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Abstract— Recent advances in remote imaging spectroscopy
have increased its utility for detecting and quantifying greenhouse
gas emissions. In fact, multiple airborne and space-based instru-
ments are actively used to estimate methane emissions. Many
of these measurements are made using matched-filter-based
detection and estimation algorithms. In this work, we present
new methods for quantifying and improving the accuracy and
uncertainty of these algorithms. Two new metrics are proposed
that capture the biases and uncertainties in gas quantity measure-
ments stemming from local surface and atmospheric variation,
observation and solar geometries, and sensor noise. We show that
one of these, termed the ‘“‘sensitivity,” can be used to correct the
bias in the gas concentration length estimates due to variable
atmospheres and backgrounds, reducing the estimator’s root
mean squared (rms) error in spectra that deviate from the mean
spectrum. The second, termed the “uncertainty,” represents the
bias-removed statistical uncertainty in the corrected estimator.
Expressions for the rms error both with and without the correc-
tion are provided along with interpretation to help quantify the
various noise sources. The utility of the metrics is demonstrated
using data from the Earth Surface Mineral Dust Source Investi-
gation (EMIT) imaging spectrometer currently collecting Earth
observations onboard the International Space Station (ISS). The
EMIT data also demonstrates the potential accuracy increase
afforded by the sensitivity correction over variable surface types.
These metrics and their concomitant estimator accuracy increases
could prove valuable for future work in quantifying gas source
emission rates and their uncertainties, instrument design, and
machine learning-based detection methods.

Index Terms— Hyperspectral imaging, measurement uncer-
tainty, satellite remote sensing, spectral matched filter.

I. INTRODUCTION

N THE past decade, remote spectroscopic measurements
of CHy point sources have rapidly advanced from simple
proofs of concept to a mature technology used in emis-
sions mitigation and regulatory assessment. In this approach,
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a remote instrument acquires a spectrum for each location
in an image of the Earth’s surface. Analysts interpret these
spectra to look for an excess of CHy absorption, mapping
plumes of gas enhancement that indicate emission source loca-
tions. Improvements in methodology, together with focused
airborne campaigns and the increased availability of global
imaging spectrometer data, are rapidly growing the catalog of
remote CHy detections. As these technologies become more
widespread, the demand for detecting smaller, subtler sources
grows. To this end, it is critical to understand the uncertainties
in the detection process—instrumental, environmental, and
algorithmic. A rigorous understanding of uncertainty enables
an observing system to confidently use a detection at the limit
of statistical confidence rather than the much higher limit of
visual ambiguity.

Remote CH,4 point source detection with imaging spec-
trometers was first demonstrated in [1]. The development of
matched-filter detection approaches enabled more sensitive
retrievals [2], [3] along with airborne campaigns that mapped
hundreds of anthropogenic sources [5]. Controlled release
experiments have demonstrated agreement between remotely
sensed emissions and ground-measured flow rates [6]. The first
facility-scale CH4 detection was made from space using the
Hyperion imaging spectrometer [7]. Following this, a Cam-
brian explosion of CHy surveys using commercial and agency
platforms has occurred (e.g., [8], [9], [10], [11]). Large-
scale airborne campaigns have quantified sectoral emissions
over wide areas [12] and natural point sources have been
detected [13], [14]. New spectrometers like one used on
the Earth Surface Mineral Dust Source Investigation (EMIT)
instrument onboard the International Space Station (ISS) have
enabled large-scale surveys of emissions across multiple coun-
tries at a fidelity that supports comparisons against their
reported emission estimates [11]. These remote CHs measure-
ments have made the previously invisible CH4 now visible in
a way that allows for clearer emissions characterization and
potential for informing mitigation strategies [15], [16], which
is key to combating global climate change.

