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Abstract— Monocular height estimation (MHE) is key for gen-
erating 3-D city models, essential for swift disaster response. Mov-
ing beyond the traditional focus on performance enhancement,
our study breaks new ground by probing the interpretability of
MHE networks. We have pioneeringly discovered that neurons
within MHE models demonstrate selectivity for both height and
semantic classes. This insight sheds light on the complex inner
workings of MHE models and inspires innovative strategies
for leveraging elevation data more effectively. Informed by this
insight, we propose a pioneering framework that employs MHE
as a self-supervised pretraining method for remote sensing (RS)
imagery. This approach significantly enhances the performance
of semantic segmentation tasks. Furthermore, we develop a
disentangled latent transformer (DLT) module that leverages
explainable deep representations from pretrained MHE networks
for unsupervised semantic segmentation. Our method demon-
strates the significant potential of MHE tasks in developing
foundation models for sophisticated pixel-level semantic analyses.
Additionally, we present a new dataset designed to benchmark
the performance of both semantic segmentation and height
estimation tasks. The dataset and code will be publicly available
at https://github.com/zhu-xlab/DLT-MHE.pytorch.

Index Terms— Foundation models, interpretable deep learning,
monocular height estimation (MHE), self-supervised pretraining.

I. INTRODUCTION

HE geometric information of 3-D cities can be useful for
urban planning, damage monitoring, disaster forecasting,
and so on. In this context, obtaining geometric information
efficiently from remote sensing (RS) imagery is essential for
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a rapid response to time-critical world events, e.g., natural
hazards and damage assessment [1], [2].

Motivated by the development of monocular depth esti-
mation (MDE) task [5], [6], [7], various methods have been
proposed for monocular height estimation (MHE). Mou and
Zhu [8] designed a residual convolutional network for height
estimation and demonstrated its effectiveness on the instance
segmentation task. Christie et al. [9], [10] proposed to estimate
the geocentric pose from monocular oblique images. Comple-
mentary to optical data, Sun et al. [11] proposed a workflow
for building height retrieval in single SAR images. Since
estimating height from monocular images is an ill-posed task,
improving the interpretability and reliability of deep models
is crucial for risk-sensitive applications. However, few works
focus on understanding deep networks for MHE.

As for interpretable deep models [12], previous research
on image classification [13], [14] and object detection [15]
has been studied. However, MHE is a dense prediction task
involving pixel-wise regression. This makes image-level and
object-level interpretation methods not applicable. The most
relevant task to MHE is MDE. Dijk and Croon [16] inves-
tigated important visual cues in input monocular images for
depth estimation. Hu et al. [17] tried to find the most relevant
sparse pixels for estimating the depth. An interesting work
from [18] first found the depth selectivity of some hidden
neurons, which showed promising insights for interpreting
MDE models.

Although MHE shares some similar characteristics with
MDE, several aspects make them quite different. First, height
is an inherent attribute of objects, which should not change
under different views. However, the depth of objects highly
depends on the camera pose. Second, estimating height from
the top view may be far more ambiguous than depth estimation
from the street view because of the severe occlusion and lack
of textures. Third, object types, scales, and scene layouts vary
greatly in remotely sensed imagery. These differences also
make it unsuitable to apply interpretation methods of MDE
to MHE.

Considering this issue, in this study, we propose to explain
the deep MHE model by a network dissection to explore the
properties of hidden neurons and understand what internal
representations the MHE model has learned. From observation,
we find that MHE networks learn disentangled representations
to different semantic concepts and height ranges. As shown in
Fig. 1, roads, trees, and buildings are automatically recognized
by some neurons. Some of the neurons are selective to
different height ranges. Based on the finding of semantic
selectivity, we introduce a framework that utilizes MHE as
a self-supervised pretraining method tailored for RS imagery.

© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
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MHE networks learn to recognize different semantic objects (road, building, and tree) and height ranges implicitly. This figure shows the strong

selectivity of Transformer-based MHE networks on both the GTAH dataset [3] and the DFC 2019 [4] dataset.

By adopting the pretrained weights to downstream seman-
tic segmentation tasks, the performance can be substantially
enhanced. This highlights the potential of incorporating MHE
in designing RS foundation models [19] for pixel-level tasks.

While multimodal pretraining has been extensively explored
in existing [20], with approaches like CROMA [21] leveraging
SAR and optical image pairs for cross-modal reconstruction
and contrastive learning, and DeCUR [22] focusing on dis-
tinguishing between modality-common and modality-specific
representations, our work focuses more on the elevation data
and introduces significant innovations and advantages. First,
we utilize explainable deep learning to elucidate the underly-
ing reasons why MHE is an effective self-supervised pretrain-
ing method for enhancing semantic analysis tasks. Second,
our utilization of the MHE task for pretraining endows the
resulting model with dual functionalities: not only does it excel
in downstream semantic analysis tasks, but it also operates
effectively as a height estimation network. This bifunctionality
of the pretrained model highlights our contribution: leveraging
MHE to bridge the gap between semantic analysis and height
estimation in RS.

Furthermore, we demonstrate that the pretrained networks
for MHE can be adapted to unsupervised semantic seg-
mentation. To this end, we introduce a disentangled latent
transformer (DLT) module that adeptly refines and constrains
interim representations to achieve semantic coherence. Conse-
quently, the model facilitates simultaneous height estimation
and semantic segmentation tasks, leveraging solely height data
for supervision. This methodology not only delineates a novel
pathway for integrating height estimation with semantic seg-
mentation but also surpasses the performance set by existing
unsupervised segmentation methods that utilize both the RGB
and height data.

