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Semi-Supervised Multi-Label Classification of Land
Use/Land Cover in Remote Sensing Images With

Predictive Clustering Trees and Ensembles
Marjan Stoimchev , Jurica Levatić , Dragi Kocev , and Sašo Džeroski

Abstract— The task of remote sensing image (RSI) classi-
fication has been studied extensively in the geoscience and
remote sensing (RS) community. While deep learning methods
have shown great success in solving this task, their reliance
on large-scale labeled datasets is a serious limitation when
dealing with complex labels and multiple semantic categories. The
process of annotating such datasets can be time-consuming and
tedious, leading to limited availability of labeled data and reduced
performance of supervised learning methods. To address this
issue, semi-supervised learning (SSL) methods can be applied,
as they use both the limited labeled data and the abundant unla-
beled data. In this article, we propose an effective SSL framework
for RSI classification, which combines two key concepts. First,
we employ a deep convolutional feature extractor to learn feature
representations that encode the images into a lower dimensional
feature space, capturing the rich semantic context present in
RSI. Second, we utilize semi-supervised predictive clustering trees
(PCTs) and ensembles thereof to learn from both the labeled
and unlabeled data. To evaluate the effectiveness of the proposed
framework, we compare it against several state-of-the-art self-
supervised and semi-supervised methods from the literature.
We conduct extensive experiments on ten publicly available
land use/land cover RSI classification datasets: five for multi-
class classification (MCC) and five for multi-label classification
(MLC). The results demonstrate that the proposed framework
has superior predictive performance compared to state-of-the-
art methods from the literature, highlighting its effectiveness in
semi-supervised RSI classification.

Index Terms— Convolutional autoencoders (CAEs), multiclass
classification (MCC), multi-label classification (MLC), remote
sensing (RS) images, self-supervised learning, semi-supervised
learning (SSL), tree ensembles.
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I. INTRODUCTION

REMOTE sensing is a valuable tool for studying the
Earth’s surface and its phenomena from a distance.

It allows us to collect data without the need for physical
contact with the objects of interest. In the analysis of remote
sensing image (RSI) data, machine learning techniques are
often employed to identify patterns and extract meaningful
information, particularly when dealing with large-scale image
datasets [1].

There are two common machine learning tasks in the
analysis of RSIs: multiclass classification (MCC) and multi-
label classification (MLC). In the older and more prevalent
task of MCC, a single label is associated with an image.
An example of MCC would be classifying different types
of crops in agriculture. The limitation of MCC is that it
assumes that an RSI belongs to a single class. However,
in real-world situations, multiple classes can be present in
a single image. This limitation can be addressed by using
MLC, which allows for a more flexible representation of the
inherent complexity present in the real world and avoids the
oversimplification of the classification process. By considering
multiple labels for a single RSI, MLC can lead to more
accurate and meaningful results, especially when dealing with
complex and heterogeneous landscapes.

The creation of large-scale labeled datasets has allowed
deep learning models to surpass the performance of traditional
machine learning methods, especially in the fields of image
recognition and classification. As a result, researchers from
various disciplines, including geoscience and remote sensing
(RS), are exploring the potential of deep learning in addressing
complex problems in their respective fields [2], [3], [4], [5],
[6], [7], [8], [9]. Such approaches can automatically extract
knowledge and learn discriminative representations from data
in an end-to-end manner and in less-constrained environments.
However, obtaining domain knowledge from field experts,
in the form of annotation of high volumes of image data, is a
tedious and time-consuming task. It can lead to scarcity of
labeled data and consequently limited predictive performance
of supervised methods.