Below, we present two new metrics to help quantify
CH4 measurements performed with matched-filtering meth-
ods. These metrics include the effects of sensor and shot
noise, local surface and atmospheric variation, and solar and
look angle dependencies. Often overlooked, the metrics also
include the change in performance due to variation in the
background pixels used in the parameter estimation portion
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of matched-filter-based detection methods. The first metric,
termed ‘“‘sensitivity,” represents the tendency of the measure-
ment to under- or over-estimate the methane in a pixel due to
local variations in surface reflectivity or atmospheric transmis-
sion. Relative to the noise, more light is absorbed by a given
methane plume over a bright surface than a dim one. Because
the absorption mechanism is represented as a multiplicative
factor on the radiance while matched filter detection methods
rely on a spectral difference, pixels brighter than the mean in
the relevant channels will overestimate methane while dimmer
pixels underestimate. Because of this effect, the sensitivity
described here is largely present due to the use of the matched
filter. The second metric, simply “uncertainty,” represents the
statistical variation due to the same effects. Pixels bright in
the relevant CHy channels will have a high signal-to-noise
ratio (SNR) and low uncertainty while those that are dimmer
will have a low SNR and high uncertainty. In contrast to
the sensitivity, the uncertainty metric quantifies an inherent
variation in the measurement due to sensor and shot noise
that will be present in any estimation technique. The formula
for the uncertainty given below, however, is specific to the
estimator in use and will be different for different algorithms.
Both of these metrics are demonstrated using methane gas
data from the EMIT imaging spectrometer [17]. The metrics
will apply equally to other gases, subject to the constraint
that the atmospherically scattered light is small compared
to the surface reflected light or otherwise compensated (see
Section IV below for more detail).

We recognize that certain biases may still occur that are
not included in the metrics described below. For example,
pixels having no true methane present may be incorrectly
biased to relatively large concentration lengths due to, among
a variety of possibilities, confounding surface reflectivities
(for example, [18] and figures below). Such false positives
can occur even in regions having high sensitivity and low
uncertainty. Nevertheless, the metrics help to provide confi-
dence in the concentration length estimates and serve as a
precursor product for further processing, including quantifying
gas source emission rates.

II. CONCENTRATION LENGTH UNCERTAINTY

The sections below make use of the following simple fact
regarding Gaussian random variables repeated here for ease
of reading. Let X be a multivariate Gaussian random variable
with mean p and covariance matrix C, denoted by X ~
N(u, C), where X and p are column vectors with length n
and C is an n x n matrix. Then, AX+a ~ N(Au+a, ACAT)
for any vector a and matrix A.

A. EMIT Signal Model
A simple model for EMIT’s radiance measurements is

X=¢e?L+Li+n (1)

where a is the absorption coefficient in units of inverse meters,
L is the radiance that has passed through a potential methane
plume, L is the atmospherically scattered light that has not
passed through the plume, and n is the sensor noise. The gas
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concentration length, sometimes termed “gas enhancement” or
in this case the “CH4 enhancement,” represented as / is the
concentration length of an intervening gas (like methane, for
example) in parts-per-million meters (ppm m). As seen later,
matched-filter methods estimate the gas quantity relative to
that of the mean background, hence the term “enhancement.”
Boldface indicates a vector or matrix quantity; for example
a = (ap,ay, ...,ay,—1), where Ny is the number of spectral
channels. In the following, e~ and its first order expansion
term —al, is a vector that is multiplied by its neighbor
element by element, which in this case is the radiance L.
The noise model n ~ (0, X) predicts both sensor noise and
amplitude-dependent shot noise for a given radiance spectrum.
For EMIT, the noise model was developed from laboratory
measurements, refined using vicarious calibration experiments,
and finally validated on both bright and dark surfaces. Details
of the noise model and the validation process are found in
recent work by Thompson et al. [17]. The EMIT sensor
SNR varies by wavelength, but SNR ranges from 250 to
over 500 in the methane absorption range for a typical bright
soil surface under good illumination. The predicted noise
covariance matrix X is diagonal because sensor noise is
statistically independent in each channel. In principle, n also
depends on the observed radiance, but for the purposes of
this section, we will ignore that dependence. For a uniform
scene, the radiance model L would be a constant vector, but
for more realistic scenes it is a random variable. Making
the simplifying assumption that it is a multivariate Gaussian
random variable for the purposes of this discussion, we can
model it as L. ~ N(u, CL), where p is the mean radiance
vector and Cp, its covariance matrix. The relative importance
of the scattered light component Lg depends on the wavelength
region of interest. In this article, we are primarily focused
on detecting methane in the short-wave infrared wavelength
range of EMIT (2.1-2.5 um) in which Ly is negligible, so we
generally set it to O for the rest of this article. The results below
are nevertheless applicable for other wavelength ranges or
atmospheres in which it is possible to estimate and remove Lg
through some other method, including the contributions from
Rayleigh scattering in the near-infrared and from heavy aerosol
loads [19].