To contribute more datasets containing both height maps
and semantic labels, we construct the Washington DC (WDC)
dataset, to foster research on improving both the interpretabil-
ity and performance of MHE models. Our contributions can
be summarized as follows.

1) Neuron Selectivity Insights: We identify that neurons
within pretrained MHE models demonstrate pronounced
selectivity toward both height ranges and semantic
classes. This discovery is instrumental in guiding future
research to optimize the utilization of elevation data in
RS applications.

2) Self-Supervised Pretraining: Based on the insights into
semantic selectivity, we introduce a self-supervised pre-
training framework based on MHE. This approach sig-
nificantly enhances the performance of semantic seg-
mentation tasks, showcasing the utility of pretrained
weights derived from MHE models.

3) DLT: We propose a novel DLT module to learn explain-
able and effective deep representations for joint seg-
mentation and height estimation. This module can distill
explainable deep representations from pretrained MHE
networks, facilitating unsupervised semantic segmenta-
tion tasks.

4) New RGB-H Dataset: A new dataset containing RGB
and normalized digital surface models (nDSM) is
constructed and released to evaluate joint semantic seg-
mentation and height estimation.

II. RELATED WORK

A. Interpretable and Explainable Deep Neural Networks

Interpretable deep models and explainable deep networks
both aim to make the complex decision-making processes of
deep learning transparent, albeit through different approaches.
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On the one hand, interpretable models are inherently designed
to be transparent, allowing for a direct understanding of their
internal operations. On the other hand, explainable networks
rely on external methods or frameworks to make sense of their
more complex decisions after the fact.

Several methods attempted to design inherently interpretable
models for image classification and object detection tasks.
Chen et al. [14] proposed to find prototypical parts and
explain the reason for making final decisions. Toward the
interpretability for the person reidentification task, Liao and
Shao [23] designed a model to make the matching process of
feature maps explicit. Zhang et al. [13] designed interpretable
CNNs by making each filter represent a specific object part.
Liang et al. [24] trained interpretable CNNs by learning
class-specific deep filters, encouraging each filter only to
account for a few classes. Similarly, You et al. [18] proposed to
improve depth selectivity by designing specific loss functions
for MDE models. To understand what these MDE networks
have learned, [16] studied important visual clues used by
deep networks when predicting depth. They mainly focused
on the object-level interpretation of MDE networks. [17]
attempted to find only a selected sparse set of image pixels to
estimate depth. A separate network is designed to predict those
sparse pixels. However, these methods neglect the inherent
representations that the model has learned.

Many researchers focused on saliency-based and attribution-
based methods [12], [25], [26] for explainable deep networks.
They aimed to highlight which pixels of input images are
important for predicting the result [27], [28]. However, attri-
bution and saliency-based methods are not directly applicable
to dense prediction tasks, including MDE and MHE, since
it is not reasonable to highlight all the pixels to attribute
the dense prediction globally. Gu and Dong [29] proposed
a local attribution method for interpreting super-resolution
networks. They chose to interpret features instead of pixels for
super-resolution tasks, which inspires our work on pixel-wise
attribution for MHE networks.

B. Monocular Height Estimation

With the development of deep learning, various methods
have been proposed for MHE. Srivastava et al. [30] proposed
to predict height and semantic labels jointly in a multi-
task deep learning framework. Mou and Zhu [8] designed
a residual CNN for height estimation and demonstrated its
effectiveness on instance segmentation tasks. Besides, con-
ditional generative adversarial network (cGAN) Ghamisi and
Yokoya [31] was proposed to frame height estimation as an
image translation task. Kunwar et al. [32] exploited seman-
tic labels as priors to enhance the performance of height
estimation on the large-scale urban semantic 3-D (US3D)
dataset [33]. Xiong et al. [3] designed and constructed
a large-scale benchmark dataset for cross-dataset transfer
learning on the height estimation task, which includes a
large-scale synthetic dataset and several real-world datasets.
Swin transformer [34] was used in this work for trans-
ferable representation learning on the MHE task. HTC-dc
Net [35] introduces a classification-regression paradigm for
MHE instead of formalizing the problem as a regression task.
The experimental results show its superiority over existing
methods.
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C. Self-Supervised Pretraining on Multimodal RS Data

Self-supervised pretraining [36], [37], [38] on RS imagery
can largely enhance the performance of deep learning models
in various RS tasks. For multimodal RS data, CROMA [21]
designs two unimodal encoders to encode both multispectral
and SAR data individually. Then, a cross-modal radar-optical
transformer is proposed to extract the unified representation.
DeCUR [22] develops a self-supervised foundation model that
decouples the unique and common representations between
two different modalities. SpectralGPT [39] is a masked
autoencoder-based foundation model designed for hyperspec-
tral RS data to preserve spectral characteristics. Distinct
from existing models, we innovatively adopt MHE as a
self-supervised pretraining strategy. This approach is straight-
forward and effective, endowing the pretrained models with
pixel-level semantic representations. Our findings illuminate
the potential of elevation data in developing RS foundational
models for pixel-level tasks.