This is especially true for the domain of RS because of
several reasons. First, the complexity of the visual context
present in the images and the correlation among the labels
are relatively high (e.g., predicting composite concepts in the
images). Second, RS imagery might comprise vast geograph-
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Fig. 1. Schematic illustration of the supervised and SSL settings for
multiclass and multi-label RS image classification.

ical areas with some of them remote and difficult to access
(e.g., polar and mountainous regions are difficult to access,
and conditions can change rapidly; hence, data collection in
these environments is both expensive and dangerous). Third,
there is a need for specialized knowledge and equipment for
accurate labeling (e.g., soil and land degradation assessments
require field surveys for soil properties and need specialized
equipment and experts). Furthermore, RS imagery is used to
observe dynamic phenomena that result in rapid and often
unpredictable changes in environmental conditions (e.g., real-
time monitoring of natural disasters, such as earthquakes,
tsunamis, and floods; monitoring of agricultural landscapes is
challenging due to factors such as weather conditions, irriga-
tion and fertilization practices, and pest infestation). Overall,
labeled data are indispensable for the success of predictive
models using remote sensing imagery, as they enhance the
accuracy, reliability, and generalizability of these models, thus
improving their application in downstream RS tasks. However,
as mentioned earlier, obtaining labeled data is challenging.

There are several approaches for tackling the problem of
labeled data availability [10]. The most common one is to
exploit proven deep learning models trained on large-scale
image datasets, such as ImageNet [11], and to fine-tune
them on limited-size datasets for the downstream task. While
directly transferring the learned knowledge from ImageNet to
RSI can be a successful and easy solution [12], it still requires
a significant amount of labeled images of the target domain
(typically in the thousands). Another family of methods tries to
address the small-sample problem through domain adaptation,
where the general idea is to align the distribution of the
source and target domains [13]. Significant successes have
been achieved with self-supervised learning approaches that
focus on various pretext tasks for pretraining, such as image
reconstruction by using autoencoders [14], [15], [16] and
modeling image similarity or dissimilarity between two or
more views through the contrastive learning paradigm [17].
To address the problem of limited labeled data, in this article,
we focus on semi-supervised learning (SSL), which leverages
both unlabeled and labeled and, hence, can provide greater
generalisability [10].

The use of SSL methods reduces the need for tedious
manual labeling and can help SSL methods to achieve better
performance than fully supervised methods that use only
labeled data. The general concept of SSL is illustrated in
Fig. 1. Several SSL solutions have been successfully applied in
a number of domains, such as image classification [18], object
detection [19], and semantic segmentation [20]. However,
to the best of our knowledge, the existing SSL approaches
for RSI classification primarily focus on the multiclass set-
ting [21], [22], [23], [24], [25], and there is a lack of SSL
methods able to tackle both multiclass and multi-label RSI
classification tasks. As discussed, RSIs are intrinsically multi-
label, and moreover, obtaining multiple labels is even more
complex and time-consuming. This exacerbates the problem of
labeled data scarcity and emphasizes the need for SSL methods
in the MLC of RSIs.

Among the various methods in the realm of SSL, the
most dominant ones include consistency regularization-based
approaches [18], [26], [27], pseudolabeling [28], [29], self-
training [30], and cotraining [31], [32]. Consistency regular-
ization methods involve perturbing input images using random
augmentations to establish an invariant output distribution.
Pseudolabeling and self-training rely on using a model trained
on a small set of labeled examples to generate new predictions
based on unlabeled data, creating so-called pseudolabels, typ-
ically derived using confidence scores. Similarly, cotraining
methods train two or more different models on the same
dataset. The models subsequently share their predictions with
one another, and only the samples on which they agree are
labeled with pseudolabels and utilized for training the next
iteration of the models. Another set of SSL methods is based
on contrastive learning [33], [34], [35], which involves training
a model to determine whether two samples are similar or
dissimilar. This is done by maximizing the agreement between
two representations of the same sample, subjected to different
perturbations.

