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Abstract— Landslide is a common geological disaster, and
rapid landslide extraction using high-resolution remote sensing
imagery (RSI) is of great significance for emergency rescue
and damage assessment. In RSI, landslides often have irreg-
ular shapes, large-scale variations, and are easily affected by
environmental factors. Existing deep learning methods have
limited ability in extracting multiscale features, integrating these
features effectively, and adapting to complex environments,
resulting in models that are not optimized for robustness.
To overcome these challenges, this study proposes a spatial
context-guided calibration network (SCGC-Net) for multisource
remote sensing data. SCGC-Net introduces a novel combination
of hybrid multiscale feature extraction, context-aware modulation
of landslide characteristics, and a progressive feature calibration
fusion strategy, enabling efficient feature extraction, accurate
feature integration, and enhanced cross-domain generalization
when working with multisource remote sensing data. SCGC-Net
was tested on several datasets representing diverse geographical
regions and imaging platforms, including the CAS Landslide
Dataset (CLD), HR-GLDD, Bijie, and global very-high-resolution
landslide mapping (GVLM). Experimental results indicate that
SCGC-Net outperforms existing methods across all evaluation
metrics and exhibits superior generalization performance in
domain adaptation experiments.

Index Terms— Deep learning, high-resolution remote sensing
imagery (RSI), landslide detection.

I. INTRODUCTION

LANDSLIDES represent a frequent and highly destructive
natural hazard, posing significant risks to human life,

property, and infrastructure. With the intensification of global
climate change and the accelerated process of urbanization,
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both the frequency and severity of landslide occurrences are
increasing [1]. Consequently, the timely and precise detection
of landslide-affected areas is critical for emergency response,
disaster assessment, and postdisaster recovery.

Traditional methods of landslide detection primarily rely
on field surveys and visual interpretation; however, these
approaches are often time-intensive and laborious, limiting
their effectiveness in providing rapid large-scale response.
As Earth observation technologies have advanced, landslide
detection using high-resolution remote sensing imagery (RSI)
has emerged as a prominent area of research [2], [3], [4]. Opti-
cal remote sensing data, particularly high-resolution imagery
from satellite and airborne platforms, offer an ideal source for
detecting landslides. These data not only provide high spatial
and temporal resolution but also rich spectral information,
which aids in identifying the subtle features of landslide
events [5].

In recent years, deep learning techniques have demonstrated
significant advantages in the rapid detection of landslide disas-
ters due to their high degree of automation, advanced feature
extraction capabilities, and end-to-end learning processes [6].
These models have shown superior performance, particularly
when applied to large-scale, high-resolution RSI, outperform-
ing traditional methods [7]. Multiple research groups have
recently developed high-quality landslide detection datasets,
including high-resolution satellite-based datasets [4], [8], [9]
and high-resolution aerial imagery datasets [10]. Xu et al.
[11] integrated satellite and unmanned aerial vehicle (UAV)
data to create a large-scale multisensor landslide dataset.
These datasets encompass a wide range of geographic
regions, landslide-triggering mechanisms, and imaging plat-
forms, advancing the development of landslide detection
algorithms.

Despite the growing availability of data resources and
improved algorithms, landslide detection still faces significant
challenges. One key issue is the robustness of models when
processing images from diverse remote sensing platforms [11].
This issue becomes particularly pronounced when conducting
large-scale assessments that require the integration of mul-
tisource remote sensing data. Therefore, the development of
a robust landslide detection method capable of effectively
processing multisource remote sensing data and exhibiting
strong generalization capabilities is a pressing need in this
field of research.

Landslides exhibit significant scale variance and irregu-
lar morphological characteristics in high-resolution remote
sensing images, particularly in multiplatform datasets. These
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characteristics make it essential to simultaneously capture both
fine-grained local features and global contextual relationships
for accurate segmentation. At present, convolutional neural
network (CNN)-based semantic segmentation models, such
as fully convolutional network (FCN) [12] and U-Net [13],
are widely applied to landslide detection tasks [7], [14],
[15], [16]. However, the limited receptive field of CNNs
constrains their ability to capture long-range dependencies.
To address this limitation, researchers have introduced the
self-attention mechanism from Transformer models [17], [18],
which enhances global feature extraction but comes with high
computational overhead and reduced effectiveness in capturing
local details. The recently proposed Mamba state space model
(SSM) [19] offers a novel approach to overcoming these
limitations. Mamba effectively extracts global features while
maintaining linear time complexity and has demonstrated
advantages across several computer vision tasks [20], [21],
[22]. However, its potential for landslide segmentation in
remote sensing images remains underexplored. A key research
direction lies in integrating Mamba’s global modeling capa-
bilities with improved local feature extraction to develop a
model architecture capable of addressing the multiscale nature
of landslides.

High-resolution remote sensing-based landslide detection
faces not only the challenge of multiscale feature extraction
but also the inherent complexity of landslides. Landslides
appear with diverse geographical backgrounds and occlusion
factors in RSI, resulting in complex or blurred bound-
aries. Various multiscale feature fusion strategies have been
proposed, including skip connections [23], [24], attention
mechanisms [25], [26], and image pyramid strategies [27],
[28]. Despite their progress in managing multiscale features
and complex backgrounds, these methods have limitations as
follows.

1) Skip connections can introduce shallow-layer noise,
leading to semantic inconsistencies between shallow
and deep features, which compromise information
integration.

2) Current attention mechanisms and pyramid strategies do
not fully resolve spatial misalignment between feature
maps, which may result in boundary detail loss and
difficulty in aggregating small-scale landslide features.

3) Existing methods struggle to adapt to variations in geo-
graphic environments and imaging conditions, restricting
their domain generalization capabilities.

An effective fusion strategy should be capable of address-
ing multiscale features, correcting spatial misalignment, and
adapting to diverse geographic environments and imaging
conditions to improve the accuracy and robustness of landslide
detection in complex scenarios.

To address these key challenges, this study introduces
the spatial context-guided calibration Network (SCGC-
Net). SCGC-Net is designed to improve multiscale feature
extraction, feature fusion, and generalization across multi-
source data. Its core architecture consists of three innovative
modules as follows.

1) Hybrid Multiscale Information Extraction (HMIE): This
module combines Mamba and CNN structures to form

a hybrid feature extractor. By integrating Mamba with
dilated convolution, it achieves efficient long-range
dependency modeling through Mamba, while the dilated
convolution branch enhances local spatial feature extrac-
tion. This design improves the model’s ability to capture
multiscale landslide features while maintaining efficient
time complexity.

2) Context-Aware Modulator (CAM): A multilevel context-
aware mechanism, coupled with a gating strategy,
dynamically fuses multiscale contextual information
across spatial and channel dimensions, enhancing
the model’s generalization performance across various
platforms and geographic regions.

3) Progressive Spatial-Context Calibration Strategy
(PSCCS): By learning pixel-level calibration offsets,
this module achieves precise calibration and fusion
of feature maps at different resolutions, effectively
mitigating information loss during downsampling and
improving the accuracy of boundary segmentation and
small-scale landslide detection.

