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Abstract— Although the extensive research has been
conducted on retrieving sea ice variables from synthetic
aperture radar (SAR) and multimodal remote sensing data,
cross-scene retrieval using regional training models remains a
significant challenge. Previous studies have employed multi-task
learning (MTL) but have not sufficiently explored the interplay
between network architectures and multi-task performance.
Moreover, self-supervised learning (SSL) has shown promise
in improving tasks with limited training samples, though its
potential in sea ice variable retrieval requires further study.
To address the challenge of cross-scene retrieval of sea ice
variables, we introduce a novel and effective method called
multimodal fusion domain adaptation (MFDA), which combines
three key strategies: 1) employ SSL methods for multimodal
data to pretrain the model, improving its noise sensitivity
and promoting a hierarchical understanding of multimodality;
2) propose a unified convolutional and Transformer-based data
fusion architecture to enhance the integration of multimodal
data and improve semantic understanding; and 3) incorporate
a domain adaptation module between the multimodal encoder
and the multi-task decoding predictor to facilitate the model’s
understanding of the semantic gaps between different regional
environments. The performance of the proposed MFDA has been
extensively evaluated on the Ai4Arctic dataset. The experimental
results demonstrate that MFDA achieves superior performance
compared with other state-of-the-art (SOTA) sea ice classification
approaches for the task of cross-scene sea ice retrieval. The code
will be made available at: https://github.com/yuweikong/MFDA.

Index Terms— Arctic sea ice, domain adaptation, masked
image modeling (MIM), multi-task learning (MTL), self-
supervised learning (SSL), synthetic aperture radar (SAR).
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I. INTRODUCTION

SEA ice, as a critical component of the cryosphere, exhibits
significant variations across diverse spatial and temporal

scales [1]. Accurately characterizing the spatial and tem-
poral dynamics of sea ice is of paramount importance for
understanding the climate system [2], forecasting climate
change [3], planning polar navigation routes [4], and ensuring
maritime safety [5]. Remote sensing has emerged as a pivotal
approach for rapidly obtaining large-scale, high-quality Earth
observation data, thus significantly advancing Earth observa-
tion capabilities [6], [7]. Remote sensing data can be leveraged
to automatically extract and generate sea ice maps, which
serves as an effective means for monitoring sea ice dynamics
and provides crucial support for research and applications
in related domains [8], [9], [10]. However, traditional expert
system-centric methods have faced limitations in meeting the
evolving needs of Earth observation data in the era of remote
sensing big data, particularly when dealing with complex
scenes [11], [12]. Deep learning offers a viable solution to
intelligently extract valuable knowledge from diverse Earth
observation data, enabling enhanced understanding and mon-
itoring of polar environments [13].

Remotely sensed data acquired from satellite platforms fre-
quently exhibit temporal discontinuities, variability in spatial
resolution, and diminished signal-to-noise ratios, particularly
within polar geographic regions [14], [15]. Concurrently, the
reference data available for these polar environments are
often limited and may originate from a single, localized area,
posing significant challenges for the training and deployment
of deep learning models in such contexts [16]. Moreover,
polar climate systems are highly complex and dynamic,
influenced by climate change, anthropogenic activities, and
various other factors [17], [18]. Consequently, deep learning
models trained solely on constrained datasets may struggle to
fully capture the multifaceted complexities inherent to these
regions [19], [20].

Advanced deep learning models have been successfully
applied to a range of remote sensing and Earth science
applications. Recent advancements in the field of sea ice
parameter retrieval have garnered significant attention. For
example, Ren et al. [21] introduced a dual-attention U-Net
for the classification of sea ice and open water. In addition,
Song et al. [22] proposed a joint model that integrates spa-
tial and temporal features for sea ice classification within
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the Canadian Ice Service ice charts area. Furthermore,
De Gelis et al. [23] highlighted the potential of fully con-
volutional networks (FCNs) for the automatic estimation of
sea ice concentration (SIC) using synthetic aperture radar
(SAR). In a related study, Huang et al. [24] developed a
dual-branch encoder U-Net (DBU-Net) for sea ice-type classi-
fication in SAR images from the Beaufort Sea, demonstrating
the advantages of end-to-end models in this application. These
models often perform exceptionally well in homogeneous
regional scenes, where the underlying characteristics, spatial
distributions, and typologies are relatively consistent [25].
Nevertheless, the capacity of these sophisticated deep learning
methodologies to effectively tackle the challenges inherent
in the analysis of diverse spatiotemporal data distributions
and the heterogeneity of regional environments is still con-
strained [26], [27].

Deep learning architectures have demonstrated impressive
performance in polar environments characterized by relatively
homogeneous regional conditions [7], [28], [29]. However,
progress in developing deep learning approaches for broader
sea ice classification tasks across diverse polar scenes has been
relatively slow [30], [31], [32]. This can be primarily attributed
to two key challenges. First, the paucity of large-scale, high-
quality, multimodal remote sensing datasets restricts a more
comprehensive understanding of cross-domain polar environ-
ments. Consequently, the availability of additional high-fidelity
datasets would be instrumental in facilitating a more holis-
tic study of sea ice conditions across varied geographical
regions [9], [33], [34], [35], [36]. Second, current method-
ological approaches tend to prioritize optimization for single,
localized sea areas rather than enhancing the generalization
capabilities of the models, particularly across different latitu-
dinal and longitudinal domains. To better adapt to the unique
characteristics of diverse polar regions, it is imperative to
place greater emphasis on developing models with robust
generalization abilities that can effectively handle a wide range
of environmental scenes [9], [33].

The recently released AI4SeaIce public dataset [37]
addresses the challenge of limited high-quality multimodal
remote sensing data in polar regions, thereby opening new
avenues for research in this field. This dataset has facilitated
a range of studies, contributing to advancements in SIC [9],
[33], [34], [35], [36], the floe size (FLOE) [9], and the stage
of development (SOD) [9], [38]. The concept of cross-scene
classification using multimodal data has been extensively stud-
ied and applied in the field of computer vision [39], [40], [41],
[42], [43], [44], providing a promising direction for adapting
sea ice monitoring models across diverse polar environments.

Using the AI4SeaIce public dataset, Chen et al. [9]
introduced a multi-task learning (MTL) framework and
demonstrated significant results, highlighting the potential of
multi-task architectures for comprehensive sea ice monitoring
in diverse polar environments. Compared with traditional
single-task models, MTL may offer enhanced solutions by
implementing implicit constraints and shared representations
among different but related tasks. While preliminary results
have been achieved in sea ice classification tasks, fur-
ther optimization of the architecture is warranted. Recently,

Xiong et al. [45] investigated the effects of multimodal
data fusion on model performance when integrating multi-
ple tasks through MTL methods. In addition, the methods
of parameter sharing across multiple tasks merit further
discussion [46], [47].

Although the aforementioned solution has yielded some
positive results, it remains challenging to apply in cross-scene
tasks, where reference data are limited. The rise of masked
image modeling (MIM) technology has led to a widespread
adoption of self-supervised learning (SSL) methods in the
remote sensing field [48], [49], [50], [51]. These methods
involve establishing auxiliary tasks and learning features from
a substantial amount of unlabeled data to create an initial
feature extraction model. Subsequently, this initial model is
fine-tuned for specific downstream tasks. MIM has been exten-
sively applied in remote sensing tasks, demonstrating effective
performance even when reference samples are limited. For
instance, Cao et al. [52] introduced an MIM approach that
incorporates contrast loss, utilizing pretraining methods to
capture the underlying representations of images, thereby
showcasing the robust feature extraction capabilities of the
MIM pretraining model. In addition, Lin et al. [53] developed
a spatial–spectral masked autoencoder (SS-MAE) tailored for
multimodal data, which employs a lightweight convolutional
model during the training phase to enhance local feature
modeling. The SS-MAE framework underscores the potential
of MIM in multimodal tasks and emphasizes the importance
of integrating both local and global features.

