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Abstract— Image segmentation using deep learning has become
overwhelmingly widespread. However, routine model testing
methods can encounter evaluation inconsistencies or bias, largely
due to how accuracy metrics respond to variations in class share
distribution. Here, we address the effects of class imbalance
on model performance evaluation and demonstrate a refined
approach that incorporates image classification efficacy (ICE)
metrics within the context of semantic segmentation in remote
sensing. This evaluation approach was applied in six segmentation
experiments that involved multispectral and LiDAR data, single
or multiple models tested with the same or different datasets,
and binary and multiclass schemes. ICE metrics revealed unique
aspects of model’s segmentation capabilities compared to pre-
cision, recall, F-score, and overall accuracy. By mitigating the
class imbalance effect, per-class efficacy enables precise class-level
optimization of segmentation models, while whole-class efficacy
facilitates evaluating a model’s potential performance when
adapted to new datasets. The suitability of the kappa coefficient,
ROC-AUC, and PR-AUC for model evaluation under class
imbalance was discussed in comparison with ICE metrics. This
efficacy-enhanced model evaluation protocol can be implemented
for deep learning model training and testing. The routine use of
this evaluation approach will strengthen the dependability and
applicability of segmentation tools in various fields.

Index Terms— Artificial intelligence, class imbalance, map-
level image classification efficacy (MICE), model testing,
performance assessment, semantic segmentation.

I. INTRODUCTION

IMAGE segmentation is a vital computer vision task with
extensive applications in various fields, including medical

imaging and Earth observation [1], [2], [3], [4], [5], [6].
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With the fast development of numerous deep learning models,
the integration of deep learning into image segmentation has
evolved at such a rapid pace that it has fundamentally revolu-
tionized the entire field of image segmentation over the past
decade. However, the performance of deep learning models
continues to be assessed using traditional accuracy metrics that
are sensitive to class imbalance. This approach of segmentation
evaluation has, to some extent, contributed to the reproducibil-
ity crisis in deep learning applications [7], [8], [9], [10]. In the
age of artificial intelligence, it is crucial to transform the
evaluation of image segmentation model performance.

Semantic segmentation, also known as pixel classification
in the field of computer vision, is a widely used image
segmentation technique that assigns each pixel in an image
to a specific class [11], [12]. In many application fields,
semantic segmentation or pixel classification is also referred
to as pixel-based image classification or simply image classifi-
cation [13], [14], [15], [16], [17], [18]. Alongside pixel-based
image classification, there exists object-based image classifica-
tion [19]. To evaluate these segmentation tasks, the results are
compared with reference data, commonly known as ground
truth, resulting in a confusion matrix or error matrix [20].
From this matrix, various accuracy metrics can be computed
(Table I). While the primary accuracy metrics used in different
academic fields are essentially the same, they may have
different names [2], [21], [22], [23], [24], [25], [26]. The most
used per-class metrics include precision (and its synonyms),
recall (and its synonyms), specificity, F-score (also known as
F1 score and F-measure), intersect over union (IoU), and the
Dice coefficient (Dice) (Table I). Although these metrics orig-
inated from binary segmentations, they have become popular
in multiclass segmentations. On the other hand, whole-class
metrics mainly include overall accuracy (OA or A), the kappa
coefficient, and the means of class-level metrics, such as mean
recall, mean F-score (mF), and mean IoU (mIoU) (Table I) [1],
[11], [26], [27].

