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Improvement of Polar Snow Microwave Brightness
Temperature Simulations for Dense Wind Slab

and Large Grain
Julien Meloche , Alain Royer , Alexandre Roy, Member, IEEE, Alexandre Langlois, and Ghislain Picard

Abstract— The Arctic snowpack, characterized mainly by
a dense wind slab (WS) layer overlaying less dense and
porous depth hoar (DH), generates large uncertainties in
microwave radiative transfer models (RTM) used to interpret
satellite observations. In this work, we tested two improvements
recently implemented in the snow microwave radiative transfer
(SMRT) model. First, an improvement of the snow microstruc-
ture parametrizations introduces a polydispersity geometrical
parameter (K) related to the grain shape and microstructural
arrangement. Second, the new electromagnetic model (EM) based
on the strong contrast expansion (SCE) allows a continuous
formulation of the scattering coefficient as a function of the
density between low-density snow and hard and icy snow.
The SCE model was compared with in situ observations to the
commonly used improve Born approximation (IBA) EM. Results
show improved brightness temperature simulations at 19, 37,
and 89 GHz compared to surface-based and satellite microwave
radiometric measurements using polydispersity values (KWS =

0.80 and KDH = 1.33) for scaling the measured optical grain
size of the different snow layers with IBA. The finding is that
the polydispersity values found in this study are of general
applicability for Polar-layered snowpack. The SCE model yields
results similar to IBA for snow densities up to 500 kg m−3 but no
analysis was investigated for the range of 500–700 kg m−3 (firn).
These improvements in snow microstructure and the new SCE
RTM allow better simulations of Polar snow and therefore better
Polar snowpack monitoring by satellite.

Index Terms— Arctic snow, microwave grain size, polydisper-
sity, snow microwave radiative transfer (SMRT) model.
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I. INTRODUCTION

MICROWAVE radiometry of snow shows great potential;
it has been widely used to collect information on the

snowpack, allowing the understanding of energy and mass
exchange processes between the snowpack and the atmo-
sphere, which significantly impact the global climate and
water resources [34], [38]. Improving retrieval of snow prop-
erties such as snow water equivalent (SWE) from microwave
satellite observations is gaining traction with future satel-
lite missions [5], [7], [18]. However, enhanced microwave
radiative transfer modeling simulating satellite observations is
needed. Modeling of snowpack microwave emission has to
be improved because of the complex physical properties of
snow (microstructure, stratigraphy) owing to metamorphism
processes [1], [21], [30], [32]. This affects the radiative trans-
fer of microwave radiation through the snowpack [16]. The
problem is particularly challenging for Arctic snow, which is
characterized by two layers with very different characteristics:
a dense surface layer deposited and scoured by the wind
[wind slab (WS)], and a basal layer composed of large
metamorphized crystals of ice depth hoar (DH) [20], [29],
[33], [36]. Indeed, wind-induced snow drifting leads to the
sublimation of snow crystals and their compaction into hard
WSs with densities up to 400–600 kg m−3 near the surface.
This very hard snow surface at the transition between snow
and icy snow is still poorly resolved in microwave radiative
transfer models (RTM).

Conversely, at the bottom of the snowpack, snow evolves
toward large hoar crystals due to the strong vertical thermal
gradient within the snowpack. DH crystals can reach up to a
few centimeters and feature various shapes (cup-shaped, hol-
low or striated skeleton-type crystals arranged in prisms, and
chains or glassy faces) and reduced bond strengths between ice
crystals [9]. This leads to a DH layer with high heterogeneity
in microstructural shape and size which is not well captured
in current representations of microwave scattering.

The contrasted stratification of the Arctic snowpack in two
main layers (WS and DH) strongly contributes to modify the
microwave emission compared to lower latitudes. In general,
scattering significantly increases with snow density, grain size,
and grain aggregation (stickiness) (see [22], [25]). Commonly
used RTMs often fail with such extreme characteristics of the
Arctic snowpack [12], [28], [32], [36], [38], which differ from
the usual snow conditions of temperate or boreal environments.
This article aims to address these two problems of microstruc-
ture and high density specific to Arctic snow.
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Recent progress has been made to simulate microwave
radiation propagation through the snowpack in the snow
microwave radiative transfer (SMRT) model. SMRT uses
snow microstructure characteristics (density, grain size and
shape, and arrangement, i.e., the interparticle distance in the
microwave range linked to the grain aggregation) to drive
electromagnetic models (EMs) to compute the scattering and
absorption coefficients in snowpack layers [26]. Two recent
modifications in SMRT could help further improve modeling
the complex arctic snowpack: 1) a new concept of snow
microstructure parameter named “microwave grain size” was
proposed in Picard et al. [24] using a polydispersity factor
which scales heterogeneity within the microstructure and
2) the symmetrized strong contrast expansion (SymSCE) EM
allowing a continuous scattering coefficient formulation across
the full-density range [35] to help model high density snow-
packs (400–600 kg m−3). The challenge regards this transition
zone between hard snow to icy snow.