This study comprehensively evaluated SCGC-Net on three
representative datasets: the CAS Landslide Dataset (CLD)
[11], HR-GLDD [8], and Bijie dataset [4]. SCGC-Net
achieved the best performance across nearly all accuracy
metrics. On the CLD, SCGC-Net achieved an intersection
over union (IoU) of 87.85%, surpassing the second-best
method by 2.30%. In the HR-GLDD dataset, SCGC-Net
exceeded the second-best method by 1.88% in recall and
2.61% in IoU. For the Bijie dataset, SCGC-Net achieved an
F1 score of 84.75% and an IoU of 73.53%, representing
improvements of 2.08% and 3.06% over the best compar-
ison method. In addition, in the generalization experiments
conducted on the global very-high-resolution landslide map-
ping (GVLM) dataset [9], SCGC-Net exhibited exceptional
domain adaptability, maintaining top performance across dif-
ferent geographical environments and imaging conditions.
These results robustly demonstrate SCGC-Net’s effectiveness
and generalization ability in handling multisource, multiscale
landslide detection tasks, offering valuable technical support
for improving disaster response and developing a universal
landslide detection system.

II. RELATED WORK

A. Feature Extraction Techniques for Landslide Segmentation

Early studies on feature extraction techniques for landslide
segmentation predominantly utilized CNN-based models such
as FCN [12] and U-Net [13]. Liu et al. [29] enhanced
the extraction of multiscale landslide features by introducing
channel attention mechanisms and atrous spatial pyramid
pooling (ASPP). Li et al. [30] combined faster region-based
CNN (Faster-RCNN) [31] with edge detection algorithms to
improve U-Net’s capability in extracting landslide edge fea-
tures. HADeenNet [25] boosted the performance of small-scale
landslide segmentation by parallel processing of input images
at different resolutions. However, the local receptive field
inherent in CNNs limits their capacity to capture long-range
dependencies, which are critical for modeling global con-
textual relationships in landslide detection. To address this
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issue, researchers have started exploring alternative methods.
Lu et al. [32] proposed a multitask learning approach that
integrates object classification with semantic segmentation
networks to simultaneously optimize global and local feature
extraction. To overcome CNN’s limitations, Transformer-
based architectures have been introduced. Fu et al. [33]
and Ghorbanzadeh et al. [34] implemented Swin Trans-
former [35] and SegFormer [36] models, which utilize
hierarchical self-attention mechanisms to enhance the extrac-
tion of complex features in landslide segmentation. In addition,
Lv et al. [17] and Huang et al. [18] integrated Trans-
former models with morphological edge extraction techniques,
thereby improving the model’s ability to perceive landslide
shapes and boundaries.

Given the complementary strengths of CNNs and Trans-
formers in capturing local and global features, respectively,
researchers have begun developing hybrid structures. For
instance, Li et al. [37] fused CNN-based feature extraction
branches with Transformer-based global feature extraction
branches, while Wu et al. [38] combined shallow CNN
layers with deeper Swin Transformer layers, both of which
improved the extraction of multiscale landslide features.
However, these hybrid approaches still face key challenges:
Transformer models suffer from quadratic growth in compu-
tational complexity with increasing sequence length, which
leads to inefficiencies when processing high-resolution remote
sensing images. While CNNs excel at capturing local fea-
tures, they are less effective at modeling global context.
Recently, Gu and Dao [19] proposed the Mamba model, which
addresses the efficiency concerns of Transformers by capturing
long-range dependencies with linear complexity. Nonetheless,
the capability of Mamba to maintain spatial structure and
extract local features remains underexplored. This inspires
further research into combining Mamba’s global modeling
efficiency with the spatial detail extraction capabilities of
CNNs to develop a solution that balances computational
efficiency with comprehensive feature extraction for landslide
segmentation.

B. Feature Fusion Techniques for Landslide Segmentation

Feature fusion techniques are crucial in landslide seg-
mentation tasks, as effective fusion strategies help to better
integrate semantic information, thus improving segmentation
accuracy. Many researchers have applied U-Net’s [13] skip
connection mechanism to landslide detection, integrating deep
and shallow features to mitigate the information loss caused by
FCN’s direct downsampling and upsampling operations [30],
[39], [40]. However, simple feature concatenation can lead to
inconsistencies between feature scales, which can negatively
impact the overall fusion effectiveness. To better accommodate
the multiscale variability of landslide features, researchers
have developed various multiscale feature fusion strategies.
AMU-Net [41] introduced multiscale modules within skip
connections, incorporating additional contextual information
when fusing deep and shallow features. Zheng et al. [27]
employed the DeepLabV3+ [42] model, which fuses mul-
tiscale contextual information through ASPP, using parallel
dilated convolutions with varying dilation rates. GMNet [28]

combines the concepts of feature pyramid networks (FPNs)
[43] and pyramid pooling modules (PPMs) [44], proposing
a multiscale feature fusion module. By performing top-down
and bottom-up feature fusion, the model enhances its ability
to detect multiscale landslides. Wu et al. [38] proposed a
multibranch feature fusion approach that integrates encoder
features using depthwise separable convolution, dilated con-
volution, and 1 × 1 convolution, followed by element-wise
addition for fusion. This method aims to simultaneously
capture spatial, spectral, and multiscale features. While these
multiscale fusion techniques have improved model perfor-
mance, they often overlook the interrelationships between
features at different scales, potentially leading to feature
redundancy.

To address the problem of information redundancy in
multiscale feature fusion and to strengthen the representa-
tion of key features, researchers have introduced attention
mechanisms into the feature fusion process. HADeenNet [25]
adopted a multiscale feature fusion strategy combined with
attention mechanisms, enabling adaptive weighting of features
at different scales. DPANet [45] combined pyramid pooling
feature fusion with dual attention mechanisms in both spatial
and channel dimensions, enhancing multiscale feature rep-
resentation while capturing global context and local details.
MFFSP [37] incorporated self-attention for global information
and convolution for local information into the multibranch
feature fusion process, enhancing the global context under-
standing in landslide images. However, the high computational
complexity of self-attention mechanisms may limit their appli-
cability in high-resolution remote sensing images. Despite
the progress made by these feature fusion techniques, they
continue to face the challenge of spatial feature misalignment.
Simply fusing features at different scales without considering
potential spatial inconsistencies can lead to the accumulation
of such inconsistencies throughout the network, resulting in
blurred boundary features and reduced ability to effectively
detect small-scale landslides, significantly impacting detection
accuracy. To address this issue, this study proposes PSCCS.
By introducing a calibration unit (CU) between features of
different scales, PSCCS enables adaptive feature adjustment
and fusion, effectively alleviating the problem of feature
misalignment.

III. PROPOSED METHOD

This section presents the overall architecture and work-
flow of the proposed SCGC-Net. The overall structure of
SCGC-Net is illustrated in Fig. 1. During the feature extraction
phase, the model utilizes the HMIE structure, developed in
this study, which integrates the strengths of both CNN and
Mamba to effectively extract information from landslides of
varying scales and forms. The CAM module, employing
a modulation mechanism, is designed to adaptively refine
multiscale semantic information, serving as a replacement for
self-attention to enhance both the accuracy and generalization
of semantic recognition. In the final multiscale feature fusion
stage, the PSCCS module precisely calibrates and fuses feature
maps at different resolutions, leading to the final output.
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Fig. 1. Architecture illustration of SCGC-Net. The network integrates HMIE, CAM, and PSCCS for effective landslide detection. (a) Detailed structure of
CNN stage in feature extraction, showing the Stem and ResBlock modules. (b) Architecture of SCFE in Mamba stage for global–local feature learning.