The overall accuracy of image segmentation is influenced by
the distribution of class shares and the number of classes and
tends to exaggerate the model’s performance on imbalanced
datasets [28], [29], [30], [31]. In other words, it is easier
to achieve a high overall accuracy when segmenting image
data with substantial disparities in class shares, such as global
burned area mapping [32]. On the other hand, per-class accu-
racy often corresponds to the proportion of class shares [33],
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TABLE I
GENERAL TERMINOLOGY AND MATHEMATICAL EXPRESSIONS FOR SELECTED METRICS USED

FOR EVALUATING BINARY OR MULTICLASS SEMANTIC SEGMENTATION

[34], [35], [36]. This phenomenon, known as the “class
imbalance effect” [2], [15], suggests that high accuracy values
may not necessarily indicate the desired quality of image
segmentation. This is particularly relevant when a purpose
class has fake high accuracy, while a nonpurpose class exhibits
fake low accuracy or vice versa. As a result, it is impossible to
directly compare the performance among models when the test
data consist of varying class share distributions [12]. Further-
more, these class share-induced changes in accuracy values
can cause erroneous conclusions regarding the reproducibility
of a particular deep learning model [7], [8], [9], [10].

Along with accuracy metrics, the kappa coefficient is
also a prominent measure employed in accuracy assessment
in remote sensing. Originally developed to evaluate the

agreement between two independent judges while accounting
for chance agreement in social science [37], the kappa
coefficient has become one of the most controversial metrics
in accuracy assessment [38], [39], [40]. Three reasons make
the kappa coefficient inappropriate for accuracy assessment.
First, its assumption of noncorrectness for both judgments
is inconsistent with the accuracy assessment paradigm in
image segmentation, where reference data are presumed
to be correct. Second, the chance agreement component
(n j+n+ j , see Table I) depends on the assumption of
independence between judgments, which is not invalid in
deep learning-based image segmentation, where training and
reference data often originate from the same population.
Finally, the kappa coefficient is not an accuracy metric.
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The desired segmentation power of a model is characterized
by its ability to consistently achieve high accuracy in
separating classes, particularly confused classes, regardless
of fluctuations in class share distribution. However, due to
the class imbalance effect, conventional accuracy metrics can
introduce bias in evaluating model performance and may
not reflect the real segmentation power of the model. The
straightforward connection between the real and apparent
segmentation powers of a model is expressed as follows:

Pr = Pa − B (1)

where Pr is the model’s real segmentation power, Pa is the
model’s apparent segmentation power, and B is the bias in
model performance caused by class share variations.

The conceptual model of (1) is well represented by using
image classification efficacy (ICE) metrics, which lessen the
class imbalance effect by considering class share-proportional
random probability as a general baseline (Table I) [41].
If ICE = 1, the segmentation is perfect; if ICE < 0, the
segmentation is worse than random assignment and is therefore
considered ineffective. The per-class accuracy of the baseline
is equivalent to the class share proportion in percentage terms,
meaning that the larger a class, the greater its accuracy
value. The overall accuracy of the baseline increases with the
skewness of the class size distribution and decreases with the
number of classes. For instance, the overall accuracy for binary
baseline segmentation with a class share ratio of 0.75:0.25 is
0.625 (0.752

+0.252), surpassing that for a class share ratio of
0.5:0.5 (0.52

+ 0.52
= 0.500). These two accuracy values are

both greater than the overall accuracy for a four-class baseline
segmentation with an equal share (4 × 0.252

= 0.250).
Due to this computational mechanism, ICE mitigates the bias
in segmentation performance caused by varying class share
distributions and class counts. To facilitate the applications
of ICE, Shao et al. divided its values into eight scales [41].
According to this scaling, for example, Zheng et al.’s image
segmentation [42] has reached the extraordinary map-level ICE
(MICE) of 0.77, confirming the great performance of their
model as indicated by high OA.

The ICE metrics are potentially applicable across various
academic fields involving image segmentation, but their
explicit application within this context has not been sufficiently
elucidated. One primary question is, why is there a need for
efficacy metrics when accuracy metrics already exist? Using
six segmentation experiments in remote sensing, this article
aims to systematically clarify the limitations of segmentation
evaluation using accuracy metrics, explicitly interpret ICE
metrics across diverse segmentation scenarios, and enlighten
efficacy-reinforced evaluation of image segmentation models.
This contribution paves the way for implementing the trans-
formed practices for assessing the real segmentation power of
deep learning models in various fields.