To test these two modifications, we evaluated SMRT sim-
ulations driven from snow properties measured in situ and
compared simulations with surface and satellite radiometer
observations at 19, 37, and 89 GHz. Different experimental
settings and sites were considered. We first looked at snow
slabs isolated or extracted from the remaining of the snowpack
which limits the influence of other features (soil and other
snow layers), subject to high uncertainties. We then analyzed
the emission of entire snowpack–soil emissions to complete
the validation. The slab datasets used in this study are indepen-
dent of the previous study on the microwave grain size done by
Picard et al. [25]. The slabs come from three datasets: taiga
snow from Finland [13]; Canadian Arctic snow (this study
and [36]); and snow from continental Antarctica considered as
a slab to test high density snow [8], [23]. Validations for full
snowpack were performed using surface-based and satellite-
based observations over Canadian Arctic sites.

This article is structured in four parts: 1) we first studied
the optimal parametrization of the microstructure for two
EMs improve Born approximation (IBA) and SymSCE for
homogeneous snow slabs extracted from natural seasonal
snowpack; 2) the problem of high-density snow was then
investigated by including three additional sites from Antarctica
and looking at IBA and SymSCE biases with observations;
3) we validated these results on an independent dataset of mul-
tilayer snowpack with surface-based radiometer measurements
(19, 37, and 89 GHz); and 4) with satellite-based brightness
temperature observations (19 and 37 GHz).

II. DATA AND MODELS

A. Snow Data and Radiometric Measurements
Two types of surface-based radiometer measurements were

used in this study. The first was collected over homogeneous
snow slabs extracted from snowpack in order to avoid the com-
plexity of microwave interactions between multiple layers, and
the second over natural snowpacks (measuring the snowpack
overlaying the soil). Microwave data and the snow properties
needed for model simulations were collected during different
field campaigns generally at the end of the snow season before
the melting season (March or April in the Arctic) in open areas

Fig. 1. 2022 slab experiments in Cambridge Bay, NU, Canada. (a) WS
with the absorber put in the hole under the WS. (b) DH layer shoveled in a
polystyrene foam box put over the absorber. The set was positioned in the
field of view of the mobile microwave radiometers on a sled. The sled was
moved so that each frequency was looking at the sample.

at several sites in taiga environment in Finland and from Arctic
sites in Northern Canada (see Table I).

For the slab experiments at each site (see Section III-A), the
samples were cut from the snowpack with a metal plate and
carefully extracted to preserve the snow structure following
Wiesmann et al. [40] (see also [13], [36]). The ∼15-cm
thick extracted samples were gently put over a microwave-
transparent 3-cm thick polystyrene foam (Styrofoam) sample
holder above an absorber (ECOSORB1 absorber with emissiv-
ity ∼1) in front of the radiometer field of view. In contrast,
during the Cambridge Bay 2022 field campaign, we dug
under the WS (which was very hard) to eliminate the DH
and insert the Styrofoam [see Fig. 1(a)]. To extract the DH
layers, the noncohesive crystals were scooped up and put
into a Styrofoam box [see Fig. 1(b)]. Doing so disturbed
the layer structure, but this was the only practical way to
extract a thick (15 to 25 cm) and homogeneous layer of
hoar crystals. The Cambridge Bay (Nunavut, Canada) slab
dataset includes six slabs classified as WSs and six as DH (see
Tables I and II). During the 2016–2017 winter at the Umiujaq
(Northern Québec, Canada) sites, we extracted six WSs and
four DH samples (see Table I). For the Sodankylä, Finland site,
the dataset from the Arctic Snow Microstructure Experiment
(ASMEx), which took place in the winter of 2014–2015,
includes eight WSs and four DH samples (see Table I).

For each experiment (snowpack and slab) at Umiujaq and
Cambridge Bay sites (see Table I), several snow physical
properties were measured: density, physical temperature, sur-
face specific area (SSA), and grain type, every 3 or 5 cm
along the snow pit wall. The physical temperatures were
measured from a probe thermometer (±1 K). The density
profiles were recorded using a density cutter with a volume of
100 or 250 cm3. The SSA measurement were done using the
shortwave infrared reflectometry [2], [6].

We conducted a visual stratigraphy assessment of the main
snow layers/features, including ice lenses and type of snow
grain morphology following the international classification [9].
The absorbing material and air physical temperatures were also
measured during the experiments. The mean snowpack proper-
ties of the new 2022 Cambridge Bay dataset appear in Table II.

