adaptive
scheduling on the basis of training losses. During testing,
data augmentation strategies are not applied, and images are
kept at their original resolution for evaluation. We test on a

single GeForce RTX 3090 GPU and set the batch size to 1 to
measure the inference speed. Our implementation is based on
MMSegmentation [75].

We use the mean intersection over union (mIoU), the mean
pixel accuracy (mPA), and the mF1 score for evaluation. Pixel
accuracy (PA) denotes the ratio of the number of correctly pre-
dicted pixels for a category to the total number of pixels, and
mPA denotes the average percentage of correctly categorized
pixels in the sample used for accuracy assessment. Intersection
over union (IoU) denotes the ratio of the intersection of the
model’s predictions and true values for a category to the
concatenation. MIoU denotes the average intersection over
union result of the samples used for accuracy assessment.
The F1 score is the harmonic mean of precision and recall,
whereas the mF1 score is the average of the F1 scores of all
categories. The definitions of the mIoU, mPA, and mF1 score
are as follows:

mIoU =
1

k

k∑
i=0

pii∑k
j=0 pij +

∑k
j=0 pji − pii

(10)

mPA =
1

k

k∑
i=0

pii∑k
j=0 pij

(11)

mF1score =
1

k

k∑
i=0

2pii∑k
j=0 pij +

∑k
j=0 pji

(12)

where pij refers to the value in the ith row and jth column of
the confusion matrix; pji refers to the value in the jth row and
ith column of the confusion matrix; the predicted category is
j and the true category is i; and k is the number of categories.
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TABLE III
QUANTITATIVE EVALUATION ON THE VALIDATION SET OF THE UAVM DATASET.

Type Model Backbone mIoU(%) mPA(%) mF1-score(%)

Generic SS Model

UperNet [29] ResNet-18 57.24 63.71 64.32
UperNet [29] ResNet-50 67.25 73.01 73.77

Deeplabv3plus [1] ResNet-18 62.33 68.99 67.49
Deeplabv3plus [1] ResNet-50 68.00 76.72 74.28

UperNet [29] Swin-T 54.54 59.29 62.57
UperNet [29] Swin-S 63.72 66.62 67.19

FCN [8] ResNet-18 50.03 55.21 56.87
FCN [8] ResNet-50 60.04 66.76 66.37

PSPNet [28] ResNet-18 52.17 58.45 57.41
PSPNet [28] ResNet-50 70.26 75.72 78.42

RGBT Image-based MSS Model

MFNet [47] Mini-Inception 63.32 68.54 71.69
EGFNet [66] ResNet-152 54.56 64.10 66.55
RTFNet [49] ResNet-152 67.32 74.38 74.62
PSTNet [48] No 57.40 63.79 64.22

HSIC Model HyLITE [73] Vit 38.98 44.99 43.85
FreeNet [61] Swin-S 56.62 61.70 60.74

Remote Sensing Image-based SS Model UnetFormer [41] SWSL ResNet-18 67.52 74.21 71.49
Clusterformer [42] No 62.60 68.43 70.71

Remote Sensing Image-based MSS Model UAVMNet(ours) ResNet-18 69.31 77.23 80.61
UAVMNet(ours) ResNet-50 79.50 85.86 87.95

TABLE IV
RESULTS ON THE PST900 DATASET.

Model Background Fire-Extinguisher Backpack Hand-Drill Survivor mIoU(%)

CCNet [76] 99.05 51.84 66.42 32.27 57.50 61.42
RTFNet-50 [49] 98.84 43.49 70.58 1.00 28.00 48.40

RTFNet-152 [49] 98.92 52.03 75.30 25.37 36.43 57.61
MFNet [47] 98.63 60.35 64.27 41.13 20.70 57.02
ERFNet [77] 98.73 58.79 68.08 52.76 34.38 62.55
MAVNet [78] 97.89 22.58 51.52 31.94 34.73 47.74

UNet [27] 97.95 42.96 52.89 38.27 31.64 52.74
Fast-SCNN [79] 98.51 35.48 64.60 15.50 21.68 47.15

ACNet [80] 99.25 51.46 83.19 59.95 65.19 71.81
PSTNet [48] 98.85 53.60 69.20 70.12 50.03 68.36
EGFNet [66] 99.20 74.30 83.00 71.20 64.60 78.50