A. Mamba Preliminaries

Mamba is an advanced sequence modeling technique based
on SSM, designed to effectively capture long-range dependen-
cies and adapt to complex spatio-temporal dynamics. SSM
originates from control theory and maps an input sequence
x(t) ∈ RL to an output sequence y(t) ∈ RL through a latent
state h(t) ∈ RN . The fundamental form of the SSM is gov-
erned by the following continuous-time ordinary differential
equation:

h′(t) = Ah(t) + Bx(t)

y(t) = Ch(t). (1)

Here, A ∈ RN×N is the state transition matrix, which
controls the temporal evolution of the hidden state; and
B ∈ RN×1 and C ∈ R1×N represent the input and output
projection matrices, respectively. To integrate SSM into deep
learning, it is necessary to discretize the continuous-time
model. Mamba achieves this using the zero-order hold (ZOH)

method, introducing a time scale parameter 1. The discretized
SSM is expressed as

ht = Āht−1 + B̄xt

yt = C̄ht (2)

where

Ā = e1A, B̄ = (1A)−1(e1A
− I)1B, and C̄ = C.

Mamba’s unique feature is its selective scanning mechanism
(S6), which dynamically adjusts the parameters B, C, and 1

based on the input data. This allows the model to adapt to
varying input characteristics and contexts. Specifically, for an
input x ∈ RB×L×D , the parameters B, C ∈ RB×L×N and 1 ∈

RB×L×D are dynamically modified, where B is the batch size,
L is the sequence length, D is the feature dimension, and N
is the hidden state size.
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B. Hybrid Multiscale Information Extraction

We propose a novel feature extraction method, HMIE,
which effectively combines residual convolutional networks
with an improved Mamba structure for comprehensive and
efficient landslide image feature extraction. This design
captures both local details and long-range dependencies, sig-
nificantly enhancing the accuracy and robustness of landslide
detection.

HMIE is designed to take advantage of the complemen-
tary strengths of CNN and Mamba at different levels of
the network. Specifically, HMIE includes the following key
components.

1) CNN Residual Blocks (RBs): Used in the early stages to
extract local features.

2) Spatial Context Dual-Branch Module: Consists of a
context branch based on the improved Mamba structure
and a spatial branch using dilated convolution.

This design enables efficient extraction of local features in the
shallow layers while capturing global contextual information
in the deeper layers, allowing for multiscale, comprehensive
extraction of landslide characteristics.

For an input image of size H × W × C , the image is
first downsampled using a stem block composed of CNN
convolutional layers, generating a 2-D feature map with a
resolution of (H/4) × (W/4). Next, we construct the CNN
RBs using an improved ResNet50 [46] bottleneck architecture
with the GELU [47] activation function, as outlined below

z1 = GELU(BN(Conv1×1(x))) (3)
z2 = GELU(BN(Conv3×3(z1))) (4)
z3 = BN(Conv1×1(z2)) (5)

output = GELU(z3 + x). (6)

Here, GELU refers to the Gaussian error linear unit acti-
vation function, and BN stands for batch normalization. This
architecture effectively extracts local spatial features, estab-
lishing a strong foundation for subsequent global feature
extraction stages.

To comprehensively capture the multiscale features of land-
slide images, we designed a spatial-context feature extractor
(SCFE), as shown in Fig. 1(b). This module consists of
two branches: a context branch to capture global context
information and a spatial branch to capture local spatial
features.

1) Context Branch: Inspired by the vanilla visual state
space (VSS) architecture [20] and vision Mamba (Vim) [48],
the context branch features a dual-path structure to efficiently
capture long-range dependencies in landslide images. Both
paths start from the same input feature x , but each undergoes
different processing. The first path is simple, consisting of a
linear transformation layer followed by an activation function,
and primarily retains and slightly transforms the original
feature information

Path1(x) = σ(Linear(x)). (7)

The second path, which uses the Mamba structure,
is designed to model more complex long-range contextual

Fig. 2. Key components of SCFE module in SCGC-Net. (a) Architecture of
SS2D Block. (b) Illustration of SS2D. (c) Architecture of MSLE module.

information

Path2(x) = Linear(LN(SS2D(σ (DWConv(Linear(x)))))).

(8)

Here, σ denotes the SiLU [49] activation function, LN refers
to layer normalization, and DWConv represents depthwise
separable convolution. The outputs of the two paths are
combined using elementwise multiplication to produce the
global contextual feature Fglobal. This architecture facilitates
the preservation of original feature information while enabling
efficient extraction of higher level feature representations,
thus enhancing the model’s perception and understanding of
landslide features.

The core of the context branch is the 2-D-selective-scan
(SS2D) module, whose processing flow is illustrated in
Fig. 2(a). The SS2D process is defined as follows:

SS2D(X) = W2 · LN(Scan(σ (DWConv(W1 · X)))). (9)

Here, X ∈ RB×L×D represents the input feature, where B is
the batch size, L is the sequence length, and D is the feature
dimension. The matrices W1 and W2 are linear transformation
matrices for the input and output, respectively.

The Scan operation extends the traditional bidirectional scan
in Vim to a four-directional cross-scan strategy, as shown in
Fig. 2(b). This includes both horizontal and vertical bidirec-
tional scans. Each scan path performs state-space modeling,
and the results of the four scan paths are merged using
S6 and scan merge operations to produce the final output
features

Scan(X) =

4∑
d=1

Yd . (10)

This design enables the context Mamba branch to capture
long-range dependencies from multiple directions, effectively
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integrating information from various spatial locations and
improving the model’s ability to perceive global context.

2) Spatial Branch: While the SSM module provides global
receptive field modeling, its serial processing may result in
the loss of local detail features, which can lead to insufficient
representation of regions and local details. This is especially
important for the precise modeling of landslide features.
To address this, the spatial branch introduces a multiscale local
enhancement (MSLE) module to compensate for the poten-
tial omission of local detail features by the context branch.
The MSLE consists of three dilated convolution layers with
different dilation rates, as illustrated in Fig. 2(c). The feature
maps from these layers, each covering a distinct local receptive
field, are concatenated. A 1 × 1 convolution is then applied to
reduce the dimensionality. Finally, the downsampled features
are connected with the input features via a residual connection,
allowing the output feature map to integrate spatial features
from three different local receptive fields. This enhances the
model’s ability to capture fine-grained local features. The
dilated convolution is expressed as follows:

Z(i, j) =

k−1∑
m=0

k−1∑
n=0

W (m, n) · X (i + m · d, j + n · d) (11)

where d is the dilation rate, and W is the convolution kernel.
The MSLE operation is defined as

MSLE(X) = C(Da(X), Db(X), Dc(X)) + X (12)

where Da , Db, and Dc represent dilated convolution operations
with different dilation rates, and C represents the feature
concatenation and compression operation.

In conclusion, HMIE successfully integrates CNN and
Mamba structures, combining both local feature extraction
and global context modeling. The context branch, with its
improved SS2D module, captures long-range dependencies
through a four-directional cross-scanning approach. Mean-
while, the MSLE module enhances local detail extraction
via multiscale dilated convolutions, compensating for critical
local information. This integrated design enables HMIE to
efficiently and comprehensively capture the multiscale features
and complex spatial relationships in landslide images, signif-
icantly improving detection performance across a variety of
challenging scenarios.

C. Context-Aware Modulator

Although the HMIE module effectively extracts multiscale
information about landslides, there are still issues of insuf-
ficient semantic refinement and semantic redundancy during
feature recovery. To address these problems, we propose the
CAM Block, which aims to refine contextual semantic infor-
mation at different scales and aggregate the most instructive
context for classification. Fig. 3 shows the overall architecture
of CAM.