1Trademarked.
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TABLE I
DATA USED IN THIS STUDY, INCLUDING THE MEAN SNOW DEPTH (SD), THE NUMBER OF SNOW PITS (NO. OF PITS FOR THE BULK SNOWPACK

EXPERIMENT), AND OF ISOLATED SNOW SLAB EXPERIMENTS (SLAB EXP.). DETAILS ON FIELD CAMPAIGNS APPEAR IN REFERENCES. THE
SECTIONS CORRESPONDING EACH DATASET APPEAR IN THE “SECTIONS” COLUMN

TABLE II
MEAN SNOW PROPERTIES AND VARIABILITY (±σ ) FOR THE 2022

CAMPAIGN IN CAMBRIDGE BAY, NU

Three additional points are from Antarctica; they were
acquired during an austral summer field campaign in January
2012 (see Table I). The first one was taken over blue ice at Cap
Prud’homme, east Antarctica (near the French coastal station
of Dumont d’Urville). The ice with many apparent bubbles
had a measured surface density of 850 ± 10 kg m−3, and is
considered here as homogeneous over a thickness of some ten
meters and a mean bubble radius of 0.52 ± 0.23 mm (SSA was
derived from the mean bubble radius measured on a sample as
detailed in [8, Fig. 10]). The bubbles were visually spherical
and of the same diameter. The two other snow pits (named SP1
and SP2) were near the Concordia station, east Antarctica, with
contrasted brightness temperatures due to different hardness:
hard (SP1) and very hard (SP2) [23]. The density profiles were
measured down to 8 m on snow cores sliced every 5 cm with
a miter saw. The height and diameter of each sample were
measured with a caliper to deduce the volume assuming a
cylindrical shape. The mass was measured with a precision
scale. The density profiles show that the SP1 snowpack upper
part has a density value of 390 kg m−3, while SP2 has a density
of 410 kg m−3, on average, in the first meter. The snow grain
size was measured in the same boreholes using the profiler of
snow specific surface area using shortwave infrared reflectance
measurement (POSSSUM), (see [2]). The temperature profile
was recorded about 1 km away, near Concordia Station using
a string of 40 temperature probes from the surface to 20 m
depth [23]. The possible spatial variation in snow temperature
is assumed negligible as this site is very homogenous (same
albedo, altitude, and a slope almost nil) leading to similar
meteorological forcing at this scale.

A final dataset from the Canadian Arctic (Cambridge Bay,
2015–2019, and Trail Valley Creek, Northwest Territories,
2018–2019) was also used has an independent evaluation with
satellite observation. The simulation is based on a two-layer
model (WS/DH). The dataset comes from Meloche et al. [20]
with mean snow properties for both WS (SSA: 20 m2 kg−1,
Density: 335 kg m−3) and DH (SSA: 11 m2 kg−1, Density:
266 kg m−3). Brightness temperatures were simulated using
the fixed DH fraction (DHF) (DHF = 0.46) and mean snow
depth for each year and location (see [20, Table VI]).

The surface-based microwave brightness temperature (TB)

measurements were acquired in both vertical (V-pol) and
horizontal (H-pol) polarizations at incidence angles of 20◦

to 50◦/55◦, and at frequencies of 150, 89, 37/36.5, 21, and
19/18.7 GHz depending on the experiments. Table I references
detailed measurements and methods. Satellite observations
for Cambridge Bay and Trail Valley Creek were from the
Special Sensor Microwave/Imager and Sounder (SSMIS) sen-
sor at 37 and 19 GHz, with the Equal-Area Scalable Earth
(EASE)-Grid 2.0 resampled at 3.125 km (6.25 km for 19 GHz)
resolution [3], see Meloche et al. [20] for more details on
processing. For Cambridge Bay and Trail Valley Creek TB

simulations, soil permittivity and roughness were derived from
a previous study [19] based on a semi-empirical rough soil
reflectivity model [39]. The frozen soil permittivity value
was ϵ = 3.36 + 0.002i and roughness σh = 1.7 cm. The
downwelling atmospheric radiation (TB,atm, γatm) were also
estimated from atmospheric modeling [36] and then used in
SMRT, except for Sodankylä’s dataset where it was measured
directly. The brightness temperature measurements were then
compared to the simulated brightness temperature from the
SMRT.

B. SMRT Model

The SMRT model [26] has recently been improved to pro-
vide a consistent theoretical treatment for passive microwave
simulations based on the snow microstructure representation
for each layer defined by three parameters: the density, the
SSA, and the microwave polydispersity (K ) [25]. The three
parameters are measurable and can be used for any common
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Fig. 2. Variation of scattering coefficient as a function of density using
the SMRT SCE (blue), the SymSCE (black), and the IBA (red) models for
both media, snow, and bubby ice (see text). Simulations are at 37 GHz
for a theoretical homogeneous porous medium with SSA = 15 m2 kg−1,
Ksnow = Kice = 1, and Temperature = 263 K. The microstructure model is
exponential with correlation length defined by (2a) and (2b) for, respectively,
ice-in-air (snow) and air-in-ice (bubbly ice).

microstructure type (e.g., exponential and sticky hard sphere).
The polydispersity can be estimated from the microcomputed
tomography measurement of the snow 3-D chord length dis-
tribution (see [25, Eq. (8)]). As tomography was not available
for the sites in this study, K was retrieved by minimizing the
difference between microwave measurements and simulation.