II. SEGMENTATION EXPERIMENTS

Each image segmentation task is unique and there is no
one-size-fits-all evaluation method for different segmentation
tasks. We used six segmentation experiments to demonstrate

Fig. 1. Comparison of two image segmentations, assuming that the TPRs
remain the same for the two segmentations. (a) Two classes have an even
share. (b) Two classes have uneven class shares.

and explain why and how an efficacy-reinforced evaluation
approach is implemented with model testing. In six segmen-
tation experiments, multispectral and LiDAR data were used
as input data, single or multiple models were tested with the
same or different datasets, and binary and multiclass schemes
were both considered. Depending on the specific nature of
image segmentation, the experimental results were evaluated
with both accuracy and efficacy metrics. Class imbalance was
quantified with class share percentage for binary segmentation
and the coefficient of variance (CV) of class share proportions
for multiclass segmentation.

A. Experiment I: A Hypothetical Case (Balance Versus
Imbalance)

This experiment demonstrates how moderate changes in
class share proportions affect per-class and whole-class accu-
racy and efficacy. It is assumed that the true positive rates
(TPRs) remain approximately the same; one image segmenta-
tion involves an even distribution [50:50, see Fig. 1(a)], while
the other involves an uneven distribution between two classes
[32:68, see Fig. 1(b)].

B. Experiment II: Binary Segmentation (Building Versus
Nonbuilding), Single Model, Single Data Source

Experiment II was to differentiate building pixels from non-
building pixel (background). The dataset was Massachusetts
Buildings Dataset (MBD) [43], one of the most used building
segmentation datasets in the computer vision community.
MBD consisted of 151 images and each of them sized 1500 ×

1500 pixels covering an area of 2.25 km2 (the pixel size was
1 m). Buildings occupied a small portion of the landscape and
this segmentation exercise involved a class imbalance problem.
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We randomly divided the dataset into training set, validation
set, and test set with 106, 15, and 30 images, respectively.
Subsequently, the testing datasets were evenly split into three
subsets, and each subset maintained a class proportion ratio
of approximately 4:1 (uneven), 9:1 (more uneven), and 19:1
(most uneven). We trained a vanilla U-Net using training and
validation sets with binary cross-entropy loss and evaluated
model performance against each of the three subsets of the
test data.

C. Experiment III: Binary Segmentation (Change Versus No
Change), Two Models, and Single Data Source

Pang et al. [44] developed a deep learning model
called “prior semantic information-guided change detection”
(PSI-CD), showcasing its excellence through various accuracy
metrics. We used the same change detection dataset of the
WHU Building dataset (WHU-CD) http://gpcv.whu.edu.cn/
data/building_dataset) for this experimentation. The WHU-CD
dataset consisted of bitemporal images, covering an area
of 20.5 km2, collected in Christchurch, New Zealand, in
2012 and 2016. This dataset includes 2386 pairs of 512 ×

512 images with a resolution of 0.3 m. Each image pair has a
corresponding change label. The total number of image pairs
was randomly divided into two subsets: 1559 for training and
827 for testing. Class share ratios between change and no
change were computed for each image pair. Subsequently,
the 827 test images were nearly equally divided into three
subsets based on their class share ratios. The average class
share proportions were 15:1 (no change to change) for subset 1
(uneven), 36:1 for subset 2 (more uneven), and 122:1 for
subset 3 (most uneven). The FC-EF model is an extended
U-Net architecture, comprising four max-pooling and upsam-
pling layers. The PSI-CD is a Siamese convolutional neural
network structure and consists of three modules. A semantic
segmentation module is a pretrained network, a change analy-
sis module calculates the change features from the two-period
semantic features, and a decoder module is used to output the
final change detection patch.