Traditional methods typically treat contextual information
from all scales as equally important and aggregate context
within a predefined range. Since large-scale landslides contain
more landslide pixels, small-scale landslides are smoothed into

Fig. 3. Context-aware modulator.

other land features during the semantic information aggrega-
tion process, resulting in a semantic bias toward large-scale
landslide areas and causing context mismatches. To overcome
these limitations, CAM introduces the concept of focal mod-
ulation based on the work by Yang et al. [50], which enables
adaptive focusing and enhancement of contextual information
at different scales. First, the feature X from the backbone
network is projected via a linear transformation to enhance
the discriminative power of the input features

Z0
= f Z (X) ∈ RH×W×C (13)

where f Z is the linear projection function, and H , W , and
C represent the height, width, and channel dimensions of the
feature map, respectively. The projected feature Z0 is then
passed through N depthwise convolution layers to extract
contextual information at different granularity levels

Zn
=

(
f n
a

(
Zn−1)

= SiLU
(
DWConv

(
Zn−1)))

∈ RH×W×C .

(14)

Here, f n
a denotes the contextual function at layer n.

We use the SiLU activation function because it outperformed
ReLU [51] and other activation functions in our experiments,
particularly when handling complex nonlinear relationships.
The convolution kernel size k is initialized to 5 in the first
layer and increases by 2 in each subsequent layer. This design
ensures that kn < kn+1, forming a hierarchical receptive field
structure. The final receptive field size is

r = 1 +

n∑
i=1

(ki
− 1). (15)

This adaptive receptive field design enables the module to
capture multiscale contextual information, ranging from local
to global, which is particularly advantageous for detecting
landslide regions of varying sizes. To focus on the con-
textual information most important for pixel-wise semantic
classification, we introduce a gated aggregation mechanism,
allowing selective, context-aware features to enter subsequent
layers. Specifically, given N contextual feature maps from
the previous step Z = Zn , the final output Zout is obtained
by performing element-wise multiplication, which results in a
weighted sum, similar to the self-attention mechanism

Zout
=

N∑
i=1

Gi
⊙ Zi

∈ RH×W×C (16)

where Gi
∈ RH×W×1 represents the gating weights, and ⊙

denotes element-wise multiplication. This mechanism allows
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Fig. 4. (a) Illustration of CU. (b) Structure of RB in CU.

the model to dynamically adjust the importance of contex-
tual representations at different scales, particularly aiding in
distinguishing large and small landslides and addressing edge
regions. To further enhance feature representation, channel-
wise feature fusion is performed after spatial aggregation

Zfinal
= f h(Zout) (17)

where f h is the channel fusion function, implemented as a
linear transformation. Through this design, CAM can adap-
tively focus and enhance contextual information at different
scales, effectively handling multiscale landslide features and
improving the model’s generalization ability across different
types of remote sensing images.

D. Progressive Calibration Strategy

In multiscale feature fusion for landslide detection, spatial
inconsistencies and semantic disparities between features of
different resolutions pose a common challenge. In structures
like skip connections or feature pyramids, there are significant
differences in both spatial and semantic properties across
various feature levels. Directly fusing these features may lead
to information loss and degraded segmentation performance of
landslide characteristics [52]. To address this issue while max-
imizing the semantic value of multiscale features, we propose
the PSCCS.

PSCCS aims to optimize feature fusion across multiple
scales by progressively calibrating adjacent features, ensuring
effective long-range feature alignment, and simultaneously
integrating multiscale information to enhance feature repre-
sentations. Unlike traditional methods such as FPN and PPM,
PSCCS employs a bidirectional calibration mechanism. This
mechanism not only leverages high-level semantic information
to guide lower level features but also refines high-level features
using the detailed information from lower level features. This
bidirectional interaction is reasonably effective for addressing
the complex terrain and texture details often encountered
in landslide detection. The core of PSCCS consists of a
series of CUs, as shown in Fig. 4, each responsible for
calibrating features across two adjacent scales. Each CU takes
adjacent multiscale features from HMIE as inputs, denoted
as Fi , Fi+1 ∈ RH×W×C , where Fi represents the upsampled

low-resolution feature, and Fi+1 is the feature from the down-
sampling stage. The calibration process leverages residual
learning to enhance semantic flow estimation.

The CU first concatenates Fi and Fi+1 along the channel
dimension to capture cross-scale feature relationships. Next,
the concatenated features are processed through a dual-branch
architecture to learn calibration offsets. One branch learns the
offsets from high to low resolution (downsampling branch),
while the other learns from low to high resolution (upsampling
branch). To generate more accurate semantic flow for feature
calibration, we use RB in a dual-branch architecture, which
consists of two 3 × 3 convolutional layers with batch normal-
ization and SiLU activation, connected by a skip connection
to maintain feature propagation [see Fig. 4(b)]. Compared
to direct convolution operations, the residual structure helps
better capture semantic correspondences between features

1down = RBdown([Fi , Fi+1])

1up = RBup([Fi , Fi+1]) (18)

where [·, ·] denotes channel-wise concatenation, and 1down
and 1up represent the learned calibration offsets. Based on
these learned offsets, the CU performs bidirectional feature
calibration

Ĉ i = f (Fi+1, 1up) + Fi

Ĉ i+1 = f (Fi+1, 1down) + Fi+1 (19)

where f (·) implements feature calibration through bilinear
sampling, and the residual connections preserve original fea-
ture characteristics. In the end, the calibrated features Ĉ i and
Ĉ i+1 from both branches are then fused through element-wise
addition to aggregate contextual information.

PSCCS starts at the deepest feature level and progressively
calibrates adjacent features upward

C1 = CU1(F1, F2)

C2 = CU2(C1, F3)

...

Cn−1 = CUn−1(Cn−2, Fn). (20)

The calibrated features are aggregated through simple
addition. This progressive calibration strategy effectively
resolves spatial misalignment issues between long-range fea-
tures, enabling SCGC-Net to handle multiscale features more
accurately. This approach enhances the model’s performance
in landslide detection, particularly for small-scale landslide
regions and boundaries, which are highly sensitive to fine
spatial details.

IV. EXPERIMENTS

A. Experimental Configuration and Evaluation Metrics

1) Datasets: This study utilizes four open-source optical
remote sensing landslide datasets with pixel-level annota-
tions. These datasets exhibit considerable diversity in terms
of geographic environments, landslide types, and imaging
conditions, providing a robust basis for a thorough evalua-
tion of the proposed method’s performance. Fig. 5 illustrates
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Fig. 5. Landslide datasets. (a) Example of satellite imagery from the CLD.
(b) Example of UAV imagery from the CLD. (c) Example from the
HR-GLDD dataset. (d) Example from the Bijie dataset. (e) Example from the
GVLM dataset. Red boxes indicate occluded areas, and blue boxes indicate
confounding factors.

typical examples of landslide images from these datasets,
reflecting the complexity and challenges inherent in landslide
detection. Among them, the CLD [11] is a large-scale, multi-
sensor dataset that includes 20 865 images from nine regions,
with spatial resolutions ranging from 5 to 0.2 m. The HR-
GLDD dataset [8] focuses on rainfall- and earthquake-induced
landslides in 10 geographic regions worldwide, consisting of
1758 image tiles from PlanetScope satellites with a resolution
of 3 m. The Bijie dataset [4] specializes in landslides in the
Bijie region of Guizhou, China, comprising 770 before-and-
after images from TripleSat satellites at a resolution of 0.8 m.
The GVLM dataset [9], an independent generalization test
set, consists of bi-temporal images from 17 distinct landslide
locations captured by Google Earth, with a high resolution of
0.59 m, providing a novel and challenging test environment.