UAVMNet(ours) 99.45 72.33 84.50 74.15 74.84 81.06

B. Comparison

UAVM dataset. Owing to the lack of prior work directly
applicable to the new UAV multispectral semantic segmen-
tation task, we first select the segmentation model relevant
to this task from various segmentation methods. We replicate
these methods via published code and default settings and
benchmark them on the UAVM dataset. These models include
semantic segmentation (SS) models that are based on RGB
images (UperNet [29], Deeplabv3plus [1], FCN [8], and PSP-
Net [28]), multispectral semantic segmentation (MSS) models
that are based on RGBT images (MFNet [47], RTFNet [49],
EGFNet [66], and PSTNet [48]), SS models that are based
on remote sensing images (UnetFormer [41], Clusterformer
[42]), HSIC models (HyLITE [73], FreeNet [61]), and our
proposed UAVMNet model. For the single-branch model, we
concatenate the RGB and multispectral images in the channel
direction and then feed them into the model for training. In

our UAVMNet model, we expect our model to make full
use of RGB and multispectral information to increase the
segmentation accuracy.

Table III shows the segmentation results on the UAVM
validation set. As shown in the table, our UAVMNet vastly out-
performs the other methods and achieves the highest segmen-
tation accuracy. For example, in the SS model, our ResNet-18-
based model achieves a 69.31% mIoU, which is comparable
in accuracy to those of the ResNet-50-based PSPNet [28] and
Deeplabv3plus [1] models. For the MSS model, ResNet-152-
based RTFNet achieves the highest mIoU of 67.32%, which
is still not as high as that of our ResNet-18-based model. Our
ResNet-50-based model achieves state-of-the-art results on the
UAVM dataset (mIoU of 79.50%, mPA of 85.86% and mF1
scores of 87.95%).

Fig. 9 shows the visualization of the segmentation results in
challenging scenarios. The plants shade each other in the bush
regions in the first and second rows, and the plant distribution
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Fig. 10. Qualitative results of Deeplabv3plus [1] on the UAVM dataset. We present one of the channels in the multispectral images. From left to right are
the original RGB images, the original multispectral images, the segmentation results trained with multispectral images, the segmentation results trained with
only RGB images, the segmentation results trained with direct fusion of RGB images and multispectral images, and the ground truth. We highlight the details
with orange boxes.

is more complex, making segmentation very difficult. For
example, FreeNet wrongly segmented the bush into Solidago
canadensis L. in the second row. Nevertheless, compared with
other models, our model can segment plant boundaries more
accurately and with higher precision. In the third row, the color
of the cypress tree changes due to shadows, resulting in less
accurate segmentation results. However, by fully fusing RGB
and multispectral information, our UAVMNet can still perform
relatively accurate inference in this case. Our model segmen-
tation result is also much better for nonplant categories, such
as the building in the last row of images. These results show
that our UAVMNet can effectively fuse RGB and multispectral
information to achieve more accurate segmentation results in
challenging scenarios.

PST900. To validate the effectiveness of our model, we
conducted experiments on the PST900 dataset, which is similar
in type to the UAVM dataset. The PST900 dataset contains
894 aligned pairs of RGB and thermal images. The dataset

has five categories of semantic annotations: background, fire
extinguisher, backpack, hand drill, and survivor.

Table IV presents the results of our model on the PST900
test set. The results demonstrate that our model performs ex-
cellently, achieving the highest overall segmentation accuracy
with an mIoU of 81.06. This indicates that our model can be
effectively applied to various types of datasets, showcasing its
robust generalization capability.

C. Ablation Analysis

We conduct ablation experiments on the UAVMNet model
on the validation set. The results are shown in Tables V to IX,
and the experimental results fully validate the effectiveness
of our core design module. Unless otherwise stated, all the
ablation experiments use ResNet-50 as the backbone.
RGB and multispectral information. We first investigate the
advantages of fusing RGB and multispectral information in
Table V. As shown in the table, for example, for the UperNet

This article has been accepted for publication in IEEE Transactions on Geoscience and Remote Sensing. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TGRS.2024.3457674

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2021 13

TABLE V
QUANTITATIVE RESULTS FROM RGB AND MULTISPECTRAL INFORMATION

FUSION ABLATION STUDIES.

Model Backbone Input Image mIoU(%)RGB Multi-spectrum

Deeplabv3plus [1] ResNet50
✓ 65.26

✓ 51.34
✓ ✓ 68.00

UperNet [29] ResNet50
✓ 64.59

✓ 50.75
✓ ✓ 67.25

[29] model trained with only RGB or multispectral images,
the mIoUs are 64.59% and 50.75%, respectively. Using the
simplest direct fusion strategy (RGB and multispectral images
are concatenated), the segmentation accuracy can also be
improved, with an mIoU of 67.25%. The experimental results
on the Deeplabv3plus [1] model are also similar.