However, some limitations persist when directly applying
MIM [54] to multimodal remote sensing images for semantic
segmentation. First, predictions based on raw pixel values
contain substantial redundant spatial domain information and
typically exhibit low-order statistical features, which may
hinder the model’s ability to capture high-level semantic
information [55]. Second, the inherent differences between
observed data and natural RGB images make it challenging
for the original single-layer decoder architecture to perform
complex modeling of multimodal image features, thereby
impeding the convergence of the model [48]. Finally, directly
using a single decoder to model deep features may cause
dense and small objects to be lost in multimodal images,
resulting in incomplete semantic information and challenges
in image reconstruction. Recently, Chen and Yan [55] con-
firmed that using the low-frequency information of remote
sensing images as the target for training MIM models can
accelerate convergence and reduce model noise. Moreover,
Wang et al. [56] revealed the effectiveness of MIM using
multilevel constraints, which can accelerate the convergence of
the model and promote its multiscale semantic understanding
of the input data. These methods have been proven to be
straightforward and convenient for multimodal tasks.

In this article, we investigate strategies to enhance model
performance for sea ice parameter retrieval tasks under cross-
scene conditions. First, we utilize the AI4SeaIce public dataset
to create a cross-scene task dataset for sea ice classifica-
tion, aiming to improve the applicability of Arctic sea ice
classification across different scenes. Second, we propose
a multiscale low-pass filter mask image model (MLFMIM)
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Fig. 1. Dataset region visualization, source, and target in the Arctic region.

for pretraining multimodal data fusion, which compels the
encoder to extract robust features from multimodal data across
various scenes. Finally, we design a unified architecture termed
multimodal fusion domain adaptation (MFDA) to enhance
the effectiveness of MTL in sea ice parameter retrieval and
facilitate the domain adaptation process. This architecture
integrates convolutional and Transformer components to create
a multimodal encoder, utilizing the aforementioned MLFMIM
for weight initialization. In the decoder phase, we implement
the domain adaptive conversion on the generated hierarchical
features to address discrepancies between the source and target
domain features.

In summary, the main contributions of our work are as
follows.

1) We propose a novel MIM architecture, termed
MLFMIM, designed for self-supervised pretraining of
multimodal data. Unlike previous methods, MLFMIM
utilizes low-pass filtered signals as training targets to
reduce the influence of redundant spatial information
and noise on model performance. In addition, we intro-
duce a local multiscale reconstruction method that

provides explicit guidance for multiple deep layers of the
model, thereby effectively capturing multiscale features.

2) Based on the characteristics of multimodal data, we pro-
pose the MFDA for sea ice parameter retrieval using
limited regionally labeled samples. This architecture
accounts for the correlation among data at differ-
ent resolutions and constructs a relatively independent
dual-branch model for feature fusion. It integrates con-
volutional and Transformer components within distinct
branches, allowing the model to effectively focus on
both local and global features.

3) We incorporated a multi-task domain adaptation module
between the encoder and decoder of the MFDA to
address discrepancies between the source domain and
the target domain.

II. DATASETS

This study leverages the Ai4Arctic remote sensing
dataset [37] as the primary research material. The spatial dis-
tribution of the dataset is shown in Fig. 1. The dataset encom-
passes two key geospatial domains: the center of the Canadian
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TABLE I
DATA VARIABLES AND RESOLUTIONS

Ice Sheet, which serves as the source domain, and the center of
the Greenland Ice Sheet, which represents the target domain.
The source domain subset contains 197 complete data files,
while the target domain subset comprises 315 such files.

In the workflow for model development and evaluation,
we initially employ an SSL strategy, leveraging the com-
plete Ai4Arctic dataset, encompassing both source and target
domain files, to pretrain the model in the absence of any
labeled data. Subsequently, during the supervised learning
phase, we train the model exclusively on the 197 files from the
source domain and evaluate its performance on the 315 files
from the target domain.

A. Multimodal Input Data

Each file encompasses a comprehensive set of remote
sensing and ancillary parameters, including: dual-polarization
Sentinel-1 Extra Wide (EW) imagery, The Advanced
Microwave Scanning Radiometer 2 (AMSR2) passive
microwave radiometer measurements, numerical weather pre-
diction (NWP) variables derived from the ECMWF Reanalysis
v5 (ERA5) reanalysis dataset, as well as ice chart data con-
forming to the World Meteorological Organization (WMO) sea
ice classification schema, provided by either the Greenland
Ice Service or the Canadian Ice Service. The resolution of
each data is shown in Table I. It is important to note that,
in selecting input data, we opted to utilize a subset of the
multimodal data sources available in the Ai4Arctic dataset.
Our primary focus is on evaluating the domain adaptability of
the model, rather than investigating the intricate relationships
between different input parameters. Accordingly, we have
adopted the optimal input data configuration as recommended
in the prior literature [9], [57]. For the Sentinel-1 EW data,
AMSR2 data, ERA5 data, and temporal data, pixel values are
normalized within the range of [−1, 1]. Missing values (NaN)
in the SAR are replaced with −1. In addition, the data for each
patch’s longitude and latitude information are normalized to
the range of [0, 1] to prevent any spatial information leakage.
The normalized longitude and latitude data are integrated
into the model, analogous to the relative position encoding
described in [58] within the Transformer architecture, thereby
providing potential advantages to the model.

The specific data are described as follows.
1) Sentinel-1 EW Data: The dataset comprises dual-

polarimetric Sentinel-1 (available at https://dataspace.
copernicus.eu/) SAR backscatter observations, including
measurements in both the horizontal–horizontal (HH) and
horizontal–vertical (HV) polarizations. Accompanying this
radar data are the corresponding latitude and longitude
grid information, organized in a 21-by-21 matrix. Crucially,
no geographic projection or orthorectification has been applied
to the data. The resolution of HH and HV polarization images
is 40 m.

2) AMSR2 Data: The dataset consists of AMSR2 brightness
temperature data, which has been resampled to match the
geometry of Sentinel-1. The pixel spacing of the resampled
data is 2 × 2 km. The AMSR2 data are obtained from
JAXA (available at: https://earth.jaxa.jp/en/data/index.html).
Specifically, it includes dual-pol (dual-polarization) AMSR2
brightness temperature data at 18.7 and 36.5 GHz.

3) ERA5 Data: The dataset comprises ERA5 weather
forecast (NWP) parameters that have been resampled
to align with the geometry of Sentinel-1, (available at:
https://cds.climate.copernicus.eu/). The resampling process
employed Gaussian weighted interpolation, resulting in a pixel
resolution of 2 × 2 km. The included parameters are 10-m
wind speed, 2-m air temperature, total column water vapor,
and total column cloud liquid water.

4) Time Data: The temporal information associated with
each pixel corresponds to the acquisition month of the SAR
scene, denoted by a digital code such as “1” for January.
The image dimensions of the SAR data match those of the
AMSR2 dataset.

B. Reference Data

The sea ice chart parameters include the SIC, SOD, and
FLOE.

1) SIC: The SIC parameter represents the areal fraction of
a given spatial domain that is covered by sea ice, typically
expressed as a percentage ranging from 0% (open water) to
100% (complete ice cover) in discrete 10% increments.

2) SOD: The SOD parameter can be regarded as a cat-
egorical representation of sea ice type, which serves as a



CHEN et al.: MFDA: UNIFIED MULTI-TASK ARCHITECTURE FOR CROSS-SCENE SEA ICE CLASSIFICATION 4303221

Fig. 2. Overall architecture of MLFMIM is depicted in this figure. The input HR image is divided into a series of nonoverlapping patches, where the masked
patches are replaced with learnable mask tokens. The encoded LR image features are then concatenated with the visible patches. The encoder can be selected
from the Transformer or CNN families. The output features of the encoder can be expressed as Stages{1, 2, 3, 4}. In the decoding stage, three decoders are
introduced, corresponding to the predictions of Stage 2–Stage 4, respectively. To train the model, low-pass filtering is applied in the Fourier domain to the
real HR images to construct the generated targets, and the MSE is used to measure the difference between the predicted and real images.

proxy indicator for the physical thickness of the sea ice cover,
and thus, the relative ease of traversability. This parameter
classifies the sea ice into five discrete categories: 0—Open
Water, 1—New Ice, 2—Young Ice, 3—Thin First-Year Ice,
4—Thick First-Year Ice, and 5—Old Ice, where the latter class
refers to sea ice that has persisted for more than one year.