Together, these datasets reveal the primary challenges in
landslide detection: differences in spatial resolution, the diver-
sity of geographic environments, and various interference
factors. In Fig. 5, red boxes highlight occlusion factors, such
as clouds and shadows, which directly impact the visibility of
landslide areas. Blue boxes indicate confusion factors, such as
buildings, roads, and rivers, which visually resemble landslides
and may lead to false detections. These factors not only
reduce the visibility and boundary clarity of landslides but also
significantly complicate detection and accurate identification.
To fully assess SCGC-Net’s performance, we divided the CLD,
HR-GLDD, and Bijie datasets into training, validation, and test
sets with a 5:3:2 ratio, merging them during training to form
a comprehensive training set comprising 11 691/6949/4749
images for training, validation, and testing, respectively. The
GVLM dataset was reserved for evaluating the model’s gen-
eralization capability, offering a new and challenging test
environment. This diverse dataset configuration ensures the
reliability and generalizability of the experimental results,
providing a solid foundation for evaluating the real-world

applicability of SCGC-Net. By testing the model’s perfor-
mance across varied conditions, we can thoroughly assess the
proposed method’s effectiveness and adaptability.

2) Evaluation Metrics: To thoroughly evaluate the per-
formance of SCGC-Net and other comparative methods in
landslide detection, this study employs five widely recognized
quantitative metrics: precision, recall, F1 score, IoU, and
overall accuracy (OA). These metrics are also commonly used
in other landslide detection research [28], [53]. Each of these
metrics captures a different aspect of model performance and
is particularly suited to tasks like landslide detection, which
often involve class imbalance and demand precise boundary
localization. The metrics are defined as follows:

Precision =
TP

TP + FP
(21)

Recall =
TP

TP + FN
(22)

F1 =
2 × Precision × Recall

Precision + Recall
(23)

IoU =
TP

TP + TN + FP
(24)

OA =
TP + TN

TP + TN + FN + FP
. (25)

In these equations, true positive (TP) refers to landslide
pixels correctly identified by the model, false positive (FP)
refers to nonlandslide pixels incorrectly classified as landslide
pixels, true negative (TN) represents correctly identified non-
landslide pixels, and false negative (FN) represents landslide
pixels that were missed. Precision reflects the model’s ability
to minimize FPs, while recall indicates its ability to minimize
FNs. The F1 score balances precision and recall, providing
a holistic measure of model performance that is useful for
comparing models. IoU measures the overlap between the
predicted output and the ground truth (GT), serving as a key
indicator of segmentation accuracy. OA assesses the model’s
performance across the entire dataset.

3) Loss Function: To enhance the accuracy of binary
semantic segmentation for landslides, particularly in address-
ing class imbalance, scale variation, and blurred boundaries,
this study proposes a composite loss function that integrates
dynamic weighted cross-entropy loss, Focal Loss, and Lovász-
Softmax loss. This combination effectively tackles issues
related to class imbalance, difficult sample recognition, and
boundary precision. The overall loss function is formulated as
follows:

L = αLDWCE(y, ŷ) + βLFocal(y, ŷ) + γ LLovász(y, ŷ). (26)

Here, LDWCE represents the dynamic weighted cross-entropy
loss, which adjusts the weights dynamically to account for
varying class distributions across different images

LDWCE = −
1
N

N∑
i=1

[w1(x) · yi log(ŷi ) + w0(x)

· (1 − yi ) log(1 − ŷi )] (27)

where N is the total number of pixels, and w1(x) and w0(x)

are dynamic weights for the landslide and nonlandslide classes,
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respectively, based on the input image x . This adaptive mech-
anism improves the model’s ability to handle diverse landslide
distributions.

LFocal, or Focal Loss, helps address class imbalance and
enhances the detection of hard-to-recognize samples by
modulating the weights of different pixels

LFocal(y, ŷ) = −
1
N

N∑
i=1

[
yi (1 − ŷi )

γ log(ŷi )

+ (1 − yi )ŷγ
i log(1 − ŷi )

]
. (28)

In this equation, γ is the modulation factor, which is set
to 2 in this study. Focal Loss improves the detection of
small-scale landslides and areas that are difficult to identify.

LLovász, or Lovász-Softmax loss, is defined as

LLovász =
1

|C |

∑
c∈C

1Jc(m(c)). (29)

The Lovász-Softmax loss is designed to directly optimize
the IoU metric, which enhances the overall quality of the
segmentation results. In this equation, C is the set of classes,
1Jc is the Lovász extension, and m(c) is the error vector for
class c. The coefficients α, β, and γ are hyperparameters used
to balance the relative contributions of each loss component.

4) Implementation Details: All experiments in this study
were conducted on an Ubuntu 20.04 system, utilizing an
NVIDIA Tesla A800 GPU (80 GB) for model training and
evaluation. The experiments were implemented using the
PyTorch deep learning framework [54]. To maintain consis-
tency across experiments, all input images were resized to
512 × 512 pixels, with a batch size of 16 for training.
Data augmentation techniques included random scale scal-
ing, random cropping (to maintain the 512 × 512 size),
horizontal flipping with a 50% probability, and photometric
distortion. For the GVLM dataset, images were first split
into smaller tiles, and those without landslides were removed
in the generalization experiments to reduce class imbalance.
The Adam optimizer was used with parameters β1 = 0.9,
β2 = 0.999, an initial learning rate of 2e−4, and a weight
decay of 0.0001. A cosine annealing schedule was employed
to adjust the learning rate. During training, the composite
loss function, consisting of LDWCE, LFocal, and LLovász [as
shown in (26)], was used to optimize the model. The weight
coefficients α, β, and γ were optimized using a grid search
on the validation set. The search space for α, β, and γ was
set to the range [0, 1], with a step size of 0.1, and subject to
the constraint α + β + γ = 1 to ensure weight normalization.
The average F1 score was used as the evaluation metric. The
optimal combination of weights was determined to be α = 0.4,
β = 0.4, and γ = 0.2. The total number of training epochs
was set to 400.

B. Comparison With State-of-the-Art Methods

To thoroughly evaluate the performance of SCGC-Net,
this study compares it with various advanced deep learn-
ing methods across three representative datasets. These
methods include classical CNN-based architectures, attention-
enhanced networks, emerging models based on Transformers

and Mamba, as well as hybrid approaches. Specifically, the
comparison includes FCN [12], UNet [13], ResUNet [55],
PSPNet [44], DeepLab V3+ [42], HRNet [56], ICNet [57],
CCNet [58], DANet [59], GCNet [60], SegNext [61],
PIDNet [62], SegFormer [36], Swin Transformer [35], Con-
vNeXt [63], ST-UNet [64], and VMamba [20]. The subsequent
content in this subsection provides both quantitative and
qualitative analyses of SCGC-Net’s performance

Table I presents the performance comparison between
SCGC-Net and other advanced methods on the CLD, HR-
GLDD, and Bijie datasets. SCGC-Net achieved the best
performance across most evaluation metrics, demonstrating its
robustness and wide applicability in landslide detection.