As a result of these definitions, the radiance measure-
ments are distributed as X ~ N (e’alu,ACAT), where A
is the “absorption matrix” defined as diag(e ). Under the
Hy hypothesis, I — 0, A becomes the identity matrix, and
X ~ N(u, Cr, + X). The standard matched filtering algorithm
assumes the mean and covariance estimates are formed under
the assumption of Hj, so we use this as the basic distribution
of the data

X~ N(e™p,Cp+X). )

B. EMIT Matched Filter and Maximum Likelihood
Concentration Length Estimator

The standard matched filter is defined as ¥ = s” C™'(X—pn),
where s = —ap is the signal vector [3], [20]. As the matched
filter is a unitless quantity, there is an implied concentration
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length of 1 m in the definition of s that makes its units simply
radiance. Given the signal model used above, C = Ci, + X.
Accordingly, Y ~ N(s"C~'[(e7® — 1)u], s C~'s). Under the
optically thin assumption

Y ~N(Is"C ' (—ap),s"C's). (3)

Note that although the term in parenthesis in the mean of
Y appears to be the same as in the definition of s, there is
no implied concentration length so that the mean of Y is
unitless, as expected. Nevertheless, the value is numerically
equivalent so for convenience we refer to both quantities as s
and therefore rewrite the distribution as

Y ~N(is"C's,s"Cs) “4)

keeping in mind that the units will be ambiguous with this
notation.

An estimator for the concentration length can be determined
intuitively by simply taking Y and dividing by its variance,
as can be seen by examining Y’s mean value. It turns out that
this is in fact the maximum likelihood estimator (MLE) of the
concentration length
_ SO X - p) S
 sTCls ©)
whose distribution can be obtained from inspection of Y’s
distribution as

~>

N 1
I~N(l, —— ). 6
< sTC—'s> ©

EMIT’s standard concentration length estimates are produced
using this MLE and it forms the basis for the uncertainty
calculation below.

C. Concentration Length Sensitivity and Uncertainty

The MLE concentration length estimate whose distribution
is shown in (6) is unbiased in the sense that the mean is
the true concentration length provided the mean is computed
over the full distribution of backgrounds (Cy # 0). Similarly,
the global uncertainty is provided by the variance component.
However, any individual spectrum deviates from the mean
spectrum, yielding a bias in the estimate and a change in the
variation. To calculate these, we create a new signal model
that represents a test spectrum to show the relative change to
the mean, as in

X =e¢p+n(p) (7)

where expressions involving the vector k are to be interpreted
as element-by-element products and ¥k = L/pu. This choice
of definition for k simplifies interpretation by showing the
deviation of the test spectrum relative to the mean. The noise
term here represents the combination of electronic sensor noise
and signal-dependent shot noise. Below, we substitute EMIT’s
noise model so that n(kp) ~ N(0, X(kp)), where X(kp)
is a diagonal matrix whose elements are determined by the
sensor noise model and the test spectrum’s radiance. Thus, the
signal model used in this section represents repeated measure-
ments of the same scene with the solar and look geometries
fixed. Inserting into (5), using the optically-thin assumption,
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and rearranging terms yields the distribution of the MLE
given by

fo N sTC e — D sTC ks
sTC-1s sTC-1s ’
sTC ' (kp)C s
P 2) ®
(sTC1s)

The first term of the mean is independent of the true
methane quantity [ and represents the tendency toward bias
(false alarms) as the test spectrum deviates from the mean
(k # 1). The second term represents the change to [ as
a function of the true methane quantity. The scale factor
(sTC'ks)/(s"C~'s) applied to I determines the sensitivity of
the measurement to the true methane quantity. The sensitivity
tends to 1 as the radiance spectrum approaches the mean
spectrum and deviates depending on the individual spectrum.
A major component of the variation is due to the overall
brightness (the magnitude of k) as can be seen by replacing
K with a scaling of the mean spectrum. In this case, k — «
and the sensitivity (s"C~'ks)/(s"C~'s) — «, showing that
the estimated methane quantity in a test spectrum is biased
with the radiance deviation from the mean.