D. Experiment IV: Multiclass Segmentation (Land Use
Types), Multiple Models, and Single Data Source

Using Landsat TM data acquired in September 2007, level-I
land cover maps were developed for the midwest of the USA.
Covering an area of 1323 km2, the landscape predominantly
featured agriculture (64%), followed by forest (19%), urban
areas (11%), and water (6%). A group of graduate students
used conventional supervised and unsupervised image classi-
fication algorithms with Erdas Imagine to generate 23 land
use and land cover maps. The purpose of this exercise was
to compare accuracy variations among land use land cover
maps generated with the same dataset. Each map was assessed
using the same 4800 randomly sampled points labeled by
referring to 2-m resolution RGB orthophotos acquired by the
U.S. National Agriculture Imagery Program (NAIP) in 2007.
The ten best classifications were selected for this comparative
analysis based on overall accuracy and MICE.

E. Experiment V: Multiclass Segmentation (Land Use Types),
Single Model, and Single Data Source

Experiment V involved multimodal joint segmentation tasks
using the N3C-California dataset and the IKD-Net frame-
work [36]. N3C-California is a comprehensive, annotated
dataset that includes over 10 000 LiDAR and imagery patches.
IKD-Net is an innovative and efficient architecture designed to
extract features directly from raw multimodal data rather than
from their simplified derivatives. Its end-to-end, disentangled
dual-stream backbone ensures the integrity of information
across heterogeneous modalities. The testing dataset, drawn
from the N3C-California dataset, comprised of 1080 image
patches, each sized at 512 × 512 pixels, and included
four classes: ground, tree, building, and other. Class ground
emerged as the dominant class, urban was the codominant
class, and other was the smallest class. The CV was com-
puted for each labeled image patch across the four classes.
Subsequently, all testing-image patches were ranked based on
their CV values and then evenly divided into three subsets
representing high (CV = 1.29), middle (CV = 0.83), and low
(CV = 0.71) unevenness. Following the methodology outlined
by Wang et al. [36], we executed the IKD-Net on each subset
of testing-image patches integrated with LiDAR data.

F. Experiment VI: Multiclass Segmentation (Forest Types),
Single Model, and Data From Different Areas

Maxwell et al. [45] predicted forest community types, total
aboveground live biomass (AGLBM), and species-specific
AGLBM for the states of Michigan, Oregon, and West
Virginia, USA. For the task of forest type mapping, the
input data included the Landsat multispectral time series
and the 10-m spatial resolution National Elevation Dataset
(NED). Random forest was used to differentiate forest
community types. The number of forest types ranged from
seven to nine across the three states. These forest landscapes
vary in terms of forest characteristics, terrain, management
practices, and disturbance histories, all of which affect
the model’s performance. Notably, distinguishing between
broadleaved tree species, especially in West Virginia, proved
more challenging than distinguishing between coniferous and
broadleaved trees in Michigan and Oregon. The CV based
on plot counts by forest types revealed differences in class
share unevenness among the three states: 0.73 for Michigan,
1.20 for Oregon, and 1.89 for West Virginia.

III. RESULTS

The model performance from the six segmentation
examples or experiments is expressed with precision,
recall, F-score, precision-based efficacy, recall-based effi-
cacy, mean efficacy, overall accuracy, and MICE (Table II).
In Sections III-A–III-D, we provide a summary of the general
trends and key takeaways.

A. In Binary Segmentation, Per-Class Efficacy Is Not
Regularly Affected by Class Share Proportion

If FP equals FN, precision equals recall in binary segmen-
tation; thus, the major class has a greater precision (or recall)
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TABLE II
SELECTED RESULTS OF SIX SEGMENTATION EXPERIMENTS

value than the minor class. When FP does not equal FN,
precision and recall also differ, but the F-score of the major
class exceeds the F-score of the minor class [Fig. 2(a)–(c)].
Conversely, the average value of precision- and recall-based
efficacy of the major class does not necessarily differ from
that of the minor class [Fig. 2(d)–(f)], reflecting different
interpretations of segmentation quality. The similar ICE values
produced by Experiments I and III (Fig. 2) indicate that the
two classes have similar segmentation qualities despite the
major class being more accurate as indicated by F-score.
Sometimes ICE values display an opposite trend to accuracy
values (Experiment II in Fig. 2), which explains why the major
class has worse segmentation qualities than the minor class.