3) FLOE: The FLOE parameter provides a categorical
characterization of the spatial continuity and areal extent
of the sea ice cover, with discrete classifications ranging
from 0 to 6. The FLOE classes are defined as: 0—Open Water,
1—Cake Ice, 2—Small Floes, 3—Medium Floes, 4—Big
Floes, 5—Vast Floes, and 6—Bergs, the latter of which
encompasses variants of icebergs and glacier ice fragments.

III. METHOD

A. Architecture

The convolutional neural network (CNN) has been widely
recognized for its progressive and superior performance in
learning high-dimensional feature representations from radar
remote sensing images [1], [9], [30], [59], [60], which can be
attributed to the efficacy of its hierarchical feature extraction
architecture. In this study, we first proposed the SSL method
MLFMIM for multimodal data. The overall training process of
MLFMIM is illustrated in Fig. 2. The multimodal encoder is

pretrained using MLFMIM, to achieve more stable and robust
feature representations for subsequent cross-scene tasks [55].
Following this, we propose the MFDA, which consists of three
key modules: the multimodal encoder, the domain adaptation
module, and the multi-task decoding predictor. The MLFMIM
self-supervised pretraining method is employed to initialize
the weights of the multimodal encoder within the MFDA
framework. Subsequently, the weights of the pretrained model
are fine-tuned through supervised learning. The MFDA frame-
work comprises three key modules: the multimodal encoder,
the domain adaptation module, and the multi-task decod-
ing predictor. The domain adaptation module is specifically
designed to bridge the gap between the feature representations
of the source and target domains through adversarial learning
methods. This approach enables comprehensive exploration
and extraction of domain-invariant semantic features from
multimodal remote sensing data, facilitating the transfer of
these robust features across different domains.

B. Self-Supervised Model

In previous studies, a masking strategy has been employed
to partition the input image into nonoverlapping blocks and
randomly mask subsets of these blocks. In the MAE [61], the
Transformer is utilized as the decoder, where only the visible
blocks are provided as input to the encoder, and mask markers
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are appended to the decoder to reconstruct the masked blocks.
On the other hand, SimMIM adopts a fully connected layer
as the decoder and feeds both the mask markers and visible
patches to the encoder. Mathematically, the masking process
of the MIM approach can be defined as xmask = x ⊙(1−M)+

T ⊙ M, where M represents a random occlusion mask, and
T denotes the learnable mask mark.

To adapt the MIM approach for multimodal and multires-
olution data, we mask the higher resolution (HR) data while
leveraging the low-resolution (LR) data as a contextual cue,
which is then integrated with the masked features. Simultane-
ously, we aim to enable the model to effectively capture and
represent the LR physical characteristics, thereby facilitating
the decomposition of complex relationships. By implementing
this strategy, we can better handle data with disparate resolu-
tions and improve the overall performance of the model.

While the pixel-level reconstruction employed by SimMIM
has shown promising performance on natural image datasets,
its direct adaptation to multimodal remote sensing data faces
several challenges. Initially, the raw pixel values in remote
sensing imagery frequently exhibit significant low-level spatial
redundancies and are deficient in high-level semantic features.
This characteristic can impede the model’s capacity to discern
meaningful scene-level abstractions. Furthermore, the inherent
differences between Earth observation data and natural RGB
images render the original single-layer decoder architecture of
SimMIM less effective in comprehensively modeling the com-
plex feature characteristics of remote sensing data, potentially
impeding model convergence. Fortunately, recent studies have
demonstrated that incorporating low-frequency information
as the prediction target can help accelerate the convergence
of masking-based models in hyperspectral remote sensing
applications [55]. Moreover, the reconstruction of features
across multiple scales has been demonstrated to enhance the
model’s multilevel semantic comprehension of the remote
sensing scene [56].

To address these challenges, we propose a novel multimodal
MIM framework tailored for remote sensing applications.
Specifically, we use low-pass filtered signals as the target to
capture the low-frequency information in the remote sensing
data and avoid being interfered by the redundant spatial
information of the original pixel values and the inherent noise
of SAR images, which is beneficial for the model to learn
high-level semantic features. In addition, we introduce a local
multiscale reconstruction method to explicitly guide multiple
lower layers of the model, effectively modeling remote sensing
image features at different scales. This overcomes the problem
that a single decoder is difficult to capture complex features
and promotes rapid convergence of the model. Compared
with previous works that focus on accelerating the encoding
process through asymmetric encoder–decoder strategies or
reducing input blocks, our approach explicitly leverages the
characteristics of multimodal remote sensing data to enhance
the model’s learning efficiency.

The architecture of MLFMIM is depicted in Fig. 2. It con-
sists of three primary components: the training target generator
[G(·)], the reconstruction encoder (RE), and the reconstruction
decoder (RD). The key benefit of the proposed method is the

use of simple low-pass filtering for training target construction
and reconstruction from partial observations, which helps to
mitigate the noise in the generated features and facilitates
the learning of more effective representations. Specifically,
RE extracts latent representations from the unmasked feature
segments, while RD reconstructs low-pass filtered representa-
tions of the masked data based on these latent representations.
Furthermore, the introduction of hierarchical constraints is
shown to accelerate the convergence of the model, thereby
improving the efficiency of the pretraining process.

1) Training Target Generator: In the target genera-
tor part, we introduce a low-pass filter to calculate the
frequency-domain information of each channel by performing
a discrete Fourier transform (DFT) on the image. For an input
image I ∈ RH×W , the DFT is mathematically defined as
follows:

FDFT(I )(u,v) =

h=H∑
h=1

w=W∑
w=1

I (h, w)e−2π i( uh
H +

vw
W ) (1)

where (H, W ) represents the spatial size, (u, v) and (h, w),
respectively, denote the frequency spectrum and spatial coor-
dinates. FDFT(I ) represents the frequency representation of the
image. To retain the low-frequency components of the image
in the spectral dimension, an ideal low-pass filter (FLPF) is
defined as follows:

FLPF(u,v) =

 1,

(
(u − uc)

2

( H
4 )

2

)
+

(
(v − vc)

2

( W
4 )

2

)
≤ 1

0, otherwise (O.W.)

(2)

where uc and vc represent the center coordinates of the
frequency spectrum. We control the amount of high-frequency
components filtered out from the spectrum based on the
dimensions H × W of the image, with a default setting of
1/4 of the central region. Subsequently, the filtered spectrum
undergoes an inverse DFT denoted by FIDFT to generate the
final reconstructed image. Therefore, the generation objectives
of low-pass filtering can be defined as follows:

G(I ) = FIDFT
(

FLPF(u,v) ⊗ FDFT(I )(u,v)

)
(3)

where FDFT and FIDFT can be efficiently computed using
the fast Fourier transform and ⊗ denotes elementwise
multiplication.

2) RE and Decoder: Let XHR ∈ RH×W×C1 be the HR
data, and XLR ∈ R(H/4)×(W/4)×C2 denote the LR data, where
H and W represent the height and width of the images,
and C1 and C2 represent the number of channels in the
HR and LR data, respectively. XHR is then encoded using
a patch embedding [62] to obtain the feature representation
x0

HR ∈ R(H/4)×(W/4)×64. Subsequently, x0
HR undergoes a mask-

ing operation, resulting in the masked feature representation,
which can be formulated as follows:

xmask
HR = x0

HR ⊙ (1 − M) + T ⊙ M (4)

where M represents the random occlusion mask and T denotes
the learnable mask mark.
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Fig. 3. Overall description of the proposed MFDA framework. XLR represents low-resolution data and XHR represents high-resolution data, the stem
represents patch embedding [62], and the downsampling module utilizes the convolutional downsampling. The feature maps from the multimodal encoder,
which fuses features from different stages, are concatenated and provided as input to the predictor. Subsequently, after DA and a series of convolutional
modules, various deformable convolution and transposed convolutional layers are employed to upsample the feature maps and obtain the results for the three
tasks. (a) Multimodal Encoder. (b) Multi-task Decoding Predictor. (c) Detail of Convolution Transformer Block. (d) Detail of Window Transformer Block.