Fig. 10 illustrates the qualitative tests performed on the
Deeplabv3plus [1] model. For the area of the bush in the first
and second rows, the RGB colors of the bush are similar to
those of the nearby weed, and segmentation using only the
RGB image results in error. However, weeds can be more
easily distinguished in multispectral images, so we can obtain
better segmentation results using only multispectral images.
In the first row, the RGB colors of Solidago canadensis L.
are similar to those of the bush, and the model mistakes
Solidago canadensis L. for the bush with only RGB image
segmentation. However, the model can clearly distinguish
Solidago canadensis L. from the bush with the help of mul-
tispectral images. In the third row, due to the interference
of tree branches, segmentation using the multispectral image
is able to obtain more accurate results than using the RGB
image. However, opposite results are obtained for the area
of pine in the fourth row and for the area of the bush and
Solidago canadensis L. in the fifth row, which may be because
the multispectral image contains some redundant bands that
affect the segmentation results. Another factor is that the RGB
channel can provide high-quality information, which is more
suitable for describing the contour details of pines. We obtain
better results when we use both RGB images and multispectral
images as inputs than when we use multispectral images or
RGB images separately. This experiment demonstrates the
benefits of using both RGB and multispectral information to
improve semantic segmentation.
Effectiveness of extra losses. To facilitate the optimiza-
tion of the whole network and enhance the functionality
of each component, UAVMNet introduces three additional
losses. According to Table VI, the use of the segmentation
header to compute the additional semantic losses l1, l2 is
crucial to improve the segmentation accuracy. In particular,
the joint use of l1 and l2 (+2.06% mIoU) strongly justifies
the introduction of additional auxiliary segmentation heads.
We evaluated the UAVM alignment loss lAli in Table VI.
Integrating our UAVM alignment loss lAli improves the mIoU
score by 3.35% with additional semantic losses l1 and l2. This
improvement may be because UAVM alignment loss converts
feature activation into probability distributions in the direction

TABLE VI
ABLATION STUDY OF EXTRA LOSSES FOR UAVMNET.

Extra Loss mIoU(%)
l1 l2 lAli

76.15

✓ 76.92(+0.77)

✓ 76.68(+0.53)

✓ ✓ 78.21(+2.06)

✓ ✓ ✓ 79.50(+3.35)

of spatial locations, thus focusing on the overall information
alignment of each spatial location. These spatial locations may
contain rich global contextual information. This experimental
result demonstrates the effectiveness of introducing a feature
alignment module.
The weight of UAVM alignment loss. When additional
semantic losses l1 and l2 are used, the weights of the alignment
losses are shown in Table VII. Theoretically, the weighted
vector should not be too large or too small. If a larger
weight is assigned, it may dominate the training process while
omitting the other losses. A model with a smaller weight may
not effectively utilize the high-quality spectral information
of the multispectral stream. For the weights of the feature
maps, a weight of [5, 5] is the most appropriate and can
significantly improve the performance (i.e., 78.21% → 79.50%
). Boundary gains occur when the weights are increased
beyond [5, 5]. Conversely, when the weights are too large,
the model accuracy decreases.

TABLE VII
ABLATION STUDY ON THE WEIGHT OF UAVM ALIGNMENT LOSS.

Loss Weight mIoU(%)

0, 0 78.21
1, 1 78.36
3, 3 79.37
5, 5 79.50

10, 10 79.44
15, 15 78.78
20, 20 78.44

Collaboration of CAF and BGM. We also tested the ef-
fectiveness of the proposed BGM and CAF modules. Add
represents the elementwise summation operation. Under the
same conditions, we evaluated the model’s performance in four
cases: Add+Add, CAF+Add, Add+BGM, and CAF+BGM.
The experimental results in Table VIII demonstrate the su-
periority of the CAF and BGM working together. The joint
use of CAF and BGM improves the mIoU score by 1.27%
(i.e., 78.23% → 79.50%).

Fig. 11 shows the results of the corresponding visualiza-
tions, where we visualize the features separately for different
categories. The first and fourth rows concern the visualization
of the pine tree category. When Add+Add is used, the first
row incorrectly identifies the pine tree as background. In the
fourth row, bushes are incorrectly identified as pines, and
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Fig. 11. Visualization results of the joint use of the CAF and BGM on the UAVM dataset. The first column indicates the RGB input images; the second and
third columns are qualitative results obtained via Add+Add; the fourth and fifth columns are qualitative results obtained via CAF+BGM; the sixth column
is the ground truth; the second and fourth columns are feature visualizations; and the third and fifth columns are the segmentation results. We highlight the
details with orange boxes for comparison.