B. In Multiclass Segmentation, Per-Class Efficacy Fine-Tunes
Accuracy Distribution Patterns

In multiclass segmentation, the level of per-class accuracy
is affected by both class share proportion and misassignment

errors in multiple classes; thus, the relationship between
per-class accuracy and class share proportion in multiclass
segmentation is not as strong as in binary segmentation.
Nevertheless, a dominant class can still have relatively high
accuracy [Figs. 2(e) and 3(b)] but may not have high efficacy
[Fig. 3(c) and (f)]. When a small class has high accuracy
[Fig. 3(b)], it must have high efficacy [Fig. 3(c)]. The different
patterns of accuracy [Fig. 3(b) and (c)] and ICE [Fig. 3(e)
and (f)] indicate that ICE can reduce the class imbalance
effect at the class level. For example, both the largest and
smallest classes have high accuracy (F-score of agriculture =

0.915 and F-score of water = 0.912), but agriculture has a
much lower ICE value (0.768) than water (0.906; Fig. 3(a)
and (c) and Table II). When a class is severely rare [e.g., other
in Fig. 3(d)], its accuracy can be rather low [Fig. 3(e)], but
its efficacy may not be as low relative to that of other classes
[Fig. 3(f)]. The efficacy histograms suggest that water and
building are segmented most effectively among the four classes
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Fig. 2. Changes in F-score and mean ICE with class share ratios in three segmentation experiments (Table II). (a)–(c) F-score. (d)–(f) Mean Efficacy (Table I).

Fig. 3. Changes in per-class F-score and mean ICE with class share distribution in two segmentation experiments with multiple classes (Table II). (a) and
(d) Class share distribution. (b) and (e) F-score. (c) and (f) Mean ICE (Table I).

in Experiment IV, and urban area and other are segmented least
effectively among the four classes in Experiment V.

C. Class Share Distribution Does Not Typically Affect
Whole-Class Efficacy

Overall accuracy is proportionate to the unevenness of class
share distribution, particularly when image segmentation is
at an ordinary accuracy level [Fig. 4(a) and (d)]. This trend
becomes less notable when image segmentation is highly
accurate [Fig. 4(b) and (c)]. Conversely, the distribution pattern
of overall accuracy differs for MICE, being independent of
class share unevenness (Fig. 4). The stable MICE values
occur in binary segmentations [Fig. 4(a) and (b)], demonstrat-
ing its insensitivity to class share distribution. In multiclass

segmentation, the variations in MICE values show different
compositions of confused multiple classes between reference
datasets [Fig. 4(c) and (d) and Table II].

D. Efficacy Amplifies the Signal for the Performance of
Segmentation Models

If p1 is the share proportion of class 1, then the MICE of
binary segmentation is computed as (Table I)

MICE =
A − p2

1 − (1 − p1)
2

1 − p2
1 − (1 − p1)2

=
A

2p1(1 − p1)
−

p2
1 + (1 − p1)

2

2p1(1 − p1)
. (2)
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Fig. 4. Changes in overall accuracy and MICE with class share distributions (Table II). (a) and (b) Binary segmentations. (c) and (d) Multiclass segmentations.
CV stands for coefficient of variance for class share proportions.

Fig. 5. MICE-overall accuracy relationship. (a) Changes in slopes of their linear relationship based on (2). (b) Results of Segmentation Experiment III C
and F with class share proportions of 99.2 and 0.8 (Table II).