III. METHODOLOGY

To understand the behavior of learned hidden representa-
tions, we examine the learned knowledge of MHE networks
by visualizing the deep representations and computing the
semantic and height selectivity scores. Based on the findings,
two contributions are made in this work: 1) we propose an
MHE-based pretraining framework for semantic segmentation
and 2) we design a novel DLT module for joint segmentation
and height estimation using only the supervision from height
data. The whole architecture is illustrated in Fig. 2. In this
section, we will introduce them in detail.

A. Network Dissection for MHE Models

To estimate the height of an object, given a top-view image,
human beings tend to recognize the object first. This cognitive
process of humans highly inspires us to explore the learned
deep representations of MHE models. Objects of different
semantic types usually have distinct height attributes. Thus,
the geometric information in height maps should have a high
correlation with the semantic information [32]. Motivated by
this, we choose to examine the learned interior activations to
find human-understandable patterns.

From numerous visualizations of deep activations, we find
that some neurons of the deep networks are highly selective to
different semantic classes. As shown in Fig. 1, different seman-
tic objects including roads, buildings, and trees are localized
accurately in an implicit manner with only height supervision.
This finding supports the assumption that semantic information
and geometric information are highly correlated. Moreover,
we also find that some neurons are selective to different height
ranges, which shares the same conclusion with [18] for the
MDE task.

To quantify the selectivity of the network neurons,
we compute both the class-selectivity [40] and the height-
selectivity [18] for each internal unit. In this work, we utilize
the Swin transformer [34] as the backbone for the height
estimation task. Denote each test sample in the dataset D as
(i, ¥i, hy), where x; € R¥>*#*W ig the input image, y; € R¥*"
and h; € R¥*W are the ground truth semantic map and height
map, respectively. i € {1, ..., N}. Note that the ground truth
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Ilustration of the proposed method. (Left) Shows the MHE pretraining for semantic segmentation. In stage one, we pretrain the model for height

estimation. The pretrained weights of the image encoder are transferred to semantic segmentation tasks in stage two. (Right) Presents the proposed DLT
module, which enables unsupervised semantic segmentation only using the pretrained image encoder in stage one.

class label y; is only used for the selectivity score computing,
and not used for the height estimation task. We upsample the
kyn feature map of the penultimate layer to the image size as
Fi(x;) € R¥*W_ The class-selectivity and height-selectivity

can be computed by
c N . h
CR¢ — SV S(Fux) © Mf) HRY — YV S(Fux) o M)
N . ;
2o S(Ml-) Zjle(M,h)
CRmaX —_ C_R7 max HRmaX _ I‘I_R7 max
cs = SRR T g, - REE Z R

| CRIrcnax 4 C_R]: max| - |HR;{nax + I‘I_R]: max|

(D

where CR{ and HR} are the average response of the neurons
for different classes and height ranges. h is the index of
discretized height ranges and c is the index of semantic classes.
M¢€ is a binary mask indicating the pixels with semantic
class c¢. M" is also a binary mask indicating the pixels in
height range 4. S(-) denotes the summation operation on all
elements in a matrix. We use © to represent the element-
wise multiplication. To ensure the stability of the computation
and avoid potential division by zero errors, we incorporate a
small epsilon value (¢ = le — 6) into the denominators when
computing the average response of neurons in practice. With
the defined average responses CR} and HR”, class-selectivity
and height-selectivity for the kg, neuron CS; and HS; can be
computed.

In Fig. 3, the height range selectivity (first row) and class
selectivity (second row) of the Transformer-based MHE model
are visualized. The selectivity scores for the height range
of neurons 277, 88, and 59 are larger than 0.85. We can
see that these neurons are highly selective to low, medium,
and high height ranges. The class-selectivity of neurons 255,
87, and 20 are larger than 0.8, and they are highly selec-
tive to categories Ground, High Vegetation, and Building,
respectively. However, there are no clear selective neurons
for Water and Elevated Road, since these categories have
no clear differences compared with Ground regarding height
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Fig. 3. Visualization of the average response for feature map activations with
large height range selectivity (first row) and large class selectivity (second
row) on the DFC 2019 dataset [4].

changes. The finding that some neurons are selective to
different height ranges shares a similar conclusion with [18]
for MDE tasks. To provide a clearer presentation of the high
selectivity score, we visualize the activation maps and the
discretized height maps in three different height ranges in
Fig. 4. Specifically, we first find the max height 4, value
for each height map. Then, we choose three height ranges by
using different thresholds: 1) lower than 0.2 - &,,; 2) the range
between 0.2 h,, and 0.7 - h,,; and 3) greater than 0.7 - h,,. The
third column of Fig. 4 shows masks of different discretized
height ranges, and the fourth column shows feature maps of
the MHE network. We can see a very high correlation between
them.

Different from the semantic selectivity, it can be seen that
the regions of buildings and trees are both presented in the
activation maps for the medium height range (about 3—15 m).
This indicates that the height range selectivity is different from
the semantic selectivity. There are two different patterns in the
learned deep representations. Furthermore, it also explains why
it does not work by using the height threshold for semantic
segmentation. We will provide a more detailed analysis in the
experiment section.
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between height ranges and feature maps of MHE networks.

B. MHE for Self-Supervised Pretraining

Our methodology of employing MHE as a self-supervised
pretraining is grounded on the pivotal discovery that MHE
models can learn semantic representations, distinguishing
between various semantic classes such as buildings and trees,
purely from the height estimation task. Leveraging MHE
for pretraining equips the model with pixel-level semantic
insights. As depicted in Fig. 2, we illustrate a framework that
transfers the pretrained weights from the MHE task directly
to semantic segmentation tasks. This transfer is facilitated
through a simple yet effective process:

1) Model Training With MHE: Given an input image X and
its corresponding height ground truth H, we train the deep
network H = F;(F.(X)) using the mean squared error (MSE)
loss, L = MSE(H, H'), where H’ is the ground truth height.
Here, F, represents the height decoder, and , is the backbone
encoder of the network. This training step allows the model
to learn to predict height for each pixel.