The EM computes the scattering and absorption coeffi-
cients in each snow layer. Here, we tested the nonlocal (i.e.,
where averaged polarization field at a given point is assumed
to depend on the average electric field at other localities),
strong contrast expansion (SCE) theory for heterogeneous
porous dielectric media, rigorously accounting for complete
microstructural information (infinite set of n-point correlation
functions) and hence multiple scattering [35]. Picard et al. [24]
recently implemented SCE model in SMRT. SCE allows com-
puting effective wave propagation and scattering coefficients
in any random two-phase medium. In our case, two media are
considered: snow represented by ice particles in a background
of air (ice-in-air mixture) and bubbly ice represented by air
bubbles embedded in ice (air-in-ice mixture). Considering the
ice fraction of the medium (φice = ρmedium/ρice), the snow
representation is typically valid for an ice fraction of 0–0.3
and the bubbly ice for 0.7–1. The symmetrization of SCE
model [35] (labeled SymSCE) is based on the combination of
the polarizabilities of each medium (a function of dielectric
constant) weighted by 1 − φice and φice for the snow (ice-
in-air) and inverted (air-in-ice) media, respectively (see [35,
Eq. (D1)]). This allows to continuously cover the critical zone
between φice > 0.3 and φice < 0.7, given a higher weight to
the snow at low φice and to the bubbly ice at high φice (see
Fig. 2). This allows an approximate approach, computationally
efficient and physically rigorous, to continuously cover the
critical zone between φice > 0.3 and φice < 0.7 (see Fig. 2).

The way scattering function accounts for geometrical char-
acteristics of the medium microstructure is the same in
SymSCE and IBA models. The microstructure information is

carried by the “microwave grain size” parameter

LMW = Kmedium × L p,medium (1)

where Kmedium is the polydispersity and L p,medium is the
correlation length (also called Porod length). The latter can
be calculated as [17] and [24], for ice-in-air

L p,ice-in-air = 4
(1 − φsnow)

(ρiceSSA)
= 4

(1 − ρsnow/ρice)

(ρiceSSA)
(2a)

and for air-in-ice medium

L p,air-in-ice = 4
φsnow

(ρiceSSA)
= 4

(ρsnow/ρice)

(ρiceSSA)
. (2b)

The SymSCE scattering coefficients are compared to the
IBA scattering coefficient assuming Ksnow,ice = 1 in Fig. 2.
A discontinuity indeed appears in the critical transitional
zone between snow and ice when respectively using L p,snow
[see (2a)] and L p,ice [see (2b)] for defining their microstruc-
tural parameter.

Physically, the scattering coefficient increases with the num-
ber of scatterers (i.e., the fractional volume) and with the
randomness in the medium. As the scatterers are more and
more packed, the randomness decreases because the scatterer
positions are more and more constrained by the others and
this effect is stronger than the effect of increasing scatterer
number at high fractional volume. This results in a maximum
of scattering somewhere at intermediate fractional volume, and
in a bell-shaped curve. In the setting where air and ice are
switched, we have in fact two bell shaped curves with two
local maximums (see Fig. 2). Noting that these maximums
are at relatively low and high densities, respectively, a local
minimum must exist in the middle range, mathematically.
Physically this can be understood as a stage where packing
strongly constrained the position of the scatterers. However,
it is worth noting that this local minimum is very shallow, and
it depends on the precise shape of the curves which themselves
depends on the packing model (the microstructure model) and
on where the switch is performed. Therefore, the position and
the depth of this minimum is certainly variable for real snow.

For the snow or ice-in-air mixture, the SCE and IBA
scattering coefficients are similar, while for the air-in-ice
mixture, the SCE scattering is lower than for the IBA. Based
on IBA, the exponential spatial autocorrelation function pro-
posed by Mätzler and Wiesmann [15] gave good results in
its experiment with coarse-grain crusts growing and decaying
during melt-and-refreeze cycles, reaching layers of densities
up to 700 kg m−3. For IBA, the scattering coefficient of ice-
in-air between 300 and 600 kg m−3 density appears clearly
lower compared to that of air-in-ice at the same densities.
For SCE, this occurs at a density above ∼500 kg m−3. For
37 GHz at 458.5 kg m−3 (i.e., at φsnow = φice = 0.5) using
IBA, κs,snow = 0.7 m−1 is substantially lower compared to
κs,ice = 3.3 m−1 (see Fig. 2). The theoretical SCE-snow and
SCE-ice curves intersect at κs,snow = κs,ice = 1.3 m−1 for
470 kg m−3, while those from IBA intersect at κs,snow =