On the CLD dataset, SCGC-Net stands out, achieving an
IoU of 87.85%, 2.30% improvement over the second-best
IoU score. This notable improvement emphasizes SCGC-
Net’s effectiveness in high-resolution and diverse geographical
environments. The increase in IoU indicates that SCGC-Net
can more accurately delineate landslide areas and boundary
contours, which is critical for assessing landslide extent and
risks. The HMIE module plays a crucial role in capturing
features across different scales, while the progressive feature
calibration fusion strategy effectively integrates these features,
enhancing detection precision.

For the HR-GLDD dataset, SCGC-Net surpasses the
second-best model by 1.88% in recall and 2.61% in IoU,
underscoring its sensitivity in detecting smaller, less notice-
able landslides. High recall is essential for landslide risk
assessment, as it reduces missed detections and improves the
reliability of early warning systems. SCGC-Net’s context-
aware landslide modulator plays a key role in adjusting
feature weights dynamically, improving the detection of subtle
landslide features.

On the Bijie dataset, SCGC-Net achieved an F1 score
of 84.75% and an IoU of 73.53%, outperforming the
second-best method by 2.08% and 3.06%, respectively.
Although VMamba slightly surpasses SCGC-Net in recall with
85.70%, SCGC-Net compensates with higher precision, ulti-
mately achieving better results in the F1 and IoU metrics. This
result indicates SCGC-Net’s excellent performance even on
smaller datasets, highlighting its strong generalization capabil-
ities. The progressive feature calibration fusion strategy helps
mitigate feature misalignment, improving model adaptability
across datasets of different scales.

To provide a comprehensive visual comparison of different
methods’ performance, we selected representative examples
from each dataset and compared the detection results from
various state-of-the-art approaches, as shown in Fig. 6. SCGC-
Net’s predictions demonstrate higher integrity and accuracy in
various complex scenarios.

In the CLD satellite dataset, SCGC-Net delivers more
comprehensive detection of small-scale landslides, effectively
reducing FPs from bare soil, shallow vegetation, clouds, and
shadows. This is largely due to the HMIE module, which
captures landslide features at multiple scales.

For the CLD UAV dataset, SCGC-Net excels in detecting
large-scale landslides, maintaining detection integrity even
under partial vegetation cover. In addition, SCGC-Net shows
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TABLE I
COMPARISON RESULTS OF VARIOUS METHODS ON CLD, GLDD, AND BIJIE DATASETS

strong discrimination in complex scenes involving intersecting
roads, rivers, and landslides, due to the progressive feature
calibration fusion strategy that effectively integrates multiscale
features, enhancing the model’s understanding of complex
terrains.

On the HR-GLDD dataset, SCGC-Net excels at detecting
low-contrast, high-confusion landslides, correlating with the
significant increase in recall. The context-aware landslide
modulator plays a key role in dynamically adjusting feature
weights to enhance sensitivity to weak landslide features.

Finally, results from the Bijie dataset further confirm SCGC-
Net’s generalization capabilities. Even on a small dataset,
SCGC-Net delivers optimal prediction performance, showcas-
ing its adaptability. This advantage stems from SCGC-Net’s
architecture, especially its progressive feature calibration
fusion strategy, which mitigates feature bias introduced by
different dataset scales. In summary, SCGC-Net demonstrates
significant advantages across various datasets and landslide
types. It excels in detecting small targets and irregularly
shaped landslides while reducing missed detections and
improving edge clarity. SCGC-Net’s strong discrimination
in complex environments reduces FPs and enhances overall
detection accuracy. These superior results stem from SCGC-
Net’s unique design, including HMIE, progressive feature
calibration fusion, and a context-aware landslide modulator,
enabling the model to better adapt to the challenges presented
by different datasets.

C. Ablation Experiment

To evaluate the effectiveness of the individual components
of SCGC-Net and validate the rationality of its network
structure, we conducted comprehensive ablation experiments
on the CLD dataset, focusing on module ablation and the
influence of dilation rates.

In the module ablation experiment, we sequentially intro-
duced the HMIE, CAM, and PSCCS modules to quantify
their contributions to model performance. Table II presents
the quantitative results for different module combinations. The
baseline model (Experiment A1), which uses ResNet50 as the

TABLE II
ABLATION STUDY ON SCGC-NET MODULES

backbone network and incorporates a feature pyramid structure
for feature fusion, achieved an IoU of 79.16.

Introducing the HMIE module (Experiment A2) led to a sig-
nificant performance improvement, raising the IoU to 83.80%,
an increase of 4.64%. This improvement can be attributed
to the HMIE module’s ability to combine Mamba and CNN
architectures effectively, enhancing the model’s capacity to
capture multiscale features and long-range dependencies. The
impact of the HMIE module is even more pronounced when
combined with other modules. For instance, the combina-
tion of HMIE and CAM (Experiment A5) boosted the IoU
to 86.01%, while the combination of HMIE and PSCCS
(Experiment A6) resulted in an IoU of 84.50%. These results
demonstrate the efficacy of HMIE in extracting complex land-
slide features and its compatibility with other modules. When
used in isolation, the CAM module (Experiment A3) improved
the recall by 2.07% over the baseline model. Although the
improvement was smaller compared to HMIE, CAM exhibited
strong synergistic effects when combined with other modules.
Notably, the combination of CAM and PSCCS (Experiment
A7) yielded outstanding recall performance, reaching 92.17%,
the highest recall rate apart from the complete model. This
suggests that the CAM module, through its context-awareness
mechanism, significantly enhances the model’s ability to com-
prehend complex landslide scenes, particularly in cases of
blurred boundaries and challenging backgrounds. The PSCCS
module alone (Experiment A4) increased the IoU to 81.26%.
While the effect of PSCCS in isolation was relatively modest,
it played a crucial role when combined with other modules.
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Fig. 6. Landslide detection results comparing with 16 state-of-the-art approaches across different datasets (CLD Satellite, CLD UAV, HR-GLDD, and
Bijie), including traditional CNN-based methods, lightweight model, attention-enhanced methods, modern backbone network, Transformer-based models, and
mamba-based model. (a) Optical RSIs; (b) GT; (c) FCN; (d) U-Net; (e) ResUNet; (f) PSPNet; (g) DeepLabv3+; (h) HRNet; (i) ICNet; (j) CCNet; (k) GCNet;
(l) PIDNet; (m) DANet; (n) ConvNeXt; (o) SegFormer; (p) Swin Transformer; (q) ST-UNet; (r) VMamba; and (s) SCGC-Net (ours).

For example, combining PSCCS with HMIE (Experiment A6)
increased the IoU to 84.50%, further improving performance
compared to using HMIE alone. This highlights the effective-
ness of PSCCS in addressing spatial alignment issues during
feature fusion, making a significant contribution to improving
the accuracy of landslide boundary localization.

The complete SCGC-Net model (Experiment A8) achieved
the best performance across all evaluation metrics, with an IoU
of 87.85%, representing an 8.69% improvement over the base-
line model. This significant performance boost underscores the
synergistic effect of the three core modules: HMIE provides
robust multiscale feature extraction, CAM refines semantic
information through its context-awareness mechanism, and

PSCCS effectively resolves spatial alignment challenges in
feature fusion.