2) Transfer Backbone to Semantic Segmentation: After
MHE pretraining, the encoder F, used for extracting features
relevant to height estimation, is repurposed for semantic
segmentation tasks. Given the input image X, the goal is
to produce a segmentation map Y, where Y = F(F.(X))
and F; denotes the segmentation head. This step leverages
the semantic and geometric understanding developed during
the MHE pretraining, enhancing the model’s performance on
semantic segmentation tasks.

C. Disentangled Latent Transformer

To better leverage the semantic selectivity, in this study,
we propose to design a DLT module to explicitly model
the representations for different semantic classes and height
ranges. We find that different groups of activations are selec-
tive to different semantic objects. However, there is high
redundancy and noise in the deep activation maps within each
group. Hence, we propose the DLT module to learn meaningful
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(Left) Visualization of the high correlation between semantic maps and feature maps of MHE networks. (Right) Visualization of the high correlation

and robust representations for height estimation. We first
cluster these neurons into different semantic groups. Formally,
given a pretrained Transformer-based deep network with n
neurons at the final layer, the weights {W; e Rm>kxk j —
1,...,n} of the final layer are clustered into K groups using
k-means. Note that for each pretrained deep model, we only
need to cluster the neurons once and do not need to cluster
the feature maps at each inference. Based on the predicted
cluster indices, we can further obtain K groups of feature
maps {F.; € RexHxW i — 1 ... K}. Each semantic group
contains n; feature maps, and Zle | Ni =h.

Feature maps in the same semantic group have simi-
lar semantic responses with slight differences. To improve
the reliability, we propose to treat the feature maps within
the same semantic group as noisy observations and model the
true semantic response F, € RE*HXW a5 3 latent variable
remaining to be estimated. In practice, for each semantic
class, we aim to sample the latent semantic responses from
a posterior distribution p(F, | x) to explicitly model the noise
in a Bayesian probabilistic framework. As the true posterior is
intractable to obtain, we adopt the variational inference [41] to
approximate p(F, | x) with a simple distribution g, (F,). Thus,
the optimization goal is to minimize the Kullback-Leibler
(KL) divergence Lx; = KL(g(F,) || p(F,|x)). As pointed out
by [41], maximizing the likelihood distribution is equivalent
to maximizing the variational evidence lower bound (ELBO),
which can be defined as

~ p(Fy, %)
.= S at, ) log( £ )

_ p(Fy)

- %%(Fv)log(—qx ( m) + ;qu)log(p(x | F))

— E,yllog p(FulF))] = KL(gu(FOllp(F). ()

In practice, the first expected log-likelihood term is used to
minimize the feature reconstruction loss. Namely, we aim to
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reconstruct the original feature maps using the estimated latent
variables F,. This can also be viewed as a feature distillation
process. Then, the following KL divergence term is used to
minimize the distance between ¢, (F,) and the true posterior
p(F,y | x).

To train the whole model in an end-to-end manner using the
gradient descent optimizer, we need to compute the gradients
with respect to the parameters of distributions. For the sake
of simplicity, we assume that the latent semantic responses
F, follow the isotropic Gaussian distribution with mean w; €
RAW and variance 0,2 € R¥:W. However, the gradients of
parameters {u;, 0;>} of the approximate distribution, which
is predicted by deep networks, cannot be computed directly.
Thus, we utilize the reparameterization trick to rewrite g, (F,)
as Fy; = u; +o;e,i = 1,..., K, where ¢ is the standard nor-
mal distribution, i.e., ¢ ~ A/(0, I). With the reparameterization
trick, the final loss function can be rewritten as

L
1 S
<L§ log p(h®1x". )
=1

+ > log p(Fc(i)|x(i), n+ 08)

M

D

i=1

0N
L(xD) = m

—KL(qx<Fv|x(“)||p(Fv>>> 3)

where M is the size of mini-batch, and N is the total number
of samples. L is the number of sampling processes for Monte
Carlo estimation. /; is the ground truth height map for training
the height estimation models.

For the prior distribution, we assume that the latent semantic
responses follow isotropic Gaussian distribution with mean
wi € RV and variance 0;2 € REF*W ., In this work, we use
the mean of F, as the prior mean of F, and set the variance to
be I. Then, the latent semantic responses Fv; can be defined
as

Fy, ~ N(pi, 0,i%)
.1 .
Mpl:Echiv Upl:I. (4)

With the defined notations, the KL divergence loss in (3)
for distribution approximation can be computed analytically
as

1
KL (F)lIp(F) = =3 D [1 +logo? — of == i)
5)

After the training stage, the predicted mean of F, can be
used to generate the semantic segmentation maps for a specific
class. In this work, we simply use OTSU [42] algorithm
to binarize F, into segmentation maps. Note that the final
segmentation results are obtained from an MHE model without
the need for any segmentation annotations.