The bias in the estimate due to the radiance can be corrected
by dividing the sensitivity out of the estimator, resulting in

P sTC ks _lf
“T\ sTC-ls

Tc—l -1
~N(S w=Dr

sTC-lks

rc-'y c!
S (lc;L)2 S s
(s"C'ks)

As seen in the second term of the mean, the scaling to the
concentration length is removed, but that advantage comes
at the cost of inflating the variance at low radiance levels.
To better understand the differences, we compute the root
mean squared (rms) error ((f - 1)2)1/ 2, Recognizing the right
side as the square root of the mean of a noncentral chi-squared
random variable with one degree of freedom, we compute
the squared rms for both the original MLE and the corrected
version as

<(i— l)2> _ sTC'S(kep)C s

(sTC—ls)2
s'Cl(k — DHp s'C ks :
—1)! 10
( sTC-ls ( sTC-ls ) ) (19)

and

0. -1y SO EwwCls | (sTC ke - D’
< c >_ (sTc—IKs)2 sTC-lks '

(1)

As k — 1, both expressions reduce to the same value showing
that the differences only occur due to the test spectrum
deviating from the mean. In addition, in a uniform scene both
k — 1 and C — X(kpn), leaving both expressions equal
and equivalent to the variance term in (6). It is instructive to
consider each term separately. The first term for both repre-
sents the fundamental statistical noise floor, which increases
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Fig. 1.

RMS error for a typical p and C and using EMIT’s noise model for X (k). In both figures « is a scalar that simply scales the mean spectrum.

(Left) corresponds to (10) and (right) corresponds to (11), representing the rms difference between the estimated concentration length and the true value.

with the radiance (k) following shot noise in the original
MLE. The corrected estimator, on the other hand, shows the
opposite behavior, with the statistical error increasing at lower
radiance (x — 0) as mentioned previously. The error for
both estimators then increases due to two possible biases. The
first bias occurs in both versions and represents the tendency
of the surface reflectivity and the atmospheric absorption to
occasionally mimic the CHy signal, driving false alarms. The
second bias occurs for k¥ # 1 and [ # 0; it is removed
in the corrected estimator. Both expressions are plotted for
typical values of the mean and covariance in Fig. 1. The rms
error of the original uncorrected MLE is symmetric about
k =1 and becomes large as « deviates from 1. The corrected
estimator’s rms error shows no dependence on concentration
length, as expected. In addition, for k > 1 and for much of
the k < 1 region at larger concentration lengths, the rms error
of the corrected estimator is smaller than that of the original.
Since most observed plumes are in this region of parameter
space, the corrected estimator is generally more accurate than
the original.

These results suggest a more nuanced interpretation of the
original MLE. As shown in (6), [ is unbiased when averaged
over the entirety of the radiance variation, but it yields a
biased estimate in any individual spectrum in which CHy is
present but whose radiance deviates from that of the mean
spectrum. It is possible to remove this bias using the ad hoc
scaling by the sensitivity used in the corrected MLE but at
the cost of increasing the statistical and surface/atmospheric
portions of the rms error for certain deviations from the mean
spectrum, particularly for low radiance or those deviations
that mimic the CHy4 absorption spectrum. Accordingly, we do
not recommend replacing the original MLE for wide area
searches for CH4 but rather using the corrected estimator
to improve the quantification of plumes detected with the
original MLE.

We propose two new metrics: the sensitivity and the uncer-
tainty. These are based on the expressions above, but recognize
that in real data, we cannot separate the bias terms, nor do
we have access to either the noise-free radiance kp or to
that quantity without the potential presence of CHy. Instead,
we replace k with & X/p, where X is the measured
spectrum. The sensitivity is then defined as
sTC ks
sTC1s

S = (12)

while the uncertainty is
U2 = sTC'2(kp)C's

B (sTC—liés)2

13)

III. UNCERTAINTY ESTIMATES FOR EMIT

To illustrate the behavior of the sensitivity S and uncer-
tainty U, we present both from a typical EMIT scene. Fig. 2
shows an RGB representation of the radiance, i S, and U
for EMIT scene emit20231008t161127 in which there is no
apparent CH, detection. Note that in all figures showing EMIT
data, pixels flagged as having clouds or surface water have
been replaced by null values. The circular fields demonstrate
the various terms in (10) with specific examples indicated
by the colored arrows. The green and orange arrows show
locations with relatively high and low, respectively, radiance
and sensitivity. The uncertainty behaves oppositely. Neither
of the regions’ spectral deviations from the mean appears to
drive surface or atmospheric biases, as seen in the second
plot showing [. The blue region, on the other hand, shows
near-nominal sensitivity (near 1) with relatively low uncer-
tainty, but here the surface does drive an apparent bias in I
There is no apparent true CHy plume in these images, but
were one to span the scene, we would expect strong biases in
] following the sensitivity.