Thus, the slope with respect to A of MICE is inversely
proportional to 2p1(1− p1). The minimum slope is 2 under an
even share distribution (p1 = 0.5). The more skewed the share
distribution, the greater the slope [Fig. 5(a)], which implies
that when class shares are extremely uneven, a small difference
in overall accuracy can lead to a large difference in MICE;
thus, MICE can enhance the expression of segmentation
quality. For example, in Experiment III, two deep learning
models, PSI-CD and FC-EF, were tested against the same
reference data with a class ratio of 99.2:0.8, which resulted
in similarly high overall accuracy (0.996 and 0.990) but sub-
stantially different MICE values (0.914 and 0.384, Table II),
confirming that the PSI-CD model is much more effective
than the FC-EF model for image segmentation [Fig. 5(b)].

IV. DISCUSSION

The outcomes of the six experiments primarily focus on the
comparison between accuracy and efficacy metrics as a means
of assessing image segmentations. Further interpretation of
the results is needed to fully elucidate the significance of the
transformed practice of segmentation evaluation with ICE.

A. Accuracy Metrics Lead to Inconsistent Evaluations of
Model Performance Between Training and Application

The reproducibility of deep learning models means their
consistent performance for image segmentation [9]. In remote
sensing, image segmentation is aimed to generate maps.
Traditionally, one trained image segmentation model normally
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Fig. 6. Illustration model’s inconsistent behaviors indicated by varying accuracy between model training and application due to changes in class share
proportions of testing data. (a) Binary-class segmentation. (b) Multiclass segmentation.

results in a single immediate map product. Contemporary
segmentation using deep learning makes it possible to transfer
a trained model to a new geographic location where new maps
are made, and consistent performance of deep learning models
is crucial. Because the test data used for evaluating a trained
deep learning model by the deep learning engineer may be
different from the data from a user in terms of class share dis-
tribution, accuracy values may not be repeatable (Fig. 6). This
type of variation in accuracy is inevitable if a deep learning
model is trained with lab-controlled benchmark data, but it is
applied with real-world data [52]. For example, if the class of
interest is a dominant class for the test data with training, but it
is a rare class with application, its F-score would be lowered in
application [Fig. 6(a)], signifying the reproducibility problem.
The way that overall accuracy is influenced by class share
distribution is different from F-score. Because class share
distribution affects accuracy values, a confusion matrix must
be representative of the real-world population [26]. Perhaps
this ought to be a gold standard for accuracy assessment
in remote sensing. In this regard, geographically stratified
partitioning techniques are not recommended if the study
area is not uniform or class proportions change across a
landscape. Traditionally, stratified random sample points are
located by using the map product under assessment to gen-
erate a confusion matrix. When multiple maps for the same
geographical area need to be assessed, such stratified random
sampling is not an efficient option because class proportions
may vary among these maps. It is therefore easier if reference
information is collected with simple random sampling for the
entire mapping area though the initial investment may be high.
This practice is similar to that benchmark data are segmented
by using different models. Because deep learning models are
usually trained on large amount of reference data, even a
fraction (e.g., 10%) of the reference data would be sufficient
for generating a population confusion matrix for a map under
evaluation.

B. Jointly Using Accuracy Metrics Cannot Resolve the Class
Imbalance Effect

If the overall quality is intended to capture every facet
of map quality, it necessitates the incorporation of multiple

accuracy metrics [53]. Typical binary classification results in
a confusion matrix involving a positive class and a negative
class [20]. In cases where either class can be considered the
positive or interesting class, it is possible to compute precision
and recall for each class pair, as is done in multiclass scenarios.
In the hypothetical example above (Experiment I, see Fig. 1),
the TPR of each class remained relatively constant despite
changes in class proportions, resulting in unchanged recall
values for each class between the two segmentations. This
scenario supports the view that recall is theoretically insen-
sitive to class imbalance [54]. However, because precision
is sensitive to class imbalance, F-score is still proportionate
to class share proportion. Using multiple accuracy metrics is
essential because different metrics express different aspects
of segmentation quality. Nevertheless, it is important to note
that many accuracy metrics are correlated [26], and therefore,
using multiple metrics may only partially avoid the class
imbalance effect. For example, researchers often use mean
F-score and mean IoU, which are effective in many cases [5],
[46], [47], [48], [49], [50], [51]. Plotting 182 pairs of these two
metrics from these publications reveals an almost one-to-one
correlation [R2

= 0.99, see Fig. 7(a)]. Although the correlation
between mF and overall accuracy is not as strong [R2

= 0.84,
see Fig. 7(b)], it is worth noting that overall accuracy and mF
are significantly correlated. Since overall accuracy suffers from
the class imbalance effect, mF and mIoU are also influenced
by the class imbalance effect.