D. WDC Dataset

The newly introduced WDC dataset, crafted utilizing open
data from Open Data DC,' encompasses the entirety of WDC,
USA. This dataset collects aerial orthophotos captured in
2021 with a normalized nDSM derived from LiDAR data

Thttps://opendata.dc.gov/
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collected in 2020. It features a detailed semantic map that
classifies the landscape into five categories: ground, vegetation,
buildings, water, and roads. To ensure accuracy and detail in
the semantic maps, building footprints, and road layouts were
meticulously delineated from shapefiles, while the classifica-
tion of other categories leveraged the labels present in LIDAR
point clouds.

The WDC dataset contains 2159 high-resolution aerial
orthophotos, each meticulously paired with a corresponding
pixel-wise semantic map and a height map, ensuring a rich
dataset for comprehensive analysis. Each image patch, with a
resolution of 1024 x 1024 pixels, captures a snapshot of the
diverse landscapes encompassed within the dataset, including
urban centers, rural expanses, and forested areas. This diversity
not only provides a wide array of scenes for analysis but
also presents a challenging dataset that encompasses a vast
spectrum of classes and height variations. Fig. 5 offers a
glimpse into the dataset, showcasing examples that highlight
its variety and the detailed nature of its semantic and height
maps. The WDC dataset with its broad coverage and high-
resolution imagery, stands as a significant resource for advanc-
ing research in developing and evaluating models for semantic
segmentation and height estimation.

IV. EXPERIMENTS

In this section, we evaluate the proposed multilevel inter-
pretation framework on three different datasets.

A. Datasets

Three datasets are used in this work for the model evalua-
tion. The first one is a real-world dataset from IEEE GRSS,
Data Fusion Contest 2019 (DFC 2019) [43]. DFC 2019 con-
tains 2786 images with both the semantic segmentation label
and nDSM. Five semantic classes are included in DFC 2019:
buildings, elevated roads and bridges, high vegetation, ground,
and water. The second one is a synthetic dataset, called
GTAH,?> which is constructed using the game engine GTA
V [44]. GTAH contains 85 881 images with the corresponding
height maps. Finally, we also evaluate the proposed method
on our newly constructed WDC dataset. These three datasets
are all used for evaluating the height estimation performance.
As there is no semantic segmentation annotation in GTAH,
only DFC 2019 and the WDC dataset are utilized for evalu-
ating the semantic segmentation tasks.

B. Implementation Details

We implement the proposed method using PyTorch [45] and
MMSegmentation [46]. On the GTAH dataset [3], we pretrain
the Swin Transformer model with 100 epochs and fine-tune the
proposed DLT model for 20 epochs. For the U-Net model with
ResNet-34 backbone, the code® from [9] is used. To optimize
the Transformer-based models, AdamW [47] is used with an
initial learning rate of 6e-5 for pretraining the deep models. For
CNN-based models, Adam [48] is used as the optimizer with
an initial learning rate of le-4. For all the experiments, we set
the batch size to four. For semantic segmentation tasks in the

Zhttps://thebenchmarkh.github.io/
3https://github.com/pubgeo/monocular-geocentric-pose
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Fig. 5. Visualization of the proposed WDC dataset. Patches of rural, forest, water, and urban are shown as examples. For each patch, the orthophoto, nDSM

(height map), and semantic map are displayed.

TABLE 1

CLASS-SELECTIVITY AND RESPONSE OF DIFFERENT NEURONS OF SWIN
TRANSFORMER ON THE DFC 2019 DATASET

Category Ground | High Vege. | Building | Water || Selectivity
Neuron #387 | 0.0833 0.7083 0.0485 | 0.1597 0.8893
Neuron #20 | 0.0433 0.2051 0.7241 | 0.0273 0.8359
Neuron #255 | 0.6724 0.1473 0.0606 | 0.1194 0.8302

TABLE II

CLASS-SELECTIVITY AND RESPONSE OF DIFFERENT NEURONS OF UNET
(RESNET-34) ON THE DFC 2019 DATASET

Category Ground | High Vege. | Building | Water || Selectivity
Neuron #17 | 0.7801 0.1826 0.0069 | 0.0302 0.8248
Neuron #14 | 0.1419 0.4519 0.2801 | 0.1259 0.5635
Neuron #16 | 0.1512 0.2738 0.3993 | 0.1756 0.5092

transfer learning setting, we train the models for 30 epochs
using the AdamW optimizer. The batch size is 16 and the
input image size is 512.

C. Network Dissection Analysis and Comparison

To offer a detailed quantitative analysis supporting our
findings across various networks, we thereby provide quanti-
tative verification in this section. Specifically, we compute the
class-selectivity scores for two models and present the results
in Tables I and II. The findings reveal that neurons within both
networks exhibit selectivity toward distinct semantic classes.
The data presented in the final column of both tables clearly
illustrate that the Transformer-based MHE model demonstrates
enhanced class selectivity compared to the UNet-based model.
This enhanced selectivity can be attributed to the capability of
Transformer-based models to learn more sophisticated repre-
sentations that effectively encapsulate the relationship between
height and semantic information. Notably, the semantic classes
of tree, ground, and building are observed to be more sensitive
to some neurons. This observation aligns with the expectation
that these semantic categories can be easily distinguished by
height.