To visually demonstrate the influence of SCGC-Net’s core
modules on feature extraction, we performed a feature map
visualization analysis on key module combinations from
the ablation experiment, as shown in Fig. 7. The feature
map generated by the HMIE module alone [see Fig. 7(c)]
already highlights the landslide regions, confirming HMIE’s
effectiveness in capturing multiscale features. With the intro-
duction of the CAM module [see Fig. 7(d)], the feature
map presents more refined semantic information, displaying
clearer landslide boundaries and richer internal structures.
This improvement is particularly evident in small landslides
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Fig. 7. Feature map visualization from the ablation experiment. (a) Optical
RSIs; (b) GT; (c) feature map from Experiment A2; (d) feature map from
Experiment A5; and (e) feature map from Experiment A8.

TABLE III
ABLATION STUDY ON ATROUS RATES

and complex terrains, illustrating CAM’s enhancement of the
model’s semantic refinement capabilities. The feature map
produced by the complete SCGC-Net model [see Fig. 7(e)]
shows the most accurate representation of landslides, with
well-defined boundaries and detailed internal structures. This
outcome visually demonstrates the contribution of the PSCCS
module in aligning multiscale features, consistent with the
quantitative results. The ablation experiment results not only
validate the effectiveness of each component within SCGC-Net
but also reveal the synergistic interactions between them.
By systematically combining and analyzing these modules,
we gained a deeper understanding of their specific contri-
butions to improving model performance, providing crucial
experimental evidence and theoretical support for further
optimization of landslide detection algorithms.

The dilation rate of convolutions is a critical parameter
that influences the size of the receptive field. Its primary
role is to mitigate the limitations of the Mamba structure
in local feature extraction, while balancing the extraction of
fine-grained local details and broader contextual information.
To further explore the effect of different dilation rate com-
binations on model performance, we conducted an ablation
experiment on dilation rates within the SCFE Block of the
HMIE module in SCGC-Net. Table III provides a detailed

comparison of the model’s performance under various dilation
rate configurations.

The results indicate that the introduction of multiscale
dilation rates significantly enhances the model’s performance.
Taking Experiment B1 as the baseline, which employs stan-
dard convolutions with a dilation rate of 1, the model
effectively captures fine local features but struggles with com-
plex landslide patterns. In contrast, Experiments B2 through
B7, which incorporate various combinations of dilation rates,
demonstrate superior multiscale feature extraction, both locally
and regionally. The progressive small dilation rate strategy
adopted in Experiments B6 and B7 yielded the best results,
achieving the highest F1 scores and IoU values. This strategy
involves the use of different dilation rate combinations across
the two SCFE modules, allowing the network to capture
features at multiple scales. This design enables the model
to attend to receptive fields of varying sizes and spatial
details, significantly improving its ability to detect multi-
scale landslide features. However, Experiment B5 shows that
using excessively large dilation rates leads to performance
degradation, with the IoU decreasing to 83.30%. This decline
may be attributed to the disruption of local spatial continuity
caused by large dilation rates, resulting in the loss of detail
and breakdown of contextual information, which impairs the
effective extraction and integration of multiscale features.

These results underscore the importance of carefully balanc-
ing local feature extraction and regional contextual information
when designing the MSLE Block within the SCFE module.
The progressive small dilation rate strategy, which gradually
increases dilation rates across different SCFE modules, ensures
that the model remains sensitive to fine spatial details while
simultaneously expanding the receptive field to enhance the
capture of regional spatial features. This approach not only
addresses the limitations of the Mamba structure in local
feature extraction but also retains its strength in capturing long-
range dependencies.

D. Generalization Analysis

To assess SCGC-Net’s generalization performance when
confronted with new data domains, we designed an incremen-
tal learning experiment using the GVLM dataset. The GVLM
dataset includes large-scale landslide images and correspond-
ing mask data from various geographic regions worldwide,
with a spatial resolution of 0.59 m. Since the data source
(Google Earth) and resolution differ from the training datasets,
it provides an ideal test environment to evaluate the model’s
cross-domain generalization capabilities.

In this experiment, we selected several high-performing
models from previous experiments, including DANet, Con-
vNeXt, Swin Transformer, VMamba, and our proposed
SCGC-Net. First, all models were trained on the CLD, HR-
GLDD, and Bijie datasets. Then, the GVLM dataset was
divided into 512 × 512 image patches, and 20% of the
patches containing landslides and 20% of those without land-
slides were randomly selected as domain incremental data.
We defined incremental percentages of 0% (direct testing on
GVLM), 1%, 5%, 10%, and 20%, and for each percentage,
a corresponding amount of GVLM incremental data was
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Fig. 8. Comparison of model accuracy with different percentages of domain incremental data on the GVLM dataset.

randomly added to the training set for fine-tuning. This setup
simulates real-world scenarios where a model needs to adapt to
new and unseen data domains. Finally, we tested the models on
the remaining GVLM data, using precision, recall, F1 score,
and IoU as evaluation metrics.

Fig. 8 shows the performance variation of each model
under different percentages of GVLM incremental data. The
results indicate that, with 0% increment (direct transfer),
SCGC-Net significantly outperforms other models in terms
of recall, IoU, and F1 metrics, demonstrating its superior
cross-dataset generalization performance. As the percentage
of GVLM data increases, all models improve, but SCGC-Net
adapts the fastest. With only 1% of GVLM data, SCGC-Net’s
performance stabilizes, whereas other models require 5% or
more data to achieve comparable results. Notably, SCGC-Net
maintains its performance lead at all incremental levels. Even
at the 20% increment, SCGC-Net’s IoU and F1 metrics
remain about 1% higher than the second-best model. As the
incremental ratio reaches 20%, the performance of all models
begins to plateau, suggesting that the models have adequately
adapted to the GVLM dataset’s feature distribution.

To further assess the models’ generalization ability, we con-
ducted a qualitative analysis. Fig. 9 shows the landslide
detection visual results on the GVLM dataset after 5% incre-
mental fine-tuning for each model. We highlight regions with
significant performance differences among models using red
boxes. In simpler landslide scenarios, all models are able to
accurately identify landslide boundaries. However, in more
complex scenarios, such as irregularly shaped landslides and
densely packed small-scale landslides (e.g., rows two, four,
and five in Fig. 9), SCGC-Net performs the best, producing
more complete landslide extractions with sharper boundaries
and effectively reducing FPs. In regions with greater spectral
variation (e.g., row three in Fig. 9), although all models exhibit
good adaptability after fine-tuning, SCGC-Net still achieves
the highest accuracy in feature extraction. These observations
further confirm SCGC-Net’s superiority in handling complex
and diverse landslide scenarios.

The experimental results clearly demonstrate SCGC-Net’s
exceptional generalization capacity to quickly adapt to new
data domains. This ability is crucial in practical applica-
tions, as it allows SCGC-Net to rapidly adjust to new
landslide detection environments with minimal additional data,

Fig. 9. Detection results after 5% incremental fine-tuning on the GVLM
dataset, comparing with four representative state-of-the-art models. (a) Optical
RSIs; (b) GT; (c) DANet; (d) ConvNeXt; (e) Swin Transformer; (f) VMamba;
and (g) SCGC-Net (ours).

greatly reducing the cost of data collection and annota-
tion. SCGC-Net’s superior generalization performance can
be attributed to several key factors: first, the spatial context
guide calibration mechanism effectively captures and leverages
spatial contextual information, enabling the model to adapt
more easily to variations in terrain and landslide characteris-
tics across different datasets. Second, SCGC-Net’s multiscale
contextual feature extraction and fine-grained fusion strategies
allow the model to simultaneously focus on local details
and global structures, enhancing its robustness. Finally, the
adaptive nature of the CAM enables the model to better adjust
its focus to match the feature distribution in new datasets.