XLR is similarly encoded using a patch embedding to
obtain the feature representation x0

LR ∈ R(H/4)×(W/4)×64. xmask
HR

and x0
LR are then fed into the two branches of the encoder,

which extracts multiscale features denoted by {x i
HR}

4
i=1 and

{x i
LR}

4
i=1, respectively. For the i th stage of the HR branch,

we fuse it with the corresponding feature from the LR branch,
represented as x i

HR = x i
HR + x i

LR. The output of the RE can be
represented as {x i

HR}
4
i=2 = fen(XHR, XLR), where fen denotes

the transformation performed by the encoder blocks.
The hierarchical features {x i

HR}
4
i=2 obtained from fen are

passed to the RD. Subsequently, the RD utilizes the function
G(·) to guide the reconstruction of features at various levels.
Since the decoder is only utilized for output prediction during
the pretraining stage, it can leverage a variety of architectural
choices, such as a series of Vision Transformer [63], Swin
Transformer [62], or convolutional layers. Although numer-
ous studies have demonstrated that employing a lightweight
decoder architecture can be sufficient to learn generalizable
representations, it remains challenging to use a lightweight
decoder for multimodal tasks. This is due to the difficulty in
effectively reconstructing features from disparate modalities.
In the field of remote sensing, architectures capable of achiev-
ing both local and global information propagation have been
widely adopted. Therefore, this study employs a two-layer
Swin Transformer as the decoder architecture.

3) Reconstruction Loss: During the pretraining phase, SSL
techniques are employed, utilizing unlabeled training data. The
loss function is defined as the mean squared error (MSE)
between the mask data and the reconstructed mask data [55],
which can be represented by the following formula:

LMLFMIM =

∑
l∈κ

wl ·
1
Nl

Nl∑
i=1

Ml
i ·
(
G
(

yl
i

)
− ŷl

i

)2
(5)

where κ denotes the set of selected layers, wl represents
the coefficient of each local loss, and Ml

i is calculated by
upsampling/downsampling the initial mask M. Nl indicates the
number of samples, G(yl

i ) represents the expected output of the
i th sample at the lth layer, and ŷl

i denotes the predicted output
of the i th sample at the lth layer. These local losses guide the
patches on multiple selected layers to perform the semantic
interactions at different scales, which not only accelerates
the learning of multiple layers but also facilitates multiscale
semantic understanding of the input.

C. MFDA

The model architecture of MFDA is illustrated in Fig. 3. Our
MFDA comprises three main components: multimodal encoder
(E), domain adaptor (DA) [consisting of discoverer (D), and
corrector (C)], and multi-task decoding predictor (P).

1) Multimodal Encoder: The multimodal encoder is com-
posed of two parallel branches specifically designed for feature
extraction, with the gradual integration of LR data features
into the corresponding HR branches. Each branch of the
encoder comprises Stem, Convolutional Transformer Blocks,
Downsampling, and Window Transformer Blocks.

In the context of the LR branch, we extract hierarchical
features individually denoted by {E lr

i }
4
i=1, which are subse-

quently incorporated into the HR branch. The hierarchical
feature representation for the HR branch is defined as {Ehr

i }
4
i=1.

To ensure information fusion at each stage, these features
are fused, resulting in the fused features of the HR branch
and LR branch expressed as: Ei = Ehr

i + E lr
i , where Ehr

i
and E lr

i correspond to the feature maps from the respec-
tive stage. For each branch, the stem and downsampling
consist of convolutional layers with downsampling aligned
to the convolutional kernel size and stride. Convolutional
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Fig. 4. Details of domain adaptation model. It is composed of discoverer (D) and corrector (C) (including Csic, Csod, and Cfloe), which are used to better
align the gap between the target domain and the source domain.

Transformer blocks and window Transformer blocks are
essential components in MFDA. Although Transformer has
shown good performance in sea ice prediction and extraction,
it increases model parameters and computational complexity
due to its global information extraction [64], [65]. Local
information have been emphasized in remote sensing tasks
such as classification and semantic segmentation [20], [66].
Utilizing a convolution-like architecture in the upper layers
retains local relevant features and keeps the model compact.
Recent studies, such as [67] and [68], confirm the importance
of Transformer architecture design. A more general architec-
ture was adopted, incorporating Transformer-style convolution
modules in Stages 1 and 2, along with relative position
encoding to enhance the model’s inductive bias and emphasize
its local modeling capability. The W-MSA and SW-MSA
variants within the Swin Transformer model have demon-
strated effectiveness in sea ice classification and ice-water
separation tasks, exhibiting lower quadratic complexity than
the standard MSA [62]. Consequently, MSA was replaced with
W-MSA/SW-MSA in Stages 3 and 4 of the model, enabling it
to possess both local and global modeling capabilities, thereby
rendering it suitable for MTL of sea ice.

Within the HR branch, the Convolutional Trans-
former Blocks involve the definition of input features as Ei−1
and output features as Ehr

i , which can be expressed as follows:

E ′

i = Ei−1 + ConvAtt(BN(Ei−1)) (6)

Ehr
i = E ′

i + CMLP
(
BN
(

E ′

i

))
(7)

ConvAtt(x) = Convpw2
(
Convdw

(
σ
(
Convpw1(x)

)))
(8)

where Convpw(·) represents the pointwise convolution,
Convdw(·) represents the depthwise convolution, σ(·) rep-
resents the activation function, BN(·) represents the batch

normalization, and CMLP(·) consists of two layers of con-
volution with an activation function in between. In the HR
branch, for window Transformer blocks, we define the input
features as Ei−1 and the output features as Ehr

i , which can be
expressed as follows:

E ′

i−1 = Ei−1 + W-MSA(LN(Ei−1)) (9)

E ′′

i−1 = E ′

i−1 + MLP
(
LN
(

E ′

i−1

))
(10)

E ′

i = E ′′

i−1 + SW-MSA
(
LN
(

E ′′

i−1

))
(11)

Ehr
i = E ′

i + MLP
(
BN
(

E ′

i

))
(12)

where LN refers to layer normalization, MLP refers to the
multilayer perceptron, and W/SW-MSA is derived from the
Swin Transformer architecture proposed in [62]. Subsequently,
a sequence of convolutional and upsampling modules is
applied to E0 and {Ei }

4
i=1, followed by their concatenation

to form fusion features F . This process can be expressed as
follows:

F = Cat
(

W 0
E E0,

{
Up×22i−2

(
W i

E Ei
)}4

i=1

)
(13)

where Up×22i−2 denotes the upsampling operation, ×22i−2

represents the scale factor of upsampling, and W i
S represents

the learnable parameter.
2) Domain Adaptation: Fig. 4 shows the detail of the

domain adaptation module. Generative adversarial networks
(GANs) have gained significant popularity in addressing
pixel-level alignment and knowledge transfer challenges across
diverse source and target domains. Taking inspiration from
the previous works [39], [40], [41], [42], [43], [44], [69],
[70], [71], we introduced a domain adaptation module to
tackle the domain offset issue after merging features. Our
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approach involves training a cross-domain segmentation net-
work using randomly selected images from both the source
and target domains through adversarial training. To achieve
improved alignment between the target and source domains,
we employ two types of convolution-based discriminant net-
works, namely, discoverer (D) and corrector (C) (including
Csic, Csod, and Cfloe). These networks facilitate effective
alignment by addressing the representation offset between
the domains. Specifically, D generates pixel-level confidence
scores, enabling local correction of the representation offset
by reweighting intermediate features. Concurrently, the multi-
task category C aims to enhance global semantic alignment by
considering three distinct label distributions during the final
prediction stage. This global semantic alignment operation
can be viewed as a soft constraint, bringing different task
categories closer and promoting similarity among the same
categories across the domains.