κs,ice = 1.1 m−1 for 330 kg m−3. The SymSCE curve for which
κs varies continuously in the transition zone is also shown for
comparison (black line, Fig. 2).
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In the IBA EM model, the field ratio accounting for the
difference in the electric field inside the scatterers of relative
dielectric permittivity ε2 and the background ε1 is a function
of ε1, ε2 and the effective permittivity of the medium (see
[15, Eq. (2)]). This field ratio is the only term in the IBA
equations that changes when switching from ice-in-air to air-
in-ice microstructure (i.e., ε1 → ε2, ε2 → ε1, f → 1 − f )

and poses a very significant change (e.g., from 0.48 to 2.06 at
f = 0.5, [15, Eq. (2)]). All the other terms are unaffected
by this switch, and they are invariant. IBA hence features a
much stronger air-in-ice scattering than the ice-in-air at the
same fractional volume of scatterers.

The SCE model also presents a stronger scattering in the
air-in-ice than in the ice-in-air, but shows a lesser amplitude
than for IBA. SCE formulation does not involve the field
ratio. The explanation rather lies in the effective permittivity
difference between low- and high-density media. In the air-in-
ice medium, as the wave propagates in a medium with a higher
permittivity than in ice-in-air medium, its wavelength is shorter
than in air (by a factor (εmedium)1/2 between 1 and ∼1.77 for
pure ice). The apparent size of the scatterers is therefore
seen larger by the wave, leading to a stronger scattering in
the air-in-ice side. Rayleigh scattering is indeed proportional
to the volume of the scatterers relative to the wavelength.
Note that IBA is also subject to this effect, in addition to
the field ratio effect. Beyond the limit of ∼800 kg m−3,
the number of scatterers per unit volume decreases in the
medium, which becomes pure ice, decreasing the scattering
coefficient. Nevertheless, absorption continues to increase so
that the single scattering albedo decreases, and the brightness
temperature increases as a result [22], [26], [30].

The SymSCE model is based on the “nonlocal” SCE for-
malism and has been symmetrized [24], [35]. The result is
that SymSCE formulation is unaffected when switching from
ice-in-air to air-in-ice microstructure. However, we still see a
stronger scattering for higher density, for the same reason as
for SCE.

In the following, the IBA (both media) and SymSCE were
used for all TB simulations.

III. RESULTS

A. Slab Experiments

The comparisons between measured and simulated bright-
ness temperatures during the isolated slab experiments
(wind pack slabs and DH slabs) for all sites appear in
Fig. 3 (Cambridge Bay, CB; Sodankylä, SK; Umiujaq, UMI;
Dome C, Antarctica, DC) for both IBA and SymSCE models.
The polydispersity values (K ) minimizing the root mean
square error (RMSE) in each case appear in Table III. Results
show that, for the IBAice-in-air model, the retrieved WS polydis-
persity KWS ranges from 0.76 to 0.84 if considering the sites
separately (see Table III), with a mean value of KWS = 0.80 for
all sites. Note that the minimization in Umiujaq site did not
converge. We believe this is due to the extracted slabs being
almost transparent at 19 and 37 GHz due to a combination
of small thickness and grain size. This is not the case for DH
since the scattering due to large grain size is significant. When
using the SymSCE model, the polydispersity coefficient KWS

Fig. 3. Simulated and measured brightness temperatures for all slab
experiments (Wind slab, WS; depth hoar, DH) and bubbly ice (Bice), both
polarization (vertical, V, and horizontal, H) and all frequencies used with
effective polydispersity from Table III. (a) IBA model with RMSE = 13.4 K,
Bias = 4.3 K, and R2

= 0.87 and (b) SymSCE model with RMSE = 14.0 K,
Bias = 4.3 K, and R2

= 0.86.

TABLE III
EFFECTIVE MICROWAVE POLYDISPERSITY COEFFICIENT FOR EACH TYPE

OF SNOW (WS: WIND SLAB; DH: DEPTH HOAR; BICE: BUBBLY ICE),
FOR EACH SITE (SK: SODANKYLÄ; CB: CAMBRIDGE BAY, NU;

UMI: UMIUJAQ, QC; DC: CAP PRUD’HOMME, ANTARCTICA),
AND FOR EACH MODEL (IBAice-in-air , IBAair-in-ice ,

AND SYMSCE)

ranges from 0.63 to 0.73 (see Table III), with a mean value
of 0.68, that is about 15% lower than IBA.

For the isolated DH slabs, results show that, for the IBA
model, the retrieved polydispersity coefficient KDH ranges
from 1.28, 1.36 to 1.34, respectively, for SK, CB, and UMI
sites (see Table III). In the cases of CB and UMI, the
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Fig. 4. Bias in brightness temperature (K) (simulated mean TB at 19 and
37 GHz and both polarizations minus measured) of WS as a function of
density. The lines represent the rolling average of the different EM models.
Slabs with a density over 400 kg m−3 appear in red using an inverted medium.
A constant polydispersity of 0.76 (mean of WS) was used for all simulations.

convergence is relatively flat without significant variation of
the RMSE (±1 K) between 1.2–1.5 and 1.1–1.6, respectively
(see Table III). Thus, the mean KDH value was 1.33. For
the SymSCE model, KDH varies from 0.95, 1.22, and 1.07,
respectively, for SK, CB, and Umi sites (see Table III), with
a mean of 1.08, that is 19% lower than IBA.