In addition, there are SSL methods based on generative
modeling, where models are trained to generate new data
that are similar to a given dataset. Such approaches have a
range of potential applications, such as generating new images
or text or creating synthetic data to expand a small labeled
dataset. One well-known method of generative modeling is
the approach of generative adversarial networks (GANs) [36],
[37]. In this approach, two neural networks are trained in
an adversarial fashion: a generator network tries to deceive
the discriminator network that aims to correctly differentiate
between real and generated images. Another approach to
generative modeling is the use of variational autoencoders
(VAEs) [38]. VAEs are a type of neural network that can
learn to encode data into a lower dimensional representation
and then decode the representation back into the original
data. VAEs can be used to generate new data by sampling
from the learned representation and then decoding the samples
into the original data space. Despite the apparent need for
SSL, to the best of our knowledge, there is very limited
research on SSL for multi-label RSI classification, with only
a few such methods available [39], [40] to solve the task at
hand.
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To address the lack of semi-supervised methods for multi-
label RSI classification, in this article, we propose an effective
framework that combines ideas from deep learning on the
one hand and SSL based on predictive clustering trees (PCTs)
and random forest ensembles thereof [41], [42] on the other
hand. This framework integrates the advantages of both
approaches: 1) learning feature representations using deep
convolutional-based feature extractors that capture the rich
semantic context of RSIs and 2) leveraging a small amount of
labeled data with abundant unlabeled data in an SSL fashion.
The latter (PCTs and their ensembles) can address both MCC
and MLC tasks, considering the label dependencies inherent
in MLC tasks. Note that the proposed framework is general
and can be readily applied to other domains facing a scarcity
of labeled images.

The main contributions of our work can be summarized as
follows.

1) We propose an SSL framework for multi-label and mul-
ticlass RSI classification, which combines decision trees
for SSL with the discriminative feature representations
learned by a backbone CNN feature extractor.

2) We design and execute a comprehensive experimental
analysis of the performance of the proposed framework
using multiple RSI datasets for MCC and MLC, various
network architectures, and different evaluation measures.
We analyze the results quantitatively (through visual
inspection of the classification of example images) and
statistically (through the Friedman test and Nemenyi
posthoc analysis).

3) We show that semi-supervised methods, particularly SSL
PCTs and SSL random forests, robustly and consistently
outperform their supervised counterparts across the vari-
ous experimental setups. This indicates the effectiveness
of incorporating unlabeled data in improving classifica-
tion accuracy and its potential for versatile use in RSI
classification.

4) We demonstrate that the SSL random forest method is
the top performer among the considered state-of-the-
art self-supervised and SSL methods, particularly for
datasets with more than 1% labeled data. The significant
improvement in the predictive performance of SSL over
supervised learning was particularly evident in single
PCTs. These findings were confirmed through statistical
tests and average rank diagrams.

5) We finally show that the semi-supervised convolutional
autoencoder (CAE) method shows improvements over
the supervised baseline only for certain network archi-
tectures, such as EfficientNet. This suggests that it is
very important to use the appropriate network architec-
ture for SSL in end-to-end learning scenarios.

II. METHODOLOGY

In this section, we present the proposed approach for semi-
supervised MCC and MLC of RSI (see Fig. 2). We describe
our two-stage learning method that is composed of a feature
extraction and a classification part. The feature extraction uses
a standard CNN-based feature extractor to represent images in

a lower dimensional space. The classification part employs a
learning method for SSL based on PCTs and tree-ensembles
for MLC (and MCC).

A. Feature Extraction

The feature extraction component is a crucial part of our
proposed method. Its task is to capture and represent the
information present in the images. In this context, a simple
CNN backbone feature extractor E(x, θ) is used. It takes an
RSI x ∈ Rw×h×3 as input, where w and h represent the image
dimensions, 3 represents the three channels of RGB images,
and θ signifies the parameters of the CNN that need to be
learned during training. As a result, a d-dimensional feature
representation f ∈ Rd is generated from the last pooling layer.
The CNN backbone is fully convolutional to ensure versatility
and applicability to images of varying sizes, as needed in many
computer vision tasks, including RSI classification.

B. Semi-Supervised PCTs and Ensembles

To achieve accurate and efficient classification of RSI with
limited labeled data, we utilize PCTs and ensembles of PCTs
in an SSL setting for both MCC and MLC tasks [41], [42]
(see Fig. 2).

PCTs provide a sophisticated extension of traditional deci-
sion trees by allowing predictions of complex, structured
output data. PCTs view decision trees as a hierarchical set
of clusters, with the initial cluster encompassing all available
data. Through recursive division, smaller clusters are formed
as one moves from the root to the leaves of the tree. The
ensemble version employs PCTs as base models in the ensem-
ble. The ensemble generates predictions for new examples
by considering the collective predictions of all PCTs in the
ensemble. The SSL PCTs and ensembles differ from these
supervised counterparts in that they use both labeled and
unlabeled examples in the training process.