Let Xs and X t be the sets of input images for the source and
target domains, respectively. In addition, let Fs and Ft be the
fusion features extracted from the source and target domains,
respectively, using the encoder E . To align the feature distri-
butions of Ft and Fs , we optimize the discriminator D using
the adversarial loss function LD

adv. This comparison provides
an aligned confidence score for each position in Ft , resulting
in the formation of an attention map denoted by α. Notably, α

is then utilized to reweight Ft , resulting in a new feature map
denoted by F̂ t = α⊗Ft . Subsequently, pixel-level predictions
psic

t , psod
t , and pfloe

t are obtained through P , with a heightened
focus on poorly aligned areas. Subsequently, we employ the
loss function LC

adv to optimize the discriminator C , which
facilitates adversarial learning by comparing the predictions
pt and ps . The above procedures can be expressed as follows:

psic
t , psod

t , pfloe
t = P(Ft ) (14)

psic
s , psod

s , pfloe
s = P(Fs). (15)

3) Multi-Task Decoding Predictor: Regarding the target
domain features F̂ t obtained from the DA module, we employ
the convolutional group module for feature representation
modeling, followed by upsampling. The convolutional group
module comprises three consecutive convolutional layers,
where each layer is accompanied by a batch normalization
layer and a rectified linear unit (ReLU) function. In addi-
tion, we introduce three sets of deformable convolutions at
the model’s final stage. In comparison with conventional
fixed grid convolutions, deformable convolutions [72] adapt
to irregular shapes and structures by learning spatial trans-
formations, enabling more precise capture of target features.
This convolutional approach allows the model to dynamically
adjust its receptive field, thereby enhancing its adaptability
to the diverse and complex input data. The incorporation of
deformable convolutions significantly improves the model’s
ability to adapt to changes in the shape of sea ice.

4) Loss Function: The overall loss function mainly consists
of three loss terms

L = Lseg + ηLD
adv + µLC

adv (16)

where η and µ are the hyperparameters that have been set
to 0.5. The first term on the right-hand side of (16) can be

expressed as follows:

Lseg(y, ŷ) = λ1Lce(ysic, ŷsic)

+ λ2Lce(ysod, ŷsod)

+ λ3Lce(yFLOE, ŷFLOE) (17)

where Lce represents the label smoothing cross-entropy loss
function [73]. Also, the second term on the right-hand side
of (16) can be expressed as follows:

LD
adv(D) = min

D
EXs∼p(Xs )

[
(D(Fs) − 0)2]

+ EX t ∼p(X t )

[
(D(Ft ) − 1)2] (18)

LD
adv(E) = min

E
EX t ∼p(X t )

[
(D(E(Ft )) − 0)2] (19)

where Fs represents the feature map extracted from the input
sample Xs in the source domain, while Ft represents the
feature map extracted from the input sample X t in the target
domain. The terms EXs∼p(Xs ) and EX t ∼p(X t ) denote the expec-
tation of sampling from the data distribution of the source
domain and target domain, denoted by p(Xs) and p(X t ). Also,
the third term on the right-hand side of (16) can be expressed
as follows:

LC
adv(C) = min

C
EXs∼p(Xs )

[(
C
(

psic
s , psod

s , pfloe
s

)
− 0
)2
]

+ EX t ∼p(X t )

[(
C
(

psic
t , psod

t , pfloe
t

)
− 1
)2
]

(20)

LC
adv(E, P) = min

E
EX t ∼p(X t )[(C({Psic, Psod, Pfloe}

◦E(X t )) − 0)2] (21)

where Pκ ◦ E(X t ) represents the category mapping of features
extracted from target domain input samples, the parameters
psic

s , psod
s , pfloe

s from (14) and the parameters psic
t , psod

t , pfloe
t

from (15) are incorporated into (20).

IV. EXPERIMENTS

A. Experimental Platform Parameter Settings

The experiments were conducted on a desktop equipped
with an NVIDIA GeForce RTX 4060Ti 16-GB GPU using
PyTorch 1.10. For the training of both MLFMIM and MFDA,
we employed the Adam optimizer [74] as the initial optimizer,
with an initial learning rate of 5 × 10−4 [55]. The MLFMIM
model was trained for 400 epochs with a batch size of 32.
The MFDA model was trained for 200 epochs with a batch
size of 32. To assess the efficacy of the model, we employed
the F1-score (F1) and overall accuracy (OA) as evaluation
metrics.

B. Determination of MFDA Parameters

The current study investigates the optimal configuration
of the MFDA. The experimental outcomes are delineated in
Table II, corroborating the findings with previous studies that
have dissected the effects of varying stage layer stacking on
model efficacy [62], [66]. This experiment aims to deter-
mine the optimal architectural parameters of MFDA through
experimental evaluation. Specifically, the study explores the
influence of the number of channels and the layers across
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TABLE II
IMPACT OF DIFFERENT HYPERPARAMETERS ON THE MODEL

PERFORMANCE WAS INVESTIGATED, WHILE MLFMIM
AND DA WERE NOT INCORPORATED. IN THE MFDA, THE

NUMBER OF CHANNELS IN THE FIRST STAGE WAS
SET TO C, AND THE CHANNEL NUMBERS IN THE

SUBSEQUENT STAGES INCREASED IN THE
MANNER OF [C, 2C, 4C, 8C]. LAYERS

DENOTE THE NUMBER OF STACKED
BLOCKS AT EACH STAGE OF
THE NETWORK, AND GRAY

REPRESENTS THE
BEST RESULT

different stages on model performance. A total of nine exper-
imental combinations were designed to investigate the impact
of basic channel numbers of {16, 32, and 64}, as well as the
layers of {[2, 2, 2, 2], [2, 2, 6, 2], and [3, 4, 8, 3]}. The
findings suggest that a larger number of channels can lead
to an excessive number of parameters, increase model com-
plexity, and potentially result in overfitting, thereby reducing
the model’s generalization performance. A smaller number of
channels may not be able to fully capture the rich features of
the input data, limiting the model’s expressiveness. A medium-
sized number of channels, such as 32 channels, appears to
provide a better balance between the performance and model
complexity.

The findings indicate that when the stage stacking configura-
tion in MFDA is an even number, such as [2, 2, 2, 2] or [2, 2, 6,
2], the model performance is superior to the odd stage stacking
configuration, such as [3, 4, 8, 3]. The shifted window attention
mechanism proposed in Swin Transformer [62] appears to
function more effectively under the even stage configuration.
Specifically, Stage 3 and Stage 4 utilize this mechanism to pro-
mote cross-window feature communication and fusion, thereby
enhancing the model’s receptive field and expression ability.
However, an excessively low number of stage stacks, such
as [2, 2, 2, 2], may limit the model’s expression ability and
prevent it from fully learning the complex features in the data.
Therefore, this study selects the [2, 2, 6, 2] layers configuration
as a more reasonable compromise. This configuration retains
the advantages of the Swin Transformer’s shifted window
mechanism while increasing the stacking depth of Stage 3,
thereby enhancing the model’s expressive capability.

C. Efficacy of MTL

To investigate the efficacy of MTL, we performed three
task experiments. The experimental results are presented in
Table III. Notably, the multi-task model achieved a marked
enhancement in F1-scores, with increments of 0.9%, 2.4%,
and 4.6% for the respective tasks, thereby outperforming the

TABLE III
COMPARISON BETWEEN MULTI-TASK AND SINGLE-TASK LEARNING,

GRAY REPRESENTS THE BETTER RESULT

single-task model. These results demonstrate that MTL yields
improved performance. This enhancement can be attributed to
the inherent correlations among various sea ice parameters and
the capacity of MTL to bolster the model’s robustness against
noise and uncertainty. When the training dataset for sea ice
is limited, the feature representation achieved through MTL
outperforms that of single-task learning, thereby enhancing
the model’s generalization ability. This approach leverages
positive transfer between tasks, wherein the learning of one
task actively facilitates the learning of other related tasks, thus
improving the overall training and inference performance. For
instance, in a specific region, higher SIC is typically associated
with larger floe sizes. In an MTL framework, the model
can learn these correlations, resulting in simultaneous perfor-
mance improvements across all tasks. By integrating multiple
related tasks and reusing features, MTL establishes implicit
constraints between tasks, offering a more effective solution
compared to traditional single-task learning. Furthermore,
through information sharing and optimization processes, MTL
not only enhances model performance but also effectively
mitigates the risk of overfitting, thereby further improving the
model’s generalization ability.

D. Parameter Sharing Experiment

In this study, we examined the performance difference
between soft parameter sharing and hard parameter sharing
methods for sea ice classification tasks. Specifically, we con-
figured the model’s decoder according to different sharing
strategies. For the soft parameter sharing approach, we used
three independent decoder parameter sets to learn the distinct
classification tasks of SIC, SOD, and FLOE. In contrast,
for the hard parameter sharing method, we employed a
single-shared decoder and achieved MTL by connecting three
independent classification heads.