E. Computational Efficiency and Performance Analysis

In large-scale landslide detection tasks, processing large
remote sensing images is often necessary to capture suf-
ficient geospatial context. Therefore, the model’s detection
accuracy and computational efficiency across different image
sizes are critical for practical applications. To evaluate this,
we compared the landslide detection performance of DANet,
ConvNeXt, Swin Transformer, VMamba, and SCGC-Net using
remote sensing images of varying sizes. All models were
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Fig. 10. Comparative analysis of model efficiency and accuracy at different image resolutions. (a) Computational complexity comparison in terms of GFLOPs
for different input resolutions. (b) Detection accuracy comparison in terms of IoU for different input resolutions.

fine-tuned with a 10% data increment to ensure fairness. The
experiment tested six different input resolutions: 128 × 128,
256 × 256, 512 × 512, 768 × 768, 1024 × 1024, and 2048 ×

2048. Computational efficiency was measured in GFLOPs
(billion floating point operations), and detection accuracy was
evaluated using IoU.

Fig. 10 illustrates the comparative performance of each
model across different input resolutions. The results show
that SCGC-Net clearly outperforms other models in compu-
tational efficiency for larger image sizes (≥1024 × 1024).
Notably, at the 2048 × 2048 resolution, SCGC-Net requires
only 3066 GFLOPs, which is significantly lower than other
models (ranging from 4600 to 5700). The relatively slow
increase in computational complexity with larger image sizes
highlights SCGC-Net’s excellent scalability, which is crucial
for large-scale landslide detection tasks.

Regarding detection accuracy, SCGC-Net consistently
achieves the highest IoU across all resolutions, improving from
70.13% at 128 × 128 to 78.12% at 2048 × 2048, marking the
most significant improvement. This indicates that SCGC-Net
can effectively leverage the detailed information and spatial
context provided by high-resolution images, which is essential
for accurately detecting landslide boundaries in complex ter-
rains. Other models, such as Swin Transformer and VMamba,
also show performance improvements, but due to their similar
architectures, ConvNeXt, Swin Transformer, and VMamba
exhibit similar quadratic increases in computational complex-
ity as image size grows. Notably, DANet shows not only a
decline in detection performance with larger images but also a
steep quadratic increase in computational cost. This is primar-
ily due to the global attention mechanism, which scales poorly
as image size increases, combined with the inherent limitation
of CNNs’ local receptive fields. In contrast, SCGC-Net’s
hybrid architecture strikes a strong balance between scalability
and performance. At the 2048 × 2048 resolution, SCGC-Net
requires 30%–46% fewer GFLOPs than other models while

maintaining the highest IoU, clearly demonstrating its potential
for large-scale landslide monitoring applications.

V. DISCUSSION

A. Advantages and Contributions

The comprehensive experimental results presented in
Section IV demonstrate the effectiveness of SCGC-Net in
multisource landslide detection tasks through its novel archi-
tectural design and effective feature learning strategy. The
integration of Mamba and CNN architectures enables com-
prehensive feature extraction at both global and local scales.
This is evidenced by the ablation experiments in Section IV-C,
where the complete SCGC-Net achieves an 8.69% IoU
improvement over the baseline model. Such performance gain
stems from the synergistic effect of three key components:
the HMIE module captures multiscale features efficiently,
the CAM module refines semantic information adaptively,
and the PSCCS module resolves spatial misalignment issues
effectively.

Cross-domain generalization represents a critical capability
for practical landslide detection systems. Deep learning models
often struggle with domain shifts due to varying geographical
conditions and imaging platforms. Our generalization anal-
ysis in Section IV-D reveals that SCGC-Net requires only
1% of GVLM data for successful domain adaptation, while
competing methods need at least 5% for comparable perfor-
mance. This superior adaptability can be attributed to two
factors: first, the context-guided calibration mechanism learns
domain-invariant features effectively; second, the progressive
spatial calibration strategy maintains consistent feature repre-
sentation across domains. The visual results in Fig. 9 further
validate this conclusion, showing robust detection performance
across diverse environmental conditions.

Computational efficiency is essential for processing
high-resolution remote sensing images in real-time disaster
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Fig. 11. Examples of detection challenges in high-resolution imagery. (a) and
(b) Large-scale landslide detection failures. (c) and (d) Detection errors in
densely built areas.

monitoring. Traditional Transformer-based approaches often
suffer from quadratic computational complexity, limiting their
practical application. Our efficiency analysis in Section IV-E
demonstrates that SCGC-Net processes 2048 × 2048 resolu-
tion images with only 3066 GFLOPs, reducing computational
cost by 30%–46% compared to state-of-the-art methods.
This improvement results from the linear complexity of
Mamba-based feature extraction and the lightweight imple-
mentation of the CAM module. The analysis in Fig. 10
confirms SCGC-Net’s efficient scaling with image size while
maintaining detection accuracy.

B. Limitations and Future Perspectives

By analyzing cases with low IoU scores, we identified two
challenges in landslide detection in high-resolution images.
First, as shown in Fig. 11(a) and (b), when landslide regions
occupy a large portion of the image and individual image
patches can only cover a local area of the entire landslide,
the detection performance of the model may be compromised,
leading to false-negative detection results. Second, as depicted
in Fig. 11(c) and (d), the coexistence of landslide regions and
dense urban structures poses additional challenges, leading
to both FN and FP detections. These detection issues partly
stem from the limitations of the dataset’s processing method
based on small-sized image patches (512 × 512 pixels). The
limited size of the image patches restricts the model’s ability
to capture comprehensive contextual information, resulting in
semantic discontinuities between adjacent image patches and
incomplete landslide detection across multiple image patches.
Moreover, the complex interactions between landslide areas
and urban infrastructure, combined with insufficient contextual
information, affect the model’s ability to accurately identify
landslide boundaries in urban settings.

To address the above detection challenges, future research
will focus on two aspects. First, to address the limitations in
large-scale landslide detection and the semantic discontinuities
caused by patch-based processing, efficient landslide detection
methods based on full-image processing need to be explored.

These methods would enable the model to process com-
plete high-resolution remote sensing images while maintaining
semantic consistency, thereby reducing the loss of contex-
tual information caused by image patch processing. Second,
strategies for integrating multisource remote sensing data will
be explored, such as incorporating LiDAR point clouds and
surface classification data. These complementary data sources,
which provide 3-D terrain and surface information, hold the
potential to enhance detection accuracy in complex surface
environments, particularly for landslides in urban areas that
are currently challenging to identify with precision.

VI. CONCLUSION

In this study, a novel SCGC-Net for landslide detection
in multisource remote sensing images is proposed, which
adopts an asymmetric two-branch feature extraction network
combined with Mamba and CNN to efficiently extract global
context features and local spatial features. It introduces the
spatial calibration fusion module, which significantly improves
the boundary delineation accuracy and small-scale landslide
segmentation capability. In addition, a context-aware landslide
modulator is developed to dynamically integrate multiscale
contextual information. Experimental results on three repre-
sentative datasets demonstrate that SCGC-Net exhibits the
best performance under different environmental conditions
and imaging platforms. Moreover, SCGC-Net demonstrates
excellent generalization ability in cross-domain experiments
based on the GVLM dataset.

Future research can explore the potential application of this
architecture in other geohazard detection tasks, and further
investigate its performance and robustness in multimodal data
fusion for more comprehensive hazard detection and assess-
ment.
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