The input to the algorithms comprises both labeled and
unlabeled examples, in our case, the learned feature rep-
resentations: f = fl ∪ fu, where fl and fu are the feature
representations generated from the labeled and unlabeled
examples, respectively. The tree construction algorithm uses
the variance function to evaluate the candidate splits in
the tree and choose the best one. The SSL version of the
variance function considers both the descriptive and target
attributes and can, thus, exploit both labeled and unlabeled
examples [41], [42]

Var f = w · Var f (Y ) + (1 − w) · Var f (X) (1)

where w ∈ [0, 1] balances the contributions of the target space
(Y ) and the descriptive space (X ) to the variance function Var f

(note that for unlabeled examples, only the descriptive space
is available). The w parameter is key to the flexibility of the
learned models, allowing learning to span the entire spectrum
from fully supervised (w = 1) to fully unsupervised (w = 0)
models. By controlling the weight given to unlabeled examples
using the w parameter, the level of supervision for different
datasets can be appropriately adjusted. This acts as a safety
mechanism to guard against the performance degeneration
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Fig. 2. Overview of the proposed framework for semi-supervised MLC of RSIs. In the first step, a backbone model is fine-tuned on the labeled training
set, and in the second step, PCTs are utilized for SSL, where the inputs to the algorithm are labeled and unlabeled learned feature representations. Note that
while tree ensembles are depicted, we also consider single PCTs.

caused by the use of unlabeled data [43]. The value of w

is selected by inner cross-validation on the labeled set of data.
In theory, if an optimal value of w is chosen, semi-supervised
PCTs would never perform worse than supervised PCTs since
supervised PCTs are a special case of SSL-PCTs, obtained for
w = 1. However, since w is chosen by internal cross-validation
on the training set, the chosen value can be suboptimal for the
test set, and hence, the semi-supervised method can perform
worse than the supervised one. This, however, rarely happens
in practice [41], [42].

The variance of a set of examples E on the target space
Y (i.e., a set of T binary labels Y1, . . . , YT ) is calculated as
follows:

Var f (E, Y ) =
1
T

·

T∑
i=1

Gini(E, Yi ). (2)

The variance on the descriptive space X consisting of D
attributes of a set of examples E is computed as follows:

Var f (E, X) =
1
D

·

D∑
i=1

Var(E, X i ) (3)

where the variances and the Gini scores are calculated as
follows, respectively:

Var(E, X i ) =

N−1
Ki −1 ·

∑Ki
j=1(xi, j )

2
−N ·

(
1
Ki

·
∑Ki

j=1 xi, j

)2

N

Gini(E, Yi ) = 1 −

 Ki∑
j=1

|{e : e ∈ E ∧ yi j = 1}|

Ki

2

=

 Ki∑
j=1

|{e : e ∈ E ∧ yi j = 0}|

Ki

2

= 2 p̂i
(
1 − p̂i

)
where N is the number of examples (both labeled and unla-
beled), Ki is the number of examples with nonmissing values
of the i th label Yi , and p̂i is the probability of label Yi ,
estimated by using only examples for which the value for
variable Yi is known.

III. EXPERIMENTAL DESIGN

In this section, we provide a comprehensive overview of the
experimental design employed in the comparative analysis of
the performance of our methods for SSL on RSI data. First,
we describe the multiclass and multi-label RSI datasets used to
learn the predictive models. Next, we thoroughly explain the
evaluation strategy, specifically focusing on the SSL evaluation
protocol. We next provide a concise explanation of the metrics
used to assess the predictive performance of the trained models
for MCC and MLC of RSI. Furthermore, we briefly outline
several state-of-the-art semi-supervised and self-supervised
learning methods from the literature, which are used in our
comparison to emphasize the significance of the methods that
we propose. Finally, we specify in detail the parameters of our
methods used in the training procedure.