The comparative experimental outcomes are provided in
Table IV. In the evaluation of OA across the SIC, SOD,
and FLOE tasks, the UNetHard model demonstrated superior
performance over the UNetSoft model, with respective OA
improvements of 2.1%, 0.3%, and 0.5%. In addition, the
MFDAHard model surpassed the MFDASoft model in the
SOD task by an OA margin of 3.6%. These findings indicate
that in sea ice applications, soft parameter sharing methods
perform less effectively than hard parameter sharing in MTL.
The advantages of hard parameter sharing lie in its simplicity
and efficiency, particularly when addressing highly correlated
tasks [75]. By sharing representations, hard parameter sharing
mitigates the risk of overfitting to a single task and enhances
training and inference efficiency by reducing the number of
parameters. Given the inherent similarities among different
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Fig. 5. Overall description of the proposed data fusion paradigm (CNN). (a)–(d) Correspond to (1)-(4) CNN-based fusion paradigms.

TABLE IV
COMPARISON RESULTS BETWEEN DIFFERENT PARAMETER SHARING,

GRAY REPRESENTS OUR METHOD

sea ice classification tasks—such as the correlation where a
higher SIC corresponds to a higher floe ratio in a specific
area—hard parameter sharing can better leverage these task
similarities, thus improving the effectiveness of MTL for sea
ice classification. In contrast, soft parameter sharing tends
to increase the number of model parameters, which can
complicate training and diminish the model’s generalization
performance. Consequently, the subsequent experiments in this
study adopt a hard parameter sharing configuration.

E. Fusion Paradigm Selection

In this work, we investigate the impact of different fusion
paradigms on multimodal data fusion for semantic segmenta-
tion. Existing deep learning models for this task can be broadly
categorized into CNN-based and Transformer-based fusion
methods. For the CNN-based approaches, the choice of fusion
level has a significant impact on the overall performance.
Conversely, for the Transformer-based fusion methods, the
self-attention mechanism can be leveraged to fuse multimodal
features at the token level, which may offer advantages over
the CNN-based techniques. However, fusion at different levels

still plays a key role in determining the performance of
Transformer-based fusion methods as well.

For the CNN-based fusion, we conducted an evaluation
of four distinct training paradigms, as delineated in Fig. 5.
To delineate these paradigms, we introduce a symbolic rep-
resentation for input modalities and network components.
Distinct colors denote the Encoder Blocks/Convolutions of
each branch, with the final blocks representing feature maps
from various stages.

Specifically, different paradigms depicted in the correspond-
ing images can be described as follows.

1) Direct resampling of multimodal data to a unified reso-
lution, followed by concatenation at the model input

F = fen(XHR ∥ XLR). (22)

2) Independent convolutional processing of modalities,
subsequent concatenation, and feeding into a shared
encoder

F = fen(WHR XHR ∥ WLR XLR). (23)

3) Separate convolutional layers for modalities, followed
by a shared encoder with weight sharing

F = fen(WHR XHR), fen(WLR XLR). (24)

4) Initial separate convolutional processing, fusion of LR
and HR feature maps, and progressive integration of LR
features into the HR branch via an independent encoder

F = fen(WHR XHR) + fen(WLR XLR). (25)

For the Transformer-based fusion methods, different
paradigms are shown in Fig. 6. We adopt methodologies
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Fig. 6. Overall description of the proposed data fusion paradigm (Transformer). (a) and (b) Correspond to (1)-(2) Transformer-based fusion paradigms.
(c) Detail of CrossFormer. (d) Detail of MFT.

from the CrossFormer [76] and MFT [46] frameworks. The
schematic employs color coding to differentiate the Encoder
Block/Convolution/Transformer components across various
branches, with the final blocks indicating the aggregated
feature maps from successive stages. The notation Cross.
in the figure signifies the CrossBlock1/CrossBlock2 fusion
operations.

Different fusion methods can be described as follows.
1) Initial feature extraction is conducted via convolutional

layers for each input modality, succeeded by the appli-
cation of CrossBlock (denoted as “Cross.”) for feature
fusion across modalities

F = fen(Cross.(WHR XHR, WLR XLR)). (26)

2) Features are extracted for each modality using separate
encoders postconvolutional processing. Subsequently,
the Cross. operation is applied to integrate features from
different modalities and stages

F = {Cross.i( fen(WHR XHR)i , fen(WLR XLR)i )}
4
i=1.

(27)

Let the input feature as zk−1 and the output as zk . The forward
process of Transformer [46], [77], [78] can be expressed as
follows:

z′

k = zk−1 + MSA(LN(zk)) (28)

zk = z′

k + MLP
(
LN
(
z′

k

))
. (29)

We denote the input features at Stage i are zHR and zLR,
then map zHR to Qh, Kh , and Vh , and zLR to Ql , Kl , and Vl .

Subsequently, we perform the cross-attention mechanism to
compute the output representations. Finally, convolution is
applied, and the features are projected to the same dimension.
The forward process can be expressed as follows:

z′

HR = zHR + MSA

LN

zLR, zHR, zHR︸ ︷︷ ︸
Ql ,Kh ,Vh

 (30)

z′

LR = zLR + MSA

LN

zHR, zLR, zLR︸ ︷︷ ︸
Qh ,Kl ,Vl

 (31)

ẑHR = z′

HR + MLP
(
LN
(
z′

HR

))
(32)

ẑLR = z′

LR + MLP
(
LN
(
z′

LR

))
(33)

zo = W o
i

(
ẑHR ∥ ẑLR

)
(34)

where W o
i refers to learnable matrix. In addition, the forward

process of MFT can be expressed as follows:

z′
= zHR + MSA

LN

zLR, zHR, zHR︸ ︷︷ ︸
Ql ,Kh ,Vh

 (35)

zo = W o
i

(
z′

+ MLP
(
LN
(
z′
))

+ zLR
)
. (36)

The results of different paradigms are presented in Table V.
It should be noted that we did not evaluate MLFMIM and
DA, which allows us to examine the differences between
the various fusion paradigms. For the CNN-based paradigm,
Paradigm d performs best on the SIC task. Compared to
Paradigms a–c, the F1 score is higher by 4.2%, 4.1%, and 2%,
respectively. However, the F1 and OA scores of Paradigm d
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TABLE V
COMPARATIVE EVALUATION OF DATA FUSION PARADIGMS ACROSS

CNN-BASED AND TRANSFORMER-BASED, MLFMIM, AND
DA ARE NOT USED, AND GRAY REPRESENTS OUR METHOD.

IN THE CNN-BASED METHODS, PARADIGMS A–D
DENOTE THE DISTINCT FUSION STRATEGIES. IN

THE TRANSFORMER-BASED APPROACHES, AC AND
BC REFER TO THE PARADIGMS A AND B OF THE
CROSSFORMER MODULE WITHIN THE CROSS.
FUSION TECHNIQUE. IN ADDITION, AD AND

BD REPRESENT THE PARADIGMS A AND B
OF THE MFT FUSION APPROACH

IN THE CROSS. FRAMEWORK

on the SOD task are lower than Paradigm c by 0.9% and
1.4%, respectively. This suggests that for both CNN-based
and Transformer-based methods, it is preferable to process
HR and LR data separately. Using a shared-weight feature
extraction module to process HR and LR data simultaneously
can lead to confusion in the feature extraction module, result-
ing in decreased model accuracy. For the Transformer-based
paradigm, the F1 score of Paradigm ac on SIC is better than
ad, bc, and bd by 3.2%, 4.3%, and 2.7%, respectively, but its
performance on SOD is the worst. Paradigm bc has the best
F1 score on FLOE, which is better than ac, ad, and bd by
0.9%, 4.9%, and 2.1%, respectively. This suggests that using
CrossFormer and MFT to replace the splicing and addition
operations can improve the model, but the introduction of
Transformer modules in shallow fusion will slow down the
training and cause confusion between different tasks. The strat-
egy of progressive fusion using Paradigm c achieves the best
results, as it separates the feature extraction modules for HR
and LR data and considers the interaction between different
layers. Therefore, we choose this paradigm as our baseline
method.