C. Efficacy Metrics Target Model’s Real Segmentation Power

The performance of a model with moderate accuracy and
less pronounced class imbalances is more sensitive to class
distribution when assessed using accuracy metrics, whereas
per-class and whole-class efficacy values remain relatively
stable (Figs. 2 and 4). In such scenarios, ICE values with slight
variations are consistent indicators of model performance.
On the contrary, in highly skewed distributions, the overall
accuracy may approach 1, and slight fluctuations in overall
accuracy can lead to significant changes in MICE (Fig. 5).
Under such circumstances, MICE serves as an amplifying
indicator of model performance. The stable and fluctuating
responses of ICE metrics to varying class share distributions
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Fig. 7. Scatter plots between mean F-score and mean IoU and between mean F-score and overall accuracy (N = 182) [5], [46], [47], [48], [49], [50], [51].
(a) Scatter plot between mean F-score and mean IoU. (b) Between mean F-score and overall accuracy.

and accuracy values are both crucial expressions of a model’s
real segmentation power. More specifically, per-class efficacy
enhances the detection of classes for the precise fine-tuning
of segmentation models, and whole-class efficacy amplifies
the signal of model performance for the overall comparison
of segmentation models.

When confronted with an extremely rare class in image
segmentation, additional efforts are often made to enhance its
segmentation [3], [27], [28], [29], [31], [34], [55], [56]. This
class imbalance problem in semantic segmentation sometimes
can be challenging for deep learning engineers, especially
when the rare class holds significance for accurate segmen-
tation. The use of accuracy metrics sensitive to class share
distribution can exacerbate this issue [3], [32]. When evalu-
ating segmentation using ICE metrics, a small class may not
necessarily be the least effective. As depicted in Fig. 2(e), ICE
metrics prove especially valuable when dealing with highly
uneven class share distributions. In this regard, ICE metrics
should be incorporated into the optimization process of a deep
learning model. By using ICE metrics in the training stage,
model’s inconsistent behaviors from training to application
can be relieved, and the segmentation strategies of individual
classes, rare or common, can be determined without many
influences of class imbalance. Deciding whether to prioritize
the improvement of rare class segmentation depends on the
ICE values of individual classes.

The traditional accuracy assessment of segmentation
outcomes and contemporary evaluations of deep learning
model performance are two separate but related tasks (Fig. 8).
The use of class imbalance-sensitive accuracy metrics to
quantify model performance introduces uncertainty regarding
the model’s real segmentation power. Therefore, reliance
on accuracy metrics alone is insufficient for evaluations of
model performance. In contrast, ICE metrics are designed
to determine the effectiveness of image segmentation and
are both interpretable and resilient to the class imbalance
effect. Efficacy metrics can be used in the same way as
accuracy metrics in model’s validation during training. The
incorporation of ICE metrics into model’s validation can

Fig. 8. Graphic comparison of accuracy assessment and model performance
evaluation, including conventional and enhanced evaluation approaches.

improve feedback regarding the optimization and fine-tune
of deep learning models. Considering that foundation models
have begun to gain popularity in many fields involving image
segmentation and related tasks [6], [57], the integrated use of
accuracy and efficacy metrics is becoming essential to ensure
the model’s reliable applications.