A. Datasets

We assess the performance of the proposed methods on ten
publicly available land use and land cover RSI datasets: five
datasets for MCC and five datasets for MLC. We selected
these datasets based on their diversity along several dimen-
sions, including image resolution, number of labeled images
available, and geographical location. The datasets are available
at http://eodata.bvlabs.ai. A short description of the datasets
is given in the following, while their quantitative details are
given in Table I. Moreover, some typical images with their
corresponding class labels for both the multiclass and multi-
label datasets are given in Fig. 3.

1) MCC Datasets: For the MCC task, we used the datasets
OPTIMAL-31 [44], RESISC45 [45], RSSCN7 [46], AID [47],
and UCM [48]. OPTIMAL-31 is a dataset consisting of
31 distinct categories for scene classification, with images
collected from Google Earth and sized at 256 × 256 pixels.
The RESISC45 dataset, created by Northwestern Polytechni-
cal University (NWPU), is a publicly available benchmark
for RSI scene classification, comprising 31 500 images at
256 × 256 resolution and covering 45 scene classes. The
RSSCN7 dataset contains 2800 scene classification images
obtained from Google Earth, with a resolution of 400 × 400.
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TABLE I
DESCRIPTION OF THE USED MCC AND MLC RSI DATASETS. |L| DENOTES THE NUMBER OF POSSIBLE LABELS; CARD DENOTES LABEL

CARDINALITY (I.E., AVERAGE NUMBER OF LABELS PER IMAGE); DENS DENOTES LABEL DENSITY (AVERAGE PROPORTION OF
IMAGES LABELED WITH A GIVEN LABEL); N IS THE NUMBER OF IMAGES IN THE DATASET, OF WHICH NTRAIN ARE

IN THE TRAIN AND NTEST IN THE TEST DATASETS; AND w × h IS THE DIMENSION
OF THE IMAGES (IN PIXELS)

Fig. 3. Illustrative RSIs and their class labels from different multiclass and MLC datasets.

For AID and UCM, we used the multiclass versions of the
MLC datasets (as described in the following) with 21 and
30 scene classes, respectively.

2) MLC Datasets: For the MLC task, we used the datasets
UC-Merced (UCM) Land Use [39], AID [49], Ankara HIS
archive [50], DFC-15 [51], and MLRSNet [52]. UCM Land
Use contains 2100 images grouped into 21 broad categories
at a scene level, with a total of 17 object-level labels. The
resolution of the images is 256 × 256. AID is a more chal-
lenging dataset than UCM, containing 3000 aerial images
grouped into 30 object categories, with 17 object-level labels.
The image resolution of this dataset is 600 × 600. Ankara
HIS is a small hyperspectral image archive consisting of only
216 low-resolution images at 63 × 63 pixels, acquired by
the NASA EO-1 satellite’s Hyperion sensor from the area
surrounding the city of Ankara in Turkey. DFC-15 is built from
a semantic segmentation dataset from the 2015 IEEE GRSS
data fusion contest, containing a total of 3342 image patches
with a resolution of 600 × 600 pixels. The image patches
are grouped into eight different object categories. Finally, the
MLRSNet dataset is the largest among the MLC datasets,
containing 109 161 images annotated into 46 categories, with
an image resolution of 256 × 256 pixels. Moreover, each
image in the dataset is labeled with several of the 60 pre-
defined class labels. In order to ensure that the dataset is
comparable in size to the other datasets used in our study,
we sampled (using stratification) approximately 5% of the
dataset.

B. Evaluation Strategy

To evaluate the performance of the SSL methods, we use
the inductive learning setting of SSL, where our goal is to
learn models that can predict labels for new examples that are
unseen during training. This means that a separate fixed-sized
test set is utilized to assess the final model’s performance
(see Fig. 10). We use different percentages of labeled data
from the training sets to investigate the dependence of model
performance on the amount of labeled data. Labeled samples
were randomly subsampled from the available training set in
the percentages {1, 5, 10, 25}, while the remaining training
samples were used as unlabeled samples (with their labels
removed). We repeated the experiments five times using dif-
ferent random initializations for each percentage of unlabeled
data. The final predictive performance is averaged across the
five runs.