F. MIM Ablation Experiment

To explore the potential of the MIM method on multimodal
data, we investigated the impact of various improvements
on MLFMIM. The experimental results are presented in
Table VI. We define the baseline models, which include
SimMIM [54] and LocalMIM [56]. LocalMIM outperforms
SimMIM, particularly on the SOD task, where the F1 score
and OA are higher by 2% and 3%, respectively. This suggests
that the multistage constraint method is effective. Given the
versatility of MLFMIM, we explored replacing the original
linear decoder with a two-layer MLP or Transformer/Swin
Transformer decoder. We found that the Swin Transformer
decoder is more efficient, especially in improving the FLOE
index, where the F1 score and OA reached 77.1% and 78.1%,

respectively. For the prediction target, considering that remote
sensing data are typically processed by low-pass and high-pass
filtering, we compared the original pixels, low-pass filtering,
and high-pass filtering as targets. Using high-pass filtering
resulted in a gradient effect, causing the model to degrade,
particularly in the F1 index of SIC, which was 3.3% and 4.3%
lower than the RGB and low targets, respectively. In addition,
as shown in Fig. 7, we visualized the reconstruction of
different features. We found that using low-pass filtering as the
training target is more effective. It is challenging for the model
to reconstruct the edges, details, and noise in the original
pixels and high-pass filtering, and it is difficult to learn useful
features.

G. Reconstruction Masking Analysis

Table VII presents the experimental results using different
masking ratios for the MLFMIM. The best performance was
achieved at a masking ratio of 60%. Notably, the MLFMIM
method was found to be effective even at low masking ratios,
highlighting the effectiveness of its independent reconstruction
approach. This improvement is attributed to the encoder’s abil-
ity to learn robust feature representations, thereby mitigating
the impact of multimodal data noise. From a masking ratio
of 20%–60%, the model’s performance gradually increased as
the masking ratio increased. Even at higher masking ratios,
such as 75%–90%, the model was still able to effectively
learn features. However, extremely high masking ratios, such
as 95%, posed challenges for the model in learning effective
features due to significant information loss and ambiguity.

H. Comparative Experiment

The proposed method was benchmarked against a
diverse set of representative deep learning techniques
for semantic segmentation, including CNN-based architec-
tures, such as UNet [33], PSPNet [79], LinkNet [80],
DeepLabv3 [81], MMSeaIce [9], and UNet++ [82], as well
as Transformer-based models including SwinUNet [9],
SwinUper [62], UniFormer [58], and PoolFormer [67]. In addi-
tion, DA approaches, specifically AdaptSegNet [40] and
DAST [71], were included in the comparative evaluation. For
a fair comparison, the network configurations were kept con-
sistent with the settings reported in the original publications.
Where necessary, minor parameter adjustments were made
to accommodate the requirements of the multimodal remote
sensing data segmentation task.

The experimental results are presented in Table VIII. The
proposed method demonstrates significant advantages over the
baseline techniques. While U-Net performs well within a sin-
gle region, it exhibits suboptimal performance in cross-region
retrieval tasks, particularly in the classification of different ice
types, achieving the lowest F1 score of 67.5%. LinkNet is
less effective than U-Net in extracting FLOE features, likely
due to the absence of deconvolution operations. Both the
PSPNet and DeepLabV3 models demonstrated their respective
strengths across the three evaluation tasks. The PSPNet model
achieved the best overall results in the SIC and FLOE tasks,
with F1 scores exceeding those of DeepLabV3 by 2.9% in
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TABLE VI
COMPARISON OF DIFFERENT DATA FUSION PARADIGM, MLFMIM, AND DA ARE NOT USED, AND GRAY REPRESENTS THAT WE CHOOSE

Fig. 7. Reconstruction visualization results of different targets.

TABLE VII
COMPARISON OF DIFFERENT RATES, AND GRAY

REPRESENTS OUR METHOD

SIC and 2.7% in FLOE. Notably, the MMSeaIce model, as a
state-of-the-art (SOTA) approach, performed well across all
three tasks; however, it exhibited suboptimal performance in
FLOE and struggled to distinguish between different types of
sea ice in the cross-scene SOD task. In the case of UNet++,
its densely connected architecture exhibited a tendency to
overfit within a single region, rendering it less suitable for
cross-scenario classification tasks. In addition, for the Swin
Transformer model, the UNet-like architecture proved inade-
quate, as evidenced by its poor performance in the SOD task,
where it achieved an F1 score of only 66.9%, consistent with
findings from the previous literature [9].

Compared with the combination of the Swin Transformer
and U-Net architectures, integrating the Swin Transformer

with the UperNet [83] approach demonstrated better
suitability for cross-scene classification tasks. Specifically, the
F1-scores on the SOD and FLOE benchmarks were 1.6%
and 2.5% higher, respectively, than the SwinUNet configura-
tion. Regarding the UniFormer model, the architecture was
primarily designed for video segmentation tasks; thus, the
decoder design may need to be reconsidered for optimal
performance on cross-scene classification problems. For the
PoolFormer model, the results confirm the superiority of
the Transformer-based architecture. In the context of sea
ice classification, the use of complex spatial representation
acquisition methods may not provide significant benefits, and
architectural adjustments could lead to substantial performance
improvements. Regarding the DA-based methods, such as
AdaptSegNet, the F1 and OA on the SOD task reached 67.7%
and 68.9%, respectively, which are weaker than the perfor-
mance of DeepLabV3 and other benchmark models. However,
these DA-based approaches exhibited improved results on
the FLOE task, surpassing DeepLabV3 by 1.6% higher
F1-scores. The DAST model achieved an F1 of 76.3% on the
SIC task, outperforming DeepLabV3 and other methods, but
underperformed on the SOD and FLOE tasks. This disparity
can be attributed to the fact that these DA-based techniques
were primarily designed for RGB image inputs, and they fail
to adequately capture the role of local and global features
in remote sensing imagery, rendering them less effective in
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TABLE VIII
COMPARATIVE EXPERIMENTS ON AI4ARCTIC DATASET, GRAY REPRESENTS OUR PROPOSED METHOD

MTL scenes. In contrast, the MFDA achieved the best overall
results across the SIC, SOD, and FLOE tasks, particularly
excelling on the SOD task. This can be attributed to the
pretraining of the MLFMIM encoder, which enabled the model
to learn common features across diverse scene images, and
the subsequent introduction of domain adaptation techniques,
which further harmonized the feature representations across
different domains.

We present a visual comparison of the segmentation results
obtained from various deep learning methods across different
geographic locations and time periods. The results for the
freezing season are illustrated in Figs. 8–11. The U-Net and
LinkNet models exhibit a tendency for minor classification
errors, with their delineation of ice-water boundaries appearing
relatively ambiguous. Conversely, the PSPNet and DeepLabV3
models struggle to accurately capture the variability in SIC;
however, their segmentation outputs tend to be more coherent
and natural compared with U-Net and LinkNet, which may
be attributed to the effects of the global pooling mechanism.
The MMSeaIce model demonstrates strong performance in
segmenting SIC and effectively captures floes, yet it exhibits
significant misclassification results for SOD, likely due to
the pronounced variations in sea ice types across differ-
ent scenarios. The UNet++ architecture, with its nested
encoding–decoding structure, excels at capturing multiscale
feature information, yet it frequently produces incoherent
misclassification artifacts when processing cross-scene images.
The SwinUNet model tends to underestimate the presence of
sea ice and encounters challenges in accurately representing
the morphological characteristics of various ice types. Both
SwinUper and UniFormer perform comparably in the ice-water
separation task; however, the UniFormer model exhibits more
pronounced errors in simulating the dynamic changes of the
ice-water boundary, often failing to distinctly differentiate
between ice cubes of varying sizes and confusing small ice
cubes, pancake ice, and medium-sized ice cubes. In contrast,
the PoolFormer architecture effectively captures boundary
changes between different ice regions but often underestimates
the density and size of the ice. The results of AdaptSegNet
exhibit significant fluctuations along the ice-water separation
boundary, with SIC gradually increasing from 10% to 100%,
yet it often underestimates the overall SIC. Nevertheless,

AdaptSegNet achieves some correct classifications in the SOD
task, and the changes in the separation boundary are also
reflected in the floe task. The DAST model does not demon-
strate a clear trend in the ice-water separation boundary for
the SIC task; however, it does exhibit a trend of change in
the SOD and floe tasks, and its performance aligns more
closely with the ground truth than with the actual situation,
particularly when compared with CNN or Transformer-based
methods. The introduction of deformable convolution [72] in
the MFDA model enhances its performance in the FLOE task,
enabling it to effectively capture the size characteristics of ice
blocks and clearly delineate the boundaries between different
ice types; however, it still exhibits limitations in ice-water
separation.