The bubbly ice sample (Bice), with retrieved K values of
0.70 and 0.67, respectively, for IBAair-in-ice (RMSE = 8.7 K)
and SymSCE models (RMSE = 7.9 K) (see Table III), are
close to the KWS values, in agreement with the observed small
air bubbles size.

The effective polydispersity derived from the fit between
simulated and measured microwave brightness temperatures
slightly depends upon frequencies due to the vertical inhomo-
geneity of the slab and the frequency-dependent penetration
depth. It is thus difficult to determine which frequencies are
the best, without independent comparison with micro-CT K
values (see Section IV).

B. Density Evaluation

To assess IBA and SymSCE behaviors for high density
snow, we analyzed the results (bias) for WSs as a function
of densities (see Fig. 4).

The mean bias between simulated and measured TB does not
substantially change with density between 400 and 500 kg m−3

for SymSCE and IBAair-in-ice (Fig. 4, blue and yellow points,
respectively). When we inverted the medium to air-in-ice using
IBA for slabs with density >400 kg m−3 (Fig. 4, IBAice-in-air,
red points), we see an increase (negatively) in the bias between
simulated and measured TB . Such behavior agrees with the
scattering coefficient variations shown in Fig. 2. The scattering
using the inverted medium with IBA (IBAice-in-air) seems
to overestimate scattering. Note that in Fig. 4, we used a
constant polydispersity value (K = 0.76) for all models.
If the optimized values of K (see Table III) were used, the
difference between SymSCE and IBAair-in-ice would be smaller
since the lower K for SymSCE and higher K for IBAair-in-ice
would compensate for the difference in scattering between
both models.

Fig. 5. Simulated and measured brightness temperatures for the 2022
Cambridge Bay snow pit experiments by frequencies and all frequency
together using IBA model with values of polydispersity KWS = 0.80 and
KDH = 1.33. Color graduation is a function of each pit mean snow densities.

C. Validation of the Arctic Snowpack

In Section III-B, we determined an effective microwave
polydispersity retrieved from the slab experiments. Here,
we assess the usefulness of these values applied to an
independent dataset of natural Arctic snowpacks collected
at Cambridge Bay in April 2022 (see Tables I and II).
In Table IV, the first column shows the result using the
measured SSA and density of each layer and the K values
optimized from the previous section (slab experiment). For the
IBA simulations, we used KWS = 0.80 or KDH = 1.33, and
for SymSCE simulations KWS = 0.68 or KDH = 1.08. Results
appear in Figs. 5 (IBA) and 6 (SymSCE) per frequency.
Positive biases were higher at 19 GHz (11.9 K for IBA and
14.8 K for SymSCE) (see Table IV) compared to 37 GHz
(7.5 K for IBA and 11.7 K for SymSCE). Negative biases were
observed at 89 GHz. The second column in Table IV shows
the results of K that minimized the natural snowpack dataset
RMSE. This allowed the best outcome in terms of RMSE for
K to be determined and compared with values from the K
derived in the slab experiment.

The third column in Table IV shows results using an
empirical scaling factor φ for the optical radius of the snow
grains as done in previous studies [27], [36].

With the IBA, using the mean polydispersity values derived
from the slab experiments and applied for the full snow pits
yields an RMSE ranging from 17.5 to 11.3 K depending
on frequency and with the SymSCE, from 19.6 to 13.7
(+10%) (Table IV, first column). These values are slightly
higher (+20%) than those derived by optimizing the natural
snowpacks (Table IV, second column). Hence, using average
values of polydispersity parameters for WS and DH does not
alter the simulations too much; therefore, this approach allows
simulation of Arctic snowpack emissivity and remains valid
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TABLE IV

RMSE, BIASM, AND CORRELATION COEFFICIENT (R2) BETWEEN SIMULATED AND MEASURED (GROUND-BASED) TB AT CAMBRIDGE BAY 2022 FOR
BOTH EM MODELS (IBA AND SYMSCE) USING K OPTIMIZED WITH THE SLAB EXPERIMENTS (SEE SECTION III-A), USING K OPTIMIZED FOR

THE SNOW PIT LAYER, AND USING A SINGLE SCALING FACTOR FOR BOTH WS AND DH SNOW TYPES (φ)

Fig. 6. Same as Fig. 5, but for SymSCE simulations with polydispersity
values KWS = 0.68 and KDH = 1.05.

for generalization to a certain extent. Moreover, even though,
theoretically, there should be no frequency dependence of the
errors, differences do appear (greater RMSE at 19 GHz) (see
Table IV). This may be due to the contribution of ground
scattering under the snow, which is greater at 19 than at
89 GHz because of the greater emission depth at 19 GHz.
Also, as mentioned for the slab experiment, no trend appears
in RMSE as a function of density or SSA.