D. ROC-AUC and PR-AUC Versus ICE

Deep learning models are often evaluated along a range of
decision probability thresholds during its training. The overall
performance of a model can be shown by the area under
the receiver operating characteristic curve (ROC-AUC) for
a positive class in binary segmentation. In remote sensing,
an ROC-AUC is a plot between false positive rate (FPR)
as x and TPR (also called recall) as y at different decision
thresholds [Fig. 9(a)] [22]. The greater an ROC-AUC value,
the stronger mode’s performance. The total ROC-AUC con-
sists of two parts divided by class size-independent random
assignment line when TPR = FPR. The area below the “base
line” is a constant (0.5), and thus, the performance of a model
is characterized by the area above the baseline assuming that
TPR > FPR. At a given decision threshold, the segmentation



5408012 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Fig. 9. Illustration of the area under a curve as a metric for the evaluation
of model performance for a set of decision thresholds. (a) ROC-AUC.
(b) PR-AUC. Each AUC contains an effective area, critical for the evaluation
of model performance.

power of a model is proportional to the difference between
TPR and FPR. Even though TPR and FPR are individually
insensitive to class imbalance [54], ROC-AUC’s tolerance to
the class imbalance effect has not reached a broad consensus.
Perhaps this is because the baseline does not consider class
imbalance. For multiclass segmentation, which is common in
remote sensing, ROC-AUC needs to be adjusted [28].

The area under precision–recall curve (PR-AUC) is also
used to evaluate the performance of deep learning models
[Fig. 9(b)]. PR-AUC is computed by including or excluding
the area below the class proportion baseline (i.e., n j/n) [25],
[26], [28]. Past studies show its varied degrees of sensitivity
to class imbalance. Precision is sensitive to class imbalance,
but recall is not; the effective area of PR-AUC, after deducting
the area below n j/n baseline, can reduce the class imbalance
effect [Fig. 9(b)]. The effective area of PR-AUC is theo-
retically consistent with ICE metrics because both consider
the random classification baseline defined as n j/n. Therefore,
PR-AUC and ICE are supposed to be mutually supportive.

ROC-AUC and PR-AUC are used for per-class evaluations,
while ICE metrics are useful for per-class and whole-class
evaluations; ROC-AUC and PR-AUC are computed with mul-
tiple confusion matrices obtained from a model under training,
while ICE metrics are derived from a single matrix that can
be obtained from a single execution of a trained model.

V. CONCLUSION

The primary motivation behind evaluating segmentation
models’ performance is to ensure their reliability for their
applications. A fundamental requirement is that these models
demonstrate consistent prediction accuracy when implemented
with new data. Because accuracy metrics are largely sensitive
to class share variations, they struggle with the characterization
of consistent performance. Consequently, solely relying on
accuracy to assess segmentation outcomes may not reflect
model proficiency. In contrast, the metrics of ICE consider
class imbalances and offer unique insights crucial for the
evaluation of model performance. By utilizing both per-class
and whole-class efficacy metrics, we can effectively compare
segmentation qualities and fine-tune models with precision.
Integrating efficacy metrics into model training and testing
enhances models’ reliability for their operational use. It is
hopeful that this efficacy-reinforced approach will contribute

to a higher standard for evaluating deep learning models that
are used to address real-world challenges.

The way that this enhanced evaluation approach is imple-
mented is shown in the six samples of this article. Although
these examples are from the field of remote sensing, the eval-
uation technique is applicable in image segmentation in other
fields, such as medical imaging. Consequently, the enhanced
information on model performance can help narrow the chasm
from model evaluation to clinical impact [10], [58].

The six segmentation experiments were limited to semantic
segmentation. Scene segmentation and object-based segmen-
tation are not considered in this study. These examples are
from remote sensing, but segmentation cases from other fields
need to be investigated with ICE metrics. This study did not
consider the impacts of ICE metrics on the estimation of
application variables, such as class area and change rates. The
segmentation experiments in this study did not incorporate
ICE metrics into the model’s training. In particular, we did
not conduct segmentation experiments with repeated random
data partitioning.
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