The results for the melting season are presented in Fig. 12.
CNN-based methods, such as U-Net, tend to underestimate
SIC in the ice-water separation zone and produce inaccurate
estimates in areas with high SIC boundaries. Transformer-
and UperNet-based methods, including SwinUper, struggle to
effectively classify results across varying densities; however,
SwinUNet demonstrates improved performance in addressing
this issue. The integration of Transformer architectures with
U-shaped structures effectively delineates boundaries of dif-
ferent densities. In the case of the DA model, AdaptSegNet
can accurately partition SIC over a wide range, although it
still exhibits instances of misclassification. DAST tends to
overestimate SIC, particularly in the intermediate regions. The
MFDA model achieves the highest accuracy in SIC, providing
overall close classification results, yet it still faces challenges
in capturing the nuances of the ice-water melting process at
the boundary. In the SOD task, methods based on U-shaped
structures are prone to generating ambiguous classification
results, whereas Transformer- and UperNet-based methods
tend to produce more coherent outcomes. DA-based methods,
such as AdaptSegNet, often yield incorrect classifications in
areas where open water meets land boundaries. The MFDA
model achieves the best overall performance in the SOD
task; however, it occasionally misclassifies melted water as
old ice in open water regions. In the floe classification task,
U-shaped structure-based methods exhibit smoother bound-
aries between different categories of floes. In contrast,
Transformer- and UperNet-based methods tend to focus on



4303221 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 8. This figure presents the sea ice mapping results in the SAR scene (ID: 20201104T171455_dmi) acquired through various models, located near the
Greenland Sea. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure are depicted in white shading.

Fig. 9. This figure presents the sea ice mapping results in the SAR scene (ID: 20190330T102526_dmi) acquired through various models, located at the
junction of Baffin Bay and the Labrador Sea. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure
are depicted in white shading.

the global category of floes but struggle to differentiate
between vast floes and big floes. The PoolFormer model
faces challenges in recognizing the size of ice due to its

lack of an attention mechanism. Although DA-based methods
account for differences across various scenes, they do not ade-
quately consider the morphological characteristics of different
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Fig. 10. This figure presents the sea ice mapping results in the SAR scene (ID: 20210402T203557_dmi) acquired through various models, located near the
Labrador Sea. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure are depicted in white shading.

Fig. 11. This figure presents the sea ice mapping results in the SAR scene (ID: 20211214T115920_dmi) acquired through various models, located at the
junction of Baffin Bay and the Arctic Ocean. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure
are depicted in white shading.

floe categories. While MFDA demonstrates the best overall
results in the FLOE classification task, it still encounters
misclassification issues near open water, which may be
attributed to ice fragmentation.

I. Module Ablation Experiment
We conducted ablation experiments to analyze the contri-

butions of different modules, and the results are presented
in Table IX. The combination of Convolutional Transformer
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Fig. 12. This figure presents the sea ice mapping results in the SAR scene (ID: 20210706T115305_dmi) acquired through various models, located near the
Baffin Bay. The corresponding methodology and image label are indicated below. Unmarked land or regions in the figure are depicted in white shading.

TABLE IX
ABLATION EXPERIMENTS OF DIFFERENT MODULES, WHERE CNN REPRESENTS THE COMPLETE USE OF CONVULATIONAL TRANSFORMER AS THE

BACKBONE, TRANSFORMER REPRESENTS THE COMPLETE USE OF WINDOW TRANSFORMER AS THE BACKBONE, AND MIX REPRESENTS THE
MIXTURE OF THE TWO. DISCOVERER AND CORRECTOR COME FROM DA, AND DEFCONV REPRESENTS DEFORMABLE CONVOLUTION

and Window Transformer significantly improved the model
performance compared with CNN and Transformer baselines,
with an F1-score increase of 0.023 and 0.026 for the SIC
task, and an F1-score increase of 0.055 and 0.065 for the
FLOE task. The discoverer and corrector components played
a key role in the classification of SOD and FLOE. Removing
the discoverer component reduced the model performance
by 0.019 and 0.063 in F1-score for the SIC and FLOE
tasks, respectively, but increased the F1-score for the SOD
task by 0.015. Removing the corrector component reduced
the F1-score for the SIC and FLOE tasks by 0.018 and
0.021, respectively, but it still promoted the SOD task per-
formance, which may be related to the inherent error bias
in the polynya classification of sea ice. The introduction of
deformable convolution also improved the model, especially
for the FLOE task, where it increased the F1-score and OA
by 0.044 and 0.035, respectively. This is because deformable

convolution is effective at capturing shape relationships, which
are highly correlated with the FLOE task. Through the careful
combination of these different modules, the MFDA achieved
the best overall results.

J. Feature Visualization

Fig. 13 presents a visualization of the selected encoder
output features from the proposed MFDA framework, with
and without the application of DA. A comparative analysis
was conducted on the first 16 feature maps. The results
indicate that the feature maps generated with the inclusion
of data augmentation exhibit a more refined and detailed
appearance, capturing finer-grained characteristics such as
object edges, contours, and textural structures. In contrast, the
feature maps produced without data augmentation demonstrate
a comparatively inferior visual quality. This visual comparison
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Fig. 13. Visualization of feature maps was conducted for the input and output of the DA module. The source represents the feature maps without the
application of the DA module, while the target denotes the feature maps obtained after the application of the DA module.

provides empirical evidence supporting the effectiveness and
importance of incorporating DA within the MFDA framework.

V. CONCLUSION

Sea ice classification and segmentation based on SAR has
long been an indispensable and important research topic in the
field of polar remote sensing. The exploration and commercial
development of polar regions are inextricably linked to the
rapid advancement of sea ice retrieval remote sensing technol-
ogy. However, the well-designed and specialized segmentation
methods developed thus far are largely only applicable to
sea ice in relatively homogeneous single regions, and these
methods are often tailored to a single retrieval task, without
considering the inherent relationships between different sea ice
parameters. This limitation seriously hinders the application
deployment in areas without readily available reference data,
as route planning and management tasks, such as policy
making and risk assessment, require research on multi-task
sea ice retrieval in diverse scenes.

To address this challenge, we studied the problem of
cross-scene multi-task sea ice retrieval and proposed a unified
solution. First, we investigated the fusion of multimodal data.
We developed the MFDA, which utilizes a unified CNN
and Transformer architecture to solve MTL based on the
multimodal data fusion. Subsequently, we introduced a novel
self-supervised method to enable the encoder component to
learn a common representation of multimodal data across dif-
ferent scenes. Finally, we incorporated a DA module between
the common representation and the multi-task prediction head
to narrow the gap in data representation between different
scenes. Extensive experiments conducted on the Ai4Arctic
dataset demonstrate that the proposed MFDA model achieves
SOTA segmentation performance, outperforming other CNN,
Transformer, and DA-based methods across a wide range of
key evaluation metrics.

In future work, we aim to extend the scope of our research
to the Antarctic region in order to more comprehensively

investigate the problem of cross-scene large-scale sea ice
retrieval. In recent years, diffusion models have demonstrated
remarkable performance in remote sensing tasks, such as
image denoising, cloud removal, and image generation, which
has garnered significant attention from the academic and
industrial communities. Going forward, we will continue to
explore the application potential of diffusion models in SAR
denoising and generation, and assess their feasibility as data
augmentation tools. Simultaneously, we will further investigate
the application of conditional diffusion models to accurately
estimate sea ice density, with the aim of improving cross-scene
sea ice parameter retrieval.
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