At last, we tested the hypothesis of using an empirical
scaling factor φ for the snow grains optical radius. This is
equivalent to assuming a single value of polydispersity for
all snow types. Results show an increase in mean RMSE
of 2 K (w/r optimized by slabs, col. 1) and 5 K (w/r
optimized by snow pit layer, col. 2) (see Table IV). Particularly
at 89 GHz, the significant RMSE difference between the
polydispersity approach (7.7 and 8.7 K) and the mean scaling
factor (19.1 and 27.1 K) clearly demonstrates that considering

the polydispersity by grain type is a major improvement over
the previous scaling factor.

D. Validation Using Satellite Observations
For practical purposes, regarding the satellite SWE retrieval,

we assessed the effect of polydispersity on satellite observation
simulations using Meloche et al. [20] dataset. Assuming an
Arctic snowpack with a fixed fraction of WS and DH layers
(observed mean DHF = 46%), we simulated TB for multiple
years and for two Arctic sites [20]. We also used mean values
of SSA and density for each WS and DH layer. We compared
the error metrics (RMSE and R2) obtained using either the
polydispersity values for the slab experiment (Table IV, col-
umn 1) or a scaling factor for the optical grain size (Table IV,
column 3). For satellite-based measurements (see Table V),
we also found that for, both models at 37 GHz, the RMSE is
better when using two polydispersity values than when using
the scaling factor (for IBA: 11.8 K compared 21.2 K; for
SymSCE: 9.3 K compared to 16.4 K, Table V), while it is
not the case at 19 GHz. It is likely that, at 19 GHz, where the
penetration depth is greater and therefore the ground emission
contribution is much higher, the scaling factor optimization
also compensates for the ground emission uncertainty, in addi-
tion to snow scattering. In the case of polydispersity approach,
there is no optimization.

This means that the proposed approach using generic
mean values of snow properties (see [20, Fig. 5]) for Arctic
snowpack with a two-layer stratification could be applied to
simulate satellite-based observations. For IBA, 37 GHz yields
a significant improvement with a 44% lower RMSE (from
21.2 to 11.8 K) using two polydispersity values.

IV. DISCUSSION

For the two types of snow (WS and DH) analyzed in this
study, the values of microwave polydispersity derived from
surface-based microwave radiometry well agree with those
found in Picard et al. [25]. Particularly noteworthy is that
the polydispersity values found in this study with IBA for
Arctic WSs (0.8) very closely match the range of values from
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TABLE V

RMSE (K ) AND COEFFICIENT OF DETERMINATION (R2) BETWEEN
SIMULATED AND SATELLITE-BASED TB FOR THE MELOCHE ET AL.

[20] DATASET FOR TWO EM MODELS; IBA AND SYMSCE, USING
OPTIMIZED POLYDISPERSITY BY SLAB AND A SCALING

FACTOR (SEE TABLE IV)

TABLE VI
SUMMARY OF POLYDISPERSITY VALUES ESTIMATED IN THIS STUDY (∗)

AND REPORTED BY PICARD ET AL. [25]

laboratory microcomputer tomography (µ-CT) measurements
for Alpine WSs (0.6–0.9). The same is true for the Finnish
DH polydispersity in this study (SymSCE: 1.08, IBA: 1.28)
with respect to the range of µ-CT measurements (0.8–1.2)
(see Table VI). Regarding the Arctic DH, for which no
µ-CT measurements yet exist, the value found by microwave
retrieval in this study (1.33) from isolated DH layers also well
corresponds to the range (1.2–1.8) found by Picard et al. [25]
from an independent dataset (see Table VI).

During the Sodankyla’s ASMEx experiment [32], the
µ-CT-derived exponential correlation length lex(x, y, z) and
the Debye correlation length lp(x, y, z) based on µ-CT-derived
SSA and density were estimated. We estimated the approxi-
mate polydispersity of each AMSEx’s slab samples by using
the following approach using mean (x , y, z) values: Kapprox =

lex/ lp. This equation of Kapprox differs from the true (8) sug-
gested by Picard et al. [25] for estimating K and comparison
should be interpreted with care. Here, we compared Kapprox
with KMW estimated from microwave measurement but with
lp(x, y, z) based on µ-CT-derived SSA and density (with
respect to earlier in this article where optical-derived SSA
was used). Substantial overestimation of the SSA from the
optical method compared to the µ-CT can be observed [13]
which influence the final KMW in our case. We believe that
the difference between SSA estimation by the optical methods

compared to SSA by a micro-CT is not only related to DH
but all grain type [13]. This topic is beyond the scope of
this article, and merits more in-depth investigations. Results
show that Kapprox is similar to KMW using IBA for the WS
(Kapprox = 0.64 compared to KMW = 0.62 using IBA and
KMW = 0.51 using SymSCE), while the Kapprox value is
closer to the KMW SymSCE value for the DH slab (Kapprox =

0.76 compared KMW = 1.06 using IBA and KMW = 0.68 using
SymSCE).