TABLE VIII
ABLATION STUDY OF CAF AND BGM ON UAVMNET.

Fusion1 Fusion2 mIoU(%)ADD CAF ADD BGM

✓ ✓ 78.23

✓ ✓ 78.44(+0.21)

✓ ✓ 78.67(+0.44)

✓ ✓ 79.50(+1.27)

the orange box in the heatmap of the feature visualization
also shows the discrimination error. However, both errors are
avoided when the CAF and BGM are used jointly, suggesting
that the two attentional mechanisms adequately fuse RGB
and multispectral information. The second, third and fifth
rows show the visualization results for the bush, Solidago
canadensis L. and cypress categories, respectively. When both
the CAF and BGM are used, the activation values in the
heatmap are more concentrated. Thus, the boundaries are more
precise for complex vegetation contour segmentation, which

further demonstrates the effectiveness of our module in fusing
RGB and multispectral information.

Fig. 12. Results of the standard deviation experiments.

Attention downsampling. To increase the computational ef-
ficiency, we employ an attentional downsampling operation.
We conduct ablation experiments on the stride n. As shown
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TABLE IX
EFFECT OF DIFFERENT DOWNSAMPLING STRIDE n ON THE UAVM

DATASET.

Model Backbone Evaluation n = 1 n = 2 n = 3 n = 4

UAVMNet ResNet-18 mIoU(%) 69.23 69.31 64.53 62.49
FPS 45.14 52.13 52.50 52.76

UAVMNet ResNet-50 mIoU(%) 79.36 79.50 72.67 68.78
FPS 20.10 23.81 23.97 24.66

in Table IX, when the stride size n is increased, the model
accuracy is slightly improved, while the inference speed is also
increased. Specifically, the model performs optimally when the
stride n is 2. The results indicate that the maximum pooling
downsampling operation is very effective in sparsely extracting
spatial information. However, the model accuracy decreases
rapidly as the information becomes too sparse when the stride
n further increases. In this case, the inference speedup is not
significant because the feature map resolution is already low.

To ensure the stability and repeatability of the experiments,
we perform standard deviation experiments on the proposed
UAVMNet network based on this ablation experiment. We
maintain consistent experimental settings and retrain the net-
work five times. The specific experimental results are in Fig.
12. The height of each bar represents the mean and the short
line represents the standard deviation. As shown in Fig. 12, the
maximum variance is only 0.59, indicating that our experiment
exhibits high stability and repeatability.

VI. CONCLUSION

This paper presents a preliminary study of the UAV mul-
tispectral semantic segmentation problem. To monitor the
spread of the invasive species Solidago canadensis L., we
present the UAVM dataset, a collection of RGB and multi-
spectral image pairs containing 3260 aligned and annotated
pairs. We conduct comprehensive benchmark experiments on
the UAVM dataset and propose a simple yet effective baseline
framework (UAVMNet). RGB and multispectral information
each have their own advantages and disadvantages. To ef-
fectively fuse RGB and multispectral information, we first
employ a feature alignment module to ensure the coherence
of features. We subsequently utilize the UAVMFuse module to
construct a comprehensive feature representation and decode
it, thereby maximizing the complementary nature of the cross-
spectral data. Through this design, UAVMNet achieves state-
of-the-art performance on the UAVM dataset. In the future, we
plan to extend the UAVM dataset with richer forms of data
annotation.

REFERENCES

[1] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and H. Adam, “Encoder-
decoder with atrous separable convolution for semantic image segmen-
tation,” in Proceedings of the European conference on computer vision
(ECCV), 2018, pp. 801–818.

[2] R. Sheikh, A. Milioto, P. Lottes, C. Stachniss, M. Bennewitz, and
T. Schultz, “Gradient and log-based active learning for semantic seg-
mentation of crop and weed for agricultural robots,” in 2020 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2020, pp. 1350–1356.

[3] H. Bi, L. Xu, X. Cao, Y. Xue, and Z. Xu, “Polarimetric sar image
semantic segmentation with 3d discrete wavelet transform and markov
random field,” IEEE transactions on image processing, vol. 29, pp.
6601–6614, 2020.

[4] L. P. Osco, J. M. Junior, A. P. M. Ramos, L. A. de Castro Jorge,
S. N. Fatholahi, J. de Andrade Silva, E. T. Matsubara, H. Pistori,
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