D. Height Estimation Results

In this section, we evaluate and compare the performances
of our proposed DLT model with previous state-of-the-art
(SOTA) methods on the height estimation task. To evaluate
the performance of the proposed methods on MHE, we follow
the previous work [3] and use four metrics for performance
comparisons including mean absolute error (MAE), Root MSE
(RMSE), Scale-Invariant RMSE (SI-RMSE), and multiscale
gradient error (MSG). MAE is defined as MAE = 1/n %
> |yi — ¥il, which is used to measure the mean absolute
difference between the predicted values and the reference
values. RMSE is defined as RMSE = (Z(y; — $:)?/n)'/?,
which is a commonly used measurement for regression task.
The multiscale gradient matching error, MSGE, can be for-
mulated as MSGE = (1/M) ) ,_, Ziﬂil(WfoI + |V, RE)).
To care more about the relative relations in the height maps,
we also adopt the SI-RMSE and MSGE as metrics for model
evaluation. SI-RMSE is defined as SI-RMSE = (1/n) >, Riz—
(1/n®)(S; R

We use the intersection over union (IoU) for different
semantic classes as the evaluation metrics for performance
comparison on semantic segmentation tasks.

1) Comparisons on the GTAH Dataset: Using the DLT
module, we can make each neuron in the last layer to be only
sensitive to a specific semantic class or height range. With this
neuron compression process, we can obtain a more compact
deep neural network with higher interpretability. As presented
in Table III, “SwinT (16 Neurons)” denotes the model where
the output channels (the number of channels) of the last layer
are reduced from 512 to 16.

However, reducing the number of neurons from 512 to
16 significantly limits the model capacity, and also affects
the final height estimation performance. Therefore, the per-
formance of model “SwinT (16 Neurons)” is lower than that
of the original model (512 Neurons) on the GTAH dataset.
To cope with this issue, we propose to distill the feature maps
from the original model to the compressed one by encouraging
the high feature similarity between them. The DLT model
better captures the noise in the features by explicitly modeling
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TABLE III

HEIGHT ESTIMATION RESULTS OF DIFFERENT MODELS ON THE GTAH
DATASET. THE BEST AND SECOND-BEST RESULTS ARE
IN BLUE AND GREEN
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TABLE V

HEIGHT ESTIMATION RESULTS OF DIFFERENT METHODS ON THE
PROPOSED WDC DATASET. THE BEST AND SECOND-BEST
RESULTS ARE IN BLUE AND GREEN

Methods Height Estimation Method Height Estimation
MAE | | RMSE | | SI-RMSE | | MSGE | MAE | | RMSE | | SI-RMSE | | MSGE |
U-Net (ResNet34) [49] 4.86 6.73 39.51 3.36 U-Net (ResNet-34) [49] 4.86 627 39.67 6.92
HRNet-FEN [350] 314 | 502 2484 261 HRNet-FCN [50] 127 | 604 35.60 6.64
Svggigr(al“g’f;‘e’;‘gn[j)“] §'g; jgg 2'(1)2 i'gg Swin Transformer [34] 415 5.40 31.96 5.86
Swin (16 Neurons)+DLT | 2.97 73 21.61 252 SwinT (16 Neurons) 441 5.73 35.61 6.14
Twins (16 Neurons) 2.64 457 20.18 2.46 Twins [51] 371 5.05 27.63 5.46
Twins (16 Neurons)+DLT 2.49 4.36 20.04 2.27 Twins (16 Neurons) 4.11 5.42 31.44 5.93
Twins (16 Neurons)+DLT 3.82 5.30 30.96 5.61
TABLE IV

HEIGHT ESTIMATION RESULTS OF DIFFERENT METHODS ON THE
DFC 2019 DATASET. THE BEST AND SECOND-BEST RESULTS
ARE IN BLUE AND GREEN

Method Height Estimation

MAE | | RMSE | | SI-RMSE | | MSGE |
U-Net (ResNet-34) [49] 1.43 242 7.11 4.02
U-Net (ResNet-101) [49] 1.32 2.31 6.42 3.39
HRNet-FCN [50] 1.30 222 6.39 322
Swin Transformer [34] 1.24 2.11 5.33 3.03
SwinT (16 Neurons) 1.29 2.21 5.67 2.98
SwinT (16 Neurons)+DLT 1.27 2.18 5.59 3.02
Twins [51] 1.13 1.93 5.08 2.82
Twins (16 Neurons) 1.25 2.15 5.41 2.94
Twins (16 Neurons)+DLT 1.19 2.02 5.28 2.89

the features as latent random variables, thus obtaining similar
results to the original model.

To evaluate the applicability of DLT across different
SOTA network architectures, we report the results using
the Twins Transformer. As delineated in Table III, the
Twins-SVT-L model, integrated with UperNet and pre-
trained on ImageNet-1k, consistently outperforms other mod-
els, attributable to its powerful backbone. Incorporating
DLT with the Twins backbone demonstrates the gener-
alizability of our findings regarding semantic selectivity
derived from MHE pretrained weights across diverse network
architectures.

2) Comparisons on the DFC 2019 Dataset: From the
results in Table IV, it can be seen that our proposed “SwinT
(16 Neurons) + DLT” with only 16 neurons can achieve
competitive height estimation performance compared with the
original model. This shows the effectiveness of the DLT
module on the real-world dataset. From the results, we can
also observe that Transformer-based models can obtain better
performance when compared with CNN-based models. On the
DFC 2019 dataset with the Twins-SVT-L [51] backbone,
we observe a consistent trend where employing the DLT mod-
ule enhances the MHE performance and efficiency. Utilizing
the DLT module enables the model to perform unsupervised
semantic segmentation, with only a marginal decrease in MHE
performance.