C. Evaluation Measures

For MCC, we use six performance measures: microaveraged
and macroaveraged F1, precision, and recall; accuracy; and
micro-AUPRC. More details regarding the used measures
are given by Wu and Zhou [53]. In the MLC scenario,
we employed a range of 13 evaluation measures commonly
used in this context. Specifically, we focused on two types
of measures for the MLC task: bipartition-based measures
(including example- and label-based measures) and ranking-
based measures. Example-based measures involve computing
the average difference between the true and predicted labels
for each data point and then averaging these differences across
all the examples in the dataset. We used Hamming loss
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and subset accuracy from this group. In contrast, label-based
measures evaluate each label individually and then average the
performance across all labels. For these measures, we used
microaveraged and macroaveraged F1, precision, and recall,
the average area under the precision–recall curve (AUPRC),
and weighted AUPRC. Finally, ranking-based measures com-
pare the predicted ranking of the labels to the ground-truth
ranking, where the present labels are ranked before the absent
labels. From this group, we used ranking-loss, coverage, and
one error. To calculate the measures mentioned above, we use
sckit-learn [54].

D. Methods for Comparison

To investigate whether semi-supervised methods benefit
from the addition of unlabeled data, we compare the semi-
supervised versions of PCTs (SSL-PCT) and random forests
(SSL-RForest) methods with their supervised counterparts, i.e.,
supervised PCTs (SL-PCT) and random forest (SL-RForest).
In our experiments, we also consider a CAE approach for
end-to-end SSL. The supervised version of this approach is
only the encoder part of this structure (denoted as baseline),
which is trained on the labeled data only. The idea behind the
CAE approach is relatively simple. It operates in two general
steps to address the task of SSL: 1) self-supervised pretraining
on the unlabeled data by using image reconstruction as a
pretext task and 2) fine-tuning the encoder part of the CAE
on a small portion of labeled examples for the downstream
MCC and MLC tasks by using task dependent discriminative
classifiers. This approach has been widely exploited in various
computer vision tasks [14], [15], [16], where the main idea is
also applicable to the RSI domain [55], [56].

In addition, to demonstrate the relevance of our SSL meth-
ods, we compare their predictive performance to that of several
state-of-the-art self-supervised methods from the literature:
BYOL [57], SimSiam [58], SimCLR [59], BarlowTwins [60],
MoCo [61], DINO [62], and SwAV [63]. We adapt these
methods for the SSL task by using only the pretrained encoder
structure of the networks trained with linear evaluation, which
is a common practice for utilizing such methods in an SSL
setting [7], [64].

We also consider two state-of-the-art approaches specially
designed for the SSL task. The first state-of-the-art method,
referred to as HR-S2DML [35], is a deep metric learning
architecture originally developed for RSI-MCC. The second
method is called MSMatch [23]. MSMatch is an extension
of the well-established FixMatch methodology [18], incor-
porating elements such as consistency regularization and
pseudolabeling to effectively address the challenges of SSL.
We used MSMatch only for MCC datasets. On the other
hand, we modified the HR-S2DML method to operate in the
MLC setting. First, instead of the categorical cross-entropy
(CE) loss for MCC, we use the binary CE (BCE) loss, which
is suitable for the MLC task, and second, for classification,
we use the MLC version of the kNN classifier. Note that
for the two previously published multi-label SSL methods for
RSI [39], [40], the implementations are not publicly avail-
able; therefore, we did not include them in our experimental
comparison.

E. Parameter Settings

For the feature extraction, we utilized different backbone
CNNs implemented in the PyTorch framework [65], namely,
VGG [66], ResNet [67], and EfficientNet [68], with weights
pretrained on ImageNet. We used a total of eight back-
bone CNNs for comparison. The networks are modified to
accept input images of arbitrary size by replacing the last
max-pooling layer with an average-pooling operation using
kernel size 1. The resulting d-dimensional feature repre-
sentations are given as follows: 4096 features for VGG-16
and VGG-19, 512 features for ResNet-34, 2048 features for
ResNet-50 and ResNet-152, 1280 features for EfficientNet-B0
and EfficientNet-B1, and 1408 features for EfficientNet-B2.
The networks are fine-tuned for 25 epochs of training on an
NVIDIA A100 (40-GB) GPU, by using the Adam optimizer
with a fixed learning rate of 1 × 10−4, a minibatch of