Note that the approach of retrieving the polydispersity by
optimization could compensate for different uncertainties in
snow measurements (spatial variability and sensor calibration).
The slab experiment is difficult to carry out in the field,
and is certainly subject to several sources of uncertainties,
as outlined in previous studies [13], [36], [40]. Among them,
the downward environmental contributions from the surround-
ings reflected by the slab could significantly contribute to
the measured signal. Also, the possible misalignment of the
antennas regarding the slab position could generate errors.
At last, the limited size of the box where the snow slab
is stored weakens the assumption of the ideal infinite layer,
as the edges are susceptible to produce multiple reflections,
contributing to the signal as well. This latter effect is most
likely reduced for measurements over an isolated (instead of
extracted) layer within the snowpack, as shown in Fig. 1(a).
The quantification for these errors needs further investigation
with improved experimental settings.

SymSCE did not yield a significant improvement compared
to IBA. The only difference was the smaller polydispersity
consistently found for SymSCE which compensates for the
higher scattering in SymSCE compared to IBA for snow (see
Fig. 2). Further investigations are needed to evaluate properly
the benefit of SymSCE for hard snow while IBA simulations
using inverted medium (IBAair-in-ice) seems to increase the bias
between (simulated minus measured) TB (see Fig. 4). More
physical measurements of Arctic snowpack polydispersity
using micro-CT will help differentiate both model physical
relevance and the correct polydispersity values.

Improvement in simulations using polydispersity for
surface-based and satellite observations at 37 GHz can be
noted, which is encouraging since it is the most sensitive to
snow scattering, and the most promising for satellite SWE
retrievals. DH crystals have always caused issues in snow
emission simulation due to their high scattering properties.
The simulation at 37 GHz benefits from using a two-layer
snowpack with different fixed polydispersity values for WS
and DH that can adjust for the scattering between these two
contrasted layers. The depth of hoar layer shows a certain
sensitivity on brightness temperature, as expected at 37 GHz
due to its strong scattering effect. A test was carried out with
the DHF set to 0.35 instead of the chosen value 0.46. RMSE
increases by from 12 K (see Table V) to 20 K for both
parameterization (polydispersity or scaling factor), whereas
at 19 GHz, the increase in RMSE is +1.7 K. The chosen
value of 0.46 is close to the best match for the sites studied [4],
[10], [20], [29], [31]. But, this is an important issue as DHF
increases with tundra climate-induced shrubification [31].
At 19 GHz, RMSEs between simulation and observation using
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polydispersity values (without optimization) stay, however,
higher compared to the approach using optimization by an
empirical scaling factor as simulations could be affected
by soil emission uncertainty. The fact that high frequencies
(89 GHz) are more sensitive to the surface layer from which
the measured TB emanates (lower penetration depth), they
depend more upon the surface layer polydispersity than DH.

V. CONCLUSION

The new “microwave grain size” introduced by Picard et al.
[25] was applied to multiple datasets for Arctic snow. The
effective value of polydispersity for DH and WS were found
using isolated slab experiments and then applied to inde-
pendent datasets of surface-based and satellite microwave
measurements. Effective polydispersity values agree with val-
ues found by Picard et al. [25]. The simulations of Arctic snow
are found to be improved using the microwave grain size. The
applicability we found so far is encouraging. The next step
should focus on the measurement of physical polydispersity
values of DH from microtomography instead of microwave
optimization.

Moreover, we validated for the first time the scaled symmet-
rical SCE EM model, newly implemented in SMRT, featuring
a continuously scattering transition between low and very
high-density snow, including strong wind-driven compacted
layers and firn up to bubbly ice. More work is, however,
needed to conclude on which EM model better models the
transition zone knowing the precise snow parametrization
using µ-CT measurements.

The microwave grain size concept introduced a physical
quantity that improved the challenging modeling of the Arctic
snowpack. The scattering due to size and shape of DH is
provided by high polydispersity (K > 1), whereas most other
convex grains have a lower value (K < 1). This allows using
a physical microstructure representation for each snow types
without using empirical scaling factors as in the past but
rather focusing on a parameter that can be measured and
quantified per snow types. This snow polydispersity parameter
could be introduced in snow microstructural representation
of physical snow evolution models such as Crocus [37]
or SNOWPACK [11]. Coupling improved snow model with
modified RT model, such as SMRT, will thus be the next
step toward global SWE retrieval from space-borne microwave
observations.
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