3) Comparisons on the WDC Dataset: On the proposed
WDC dataset, we can also observe that Transformer-based
models have advantages in terms of height estima-
tion performance from Table V. The proposed “SwinT

(16 Neurons) + DLT” obtains similar performance compared
with the “Swin Transformer” model. It shows that the com-
pressed DLT model can improve the interpretability and reduce
the computational complexity of the original Transformer
model, with almost no loss of accuracy. On the proposed
WDC dataset, models using Twins-SVT-L backbone again
outperform others. Utilizing DLT can improve the model
efficiency (using only 16 neurons) and interpretability with
only a marginal decrease in MHE performance.

E. MHE Pretraining for Semantic Segmentation

This section presents the results of leveraging pretrained
weights from MHE to enhance downstream semantic seg-
mentation tasks on the WDC and the DFC 2019 dataset.
We use the Swin-Base Transformer as the backbone. Our
comparative analysis encompasses four distinct transfer learn-
ing settings: 1) training from scratch; 2) utilizing ImageNet
pretrained weights; 3) applying MHE pretrained weights with
the backbone fixed while only fine-tuning the segmentation
head; and 4) employing MHE pretrained weights for a full
fine-tuning of the segmentation model. The experimental
results are presented in Tables VI and VII.

The evaluation of these methodologies yields insight-
ful findings. Primarily, using ImageNet pretrained weights
can boost segmentation performance compared with train-
ing from scratch, underscoring the importance of trans-
fer learning for RS segmentation tasks. More intriguingly,
the utilization of MHE pretrained weights not only out-
performs the training-from-scratch model but also show-
cases substantial performance improvement compared with
the model using ImageNet pretrained weights. This enhance-
ment is more notable when the model is fully fine-tuned
in downstream segmentation tasks, indicating the effective-
ness of MHE task-derived representations for pixel-level RS
tasks.

On the WDC dataset, we can observe clear improvements
in segmentation performance for the tree, building, road, and
ground categories using the pretrained weights from MHE.
This makes sense as these categories are more related to the
height attribute. The superior performance of models utilizing
MHE pretrained weights substantiates the hypothesis that
the MHE task can learn rich semantic representations from
3-D elevation data. These representations, in turn, provide a
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TABLE VI
SEGMENTATION RESULTS OF DIFFERENT METHODS ON THE PROPOSED WDC DATASET. THE BEST RESULTS ARE PRESENTED IN BOLD

Methods mloU Acc
> J < g > > <

i > > N ¢ & S o> & & >

Categories %00 r ¢§'\ < &\5 q@\ i %@\’ < %@\'{b ‘0\9\& gb‘ i
Scratch 48.54 66.63 73.68 61.05 62.3 61.86 83.39 84.08 7123  76.11
ImageNet 51.64 68.83 77.64 6991 66.59 67.67 81.67 91.59 87.46 77.24
MHE-+SegFinetune  55.06 71.03 81.12 66.47 70.02 70.43 83.37 91.88 76.41 81.00
MHE+FullFinetune  56.60 71.89 8287 67.60 7123 7115 85.94 92.27 7991 82.90

TABLE VII

SEGMENTATION RESULTS OF DIFFERENT METHODS ON THE DFC 2019 DATASET. THE BEST RESULTS ARE PRESENTED IN BOLD

Methods mloU Acc

S oD 3 - 3
. > 2 O & . > Q & o .
Categories %@0 & Q&\& & Q¢5¢° C%o" & Q@& & Q(\&O
Scratch 82.44  48.53 50.03 71.09 37.62 91.97 60.88 69.96 72.56  40.40
ImageNet 84.74  52.01 56.33 83.71 67.61 9298  63.50 75.11 8492 84.86
MHE+SegFinetune 86.67  54.70 63.64 83.70  69.95 9429  66.32 79.20 86.01 80.99
MHE+FullFinetune  86.91  55.61 63.67 84.34 73.21 9431 67.63 80.03 87.16 86.58
TABLE VIII

better understanding of the semantic intricacies inherent in RS
imagery. Similarly, on the DFC 2019 dataset, the experimental
results highlight the benefits of employing MHE pretrained
weights by a marked improvement in segmentation accuracy.
The simplicity and effectiveness of MHE pretraining signify
a promising direction for future research on bridging the
gap between height estimation and semantic segmentation.
We offer a novel pathway to integrate elevation data in RS
models and showcase the untapped potential of MHE for
training RS foundation models on pixel-level dense prediction
tasks.

F. Unsupervised Segmentation Results

As we use the height data as supervision, the segmentation
task can also be viewed as a unsupervised segmentation task.
We mainly focus on the segmentation performance of Building
and Tree classes that are important for urban planning, cli-
mate change, and disaster monitoring. Annotating pixel-level
semantic labels is expensive for global-scale Earth observation
applications, while our proposed DLT model can obtain the
pixel-level semantic segmentation maps using only the height
maps as supervision. This has great potential for large-scale
applications because 3-D models for many cities have been
provided.

We first compare with a simple baseline, which uses thresh-
olds to split the predicted height map into different semantic
classes. The accuracy is poor since many buildings and trees
are in the same height range. In the following part, we will
explain why simple threshold-based methods fail. According
to [55], the minimum house building is about 3 m. Thus, in this
study, we set the height range to 3 ~ hp,x meters, where /.«
is the maximum height in the given image. For the tree canopy
height range, we set it to 10~25 m according to the statistics
about the tree height [56].