Figs. 3-5 show an example EMIT scene in which a
CH4 plume does appear to be modulated by the surface
sensitivity. The plume, whose approximate boundary is shown
in white or black lines, is emitted at the lower right and carried
to the upper left by the wind (it is likely that the plume is
actually emitted from the small, high-sensitivity spot in which
vegetation has been removed at (cross, along) track pixel
(562, 1793) next to the diagonally-cutting road). The apparent
plume passes from the vegetated region surrounding the point
of emission along and into a more reflective region toward
the upper left. In the dimmer vegetated region, the sensitivity
is low and the uncertainty high. We thus expect the plume
concentration length to be underestimated here. Conversely,
the sensitivity is high and the uncertainty low in the brighter
region with the plume being overestimated there. The bias
in the estimate can be seen in the uncorrected concentration
length map on the left side of Fig. 4 where the stronger parts
of the plume appear to follow the local surface variation. The
corrected version on the right side shows less dependence on
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Fig. 2. From (left) RGB of radiance, estimated CHy4 concentration length I, CHy sensitivity S, and CHy uncertainty U for EMIT scene emit20230817t201510.
The green arrow highlights a location with high radiance and low sensitivity, the orange arrow shows a region with low radiance and high sensitivity, and the
blue arrow shows an area where the sensitivity is nominal but there is an apparent bias in the concentration length.
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Fig. 3. From (left) RGB image of EMIT scene emit20230612t162103, CHy sensitivity S, and CHy uncertainty U. The green box represents the region shown

in Fig. 5.

the local surface, as expected. These effects are seen more
clearly in the zoomed-in view panels of Fig. 5. The uncertainty
metric is useful here as its value captures the apparent spatial
variation in concentration length in the corrected estimate.
Figs. 6 and 7 show a second example of an apparent plume.
The emission source appears to be at the right edge of the
delineated plume boundary in a location cleared of vegetation
having high sensitivity. Shortly downwind the local terrain
shifts to a low-sensitivity vegetated region. Further downwind
the terrain again shifts to a higher sensitivity region. These
changes are apparent in the concentration length shown on
the left side of Fig. 7. The correction, shown at right, removes
much of the plume’s apparent dependence on the local surface.
However, by reducing the measured concentration length’s
dependence on the surface, the correction also inflates both

the statistical uncertainty and, evidently, the tendency of some
pixels outside of the plume to yield false alarms. This is
consistent with the effects of the correction on the rms error,
specifically the second term in (11) when k < 1.

To better see the challenge in distinguishing the back-
ground bias from a true methane observation [second versus
third term in (10)], Fig. 8 shows a simple simulated plume
injected into the background matched filter detections from
an EMIT data scene. The simulated plume is a simple
Gaussian plume as defined in, for example, [21, eq. (3)].
The plume parameters were chosen arbitrarily to generate a
visually realistic plume. The figure shows the sensitivity S
in the upper left and the uncorrected concentration length
estimate in the bottom left. The other two vertical pairs of
panels show the simulated plume in the top panel added



5526210

Along track

IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

Corrected CH4
Concentration Length [ppm m]

Original CH4
Concentration Length [ppm m]

o

1550-

1600+

1650+

1700

1750

1800+

1850-

600 400 500 600

Cross track

400 500

Fig. 4. (Left) Original concentration length [ and (right) corrected I, corresponding to the region shown in Fig. 3.
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Fig. 5. From (left) Original concentration length I, corrected I, CH, sensitivity S, and CHy uncertainty U for EMIT scene emit20230612t162103 corresponding
to the green box in Fig. 3.
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Fig. 6. From (left) RGB image of EMIT scene emit20230504t135454, CHy4 sensitivity S, and CH4 uncertainty U.

into the estimated concentration length, the result of which
is shown in the bottom panel. The middle column shows
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the simulated plume directly, while the second shows the
simulated plume multiplied by the sensitivity to account for
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Fig. 8. Simulated plume injected into data for a region selected to have no true CHg plume in EMIT scene emit20220818t034231. From (left) to (right) and
from (top) to (bottom) CHy sensitivity, simulated plume, simulated plume with the sensitivity applied, uncorrected concentration length estimate /, same but
with simulated plume injected, same but with sensitivity-adjusted plume injected. Note that all five plots of concentration length share the same colorscale

shown in the upper middle panel. See the main text for details.

the apparent variation in the concentration length due to the (cross track, along track) pixel (80, 30) is likely not due to
scene background. The amorphous enhancement shown at the actual presence of methane but more likely due to the
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bias caused when k deviates from one, as in the second term
of (10). However, after the plume is injected into the scene,
it becomes impossible to distinguish the background bias from
the true plume. In this case, it is likely that a plume delineation
method might incorrectly but inadvertently include the bulge
due to the background as part of the true plume. Unfortunately,
this type of bias is not addressed by the sensitivity correction
and in fact, could be exacerbated by it.

IV. DISCUSSION AND CONCLUSION

The concentration length sensitivity and uncertainty metrics
described above encapsulate several effects that are important
for quantifying gas emissions. These include the concentration
length bias due to surface and atmospheric variation and the
statistical uncertainty due to noise. The expressions for the
rms error quantify these effects in a way that may otherwise
be difficult to visualize. The metrics are additionally useful to
indicate a given site’s potential for detecting methane in future
data collections given the local surface variation and how that
variation might play through to the apparent spatial distribu-
tion of a potential plume. The uncertainty provides similar
information to quantify the expected statistical uncertainty.
It also includes effects that tend to change the signal-to-
noise ratio, including solar and look geometry. Used together,
these metrics may help to identify weaker CH4 plumes and
reject surface biases in the estimator that drive false positive
detections.

A. Plume Emission Rate

One application of these uncertainty and sensitivity metrics
involves reducing uncertainty in the downstream estimation of
plume CHy4 emission rates. Error in such estimates comes from
a variety of sources, including wind speed, local meteorology,
topography, and land cover type [22]. Previous studies that
calculated plume emission estimates from concentration length
did not incorporate a per-pixel concentration length uncertainty
nor account for the bias captured in the sensitivity metric.
For example, preliminary EMIT CHy and CO, integrated
mass enhancement-derived emission results from a subset
of 2022 EMIT acquisitions relied only on wind speed uncer-
tainty to estimate emission uncertainties [11]. In addition,
plume emission rate estimates from Airborne Visible/Infrared
Imaging Spectrometer Next Generation (AVIRIS-NG) data
collected during controlled release experiments derived uncer-
tainties from windspeed and IME variability due to plume
length and variable thresholding [16]. Incorporation of the
sensitivity correction and the statistical uncertainty metric
derived here into the emission rate calculations may help to
improve accuracy by reducing biases due to local surface vari-
ation and yield improved quantification of the rate estimates’
uncertainty.

B. Sensor Design

A second application of these metrics is in the domain
of instrument design. Fig. 1 demonstrates how a particular
instruments’ noise model can translate directly to an antic-
ipated rms error for surfaces that deviate from the mean
in different amounts. This leads to the natural potential to
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work backward from an acceptable error in physical units
(e.g., concentration length) to a particular sensor noise char-
acterization. Notably, the use of (11) leads to an inverse
correlation between albedo and error, which is what is typ-
ically observed from match filter results and expected from
the literature in general [23]. This contrasts the noise model
of most imaging spectrometers, which tend toward higher
noise rates with higher signals [17], [24]; but does correspond
to the general trend of SNR, which typically increases with
brighter targets because of nonlinearity in the noise function.
While previous (uncorrected) estimates of the error would
lead to a complicated design choice, as per Fig. 1(a), the
corrected estimator provides a quantitative means to express
how increased instrument performance translates into uniform
decreased error. While these estimates of performance are not
comprehensive, they do provide a new best basis from which
to build in the instrument design trade space.

C. Enhancing Machine Learning Retrievals

With the increasing volumes of data available for analysis,
the need for automation of methods for plume detection and
emissions quantification increases. Many such methods have
been proposed, largely centered on some form of convolutional
neural network (e.g., [25], [26]), but at the time of this writing
no such system is fully deployed in an operational setting
to our knowledge. This stems largely from the desire to
prevent the identification of false positives, and we anticipate
this changing in the coming years. Including sensitivity or
uncertainty layers as inputs to such automation methods may
provide a mechanism to improve the efficacy of such methods
under these stringent requirements.

V. OPEN SCIENCE

Software implementations of the sensitivity and uncertainty
metrics for the EMIT sensor are available on GitHub at https://
github.com/emit-sds/emit-ghg. The EMIT-matched filter
results used for the figures are available at https://Ipdaac.
usgs.gov/products/emitl2bch4enhv001/, while the radiance
inputs are available at https://Ipdaac.usgs.gov/products/
emitl1bradv001/. The sensitivity and uncertainty metrics will
be incorporated into the Version 002 release of the EMIT
L2BCH4ENH product.
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