Some visualization examples of the segmentation results
using a threshold-based method are shown in Fig. 6. It can be

UNSUPERVISED SEMANTIC SEGMENTATION RESULTS ON THE DFC 2019
DATASET. THE BEST RESULTS ARE PRESENTED IN BOLD

Semantic Segmentation
Method Building(loU) Trea(ToU) | Mean
Threshold 0.126 0.237 0.182
PiCIE [52] 0.150 0.280 0.215
IIC [53] 0.157 0.275 0.216
MaskContrast* [54] 0 0.0001 0.0001
RGBH, PiCIE [52] 0.167 0.294 0.231
RGBH, IIC [53] 0.173 0.291 0.232
RGBH, MaskContrast* [54] 0.026 0.003 0.015
U-Net (16 Neurons) [49] 0.092 0.077 0.0845
HRNet-FCN [50] 0.146 0.277 0.212
SwinT (16 Neurons) 0.269 0.348 0.309
SwinT (16 Neurons)+DLT 0.306 0.389 0.348

seen that buildings and trees are heavily entangled due to the
large overlap of height ranges. On one hand, the height values
are quite useful features to distinguish different ground objects,
as height is an inherent attribute of these objects. On the other
hand, how to make better use of these features is still an open
problem, as the simple threshold-based method fails in most
cases.

Then, we compare our results with three unsuper-
vised semantic segmentation networks, including MaskCon-
trast [54], PiCIE [52], and IIC [53]. MaskContrast uses
saliency as the prior knowledge for contrastive learning
and gains SOTA performance for natural images. How-
ever, RS images are quite different from natural images in
terms of contexts and scales. In our experiments, we find
that the saliency-based method fails to distinguish fore-
ground and background on DFC dataset. PiCIE considers the
photometric and geometric invariance of pixel embeddings.
It also suffers from the difficulties caused by the differences
between natural and RS images. Although IoU scores are
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Building Label

Fig. 6. Visualization of the semantic segmentation results of using a simple threshold baseline. Both the building and tree segmentation results are displayed.
From the figure, it can be seen that buildings and trees are heavily entangled due to the large overlap of height ranges.
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Unsupervised semantic segmentation results of the proposed “SwinT (16 Neurons) + DLT” on the DFC 2019 dataset. (Left) Segmentation maps

of Neuron no.3 (building) and (right) Neuron no. 7 (tree) are shown in this figure. Compared with its counterparts, our DLT can obtain better segmentation

results (best viewed by zooming in).

high, the predictions do not capture the layouts of input
images.

Toward a fair comparison, we also use the height data in
addition to RGB images as the input of the unsupervised
segmentation methods. Although the results are improved, they
are still much lower than the proposed method. Note that the
proposed DLT model does not need the height input during the
test phase. The results in Table VIII show that DLT can out-
perform existing unsupervised semantic segmentation methods
clearly by a large margin. For example, compared with IIC,
DLT can increase the IoU metric from 0.157 to 0.306.
As shown in Table IX, on the WDC Dataset, we can also
observe that compared with MaskContrast [54], PiCIE [52],
and IIC [53], the proposed DLT model can achieve much better
segmentation performance. The aforementioned experimental
results have demonstrated the effectiveness of our proposed
DLT model on both height estimation and unsupervised seg-
mentation tasks. In Figs. 7 and 8, we visualize some qualitative

TABLE IX

UNSUPERVISED SEMANTIC SEGMENTATION RESULTS ON THE PROPOSED
WDC DATASET. THE BEST RESULTS ARE PRESENTED IN BOLD

Semantic Segmentation
Method Building(ToU) Tfee(loU) Mean
Threshold 0.178 0.213 0.196
PiCIE [52] 0.278 0.221 0.250
IIC [53] 0.201 0.289 0.245
MaskContrast* [54] 0.002 0.368 0.185
RGBH, PiCIE [52] 0.292 0.236 0.264
RGBH, IIC [53] 0.213 0.302 0.258
RGBH, MaskContrast* [54] 0.015 0.372 0.194
U-Net (16 Neurons) [49] 0.113 0.127 0.120
HRNet-FCN [50] 0.153 0.274 0.214
SwinT (16 Neurons) 0.336 0.389 0.363
SwinT (16 Neurons)+DLT 0.365 0.412 0.389

examples of our DLT method and its counterparts for a clear
comparison.
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Fig. 8. Unsupervised semantic segmentation results of the proposed “SwinT
(16 Neurons) + DLT” on the WDC dataset. WDC is a challenging dataset
for unsupervised segmentation due to the season change. Compared with its
counterparts, our DLT can obtain better segmentation results (best viewed by
zooming in).

V. CONCLUSION

This article explores how deep networks predict height from
single images. To achieve this, we explore the deep MHE
models by a neuron-level network dissection and find that
the internal deep representations of the MHE model have a
high semantic and height range selectivity. Motivated by this
finding, we further make three contributions: 1) we design
a self-supervised pretraining framework based on the MHE
task; 2) we introduced a DLT network toward a compact
and explainable deep model for joint semantic segmentation
and height estimation; and 3) we construct a new benchmark
dataset for research on both semantic segmentation and height
estimation tasks. The proposed model enjoys a free lunch, i.e.,
semantic segmentation, by learning only from the height data.
The effectiveness of the proposed method is demonstrated on
three datasets including height estimation and semantic seg-
mentation tasks. In summary, the findings in this work provide
novel insights for designing new self-supervised pretraining,
semantic segmentation, and height estimation models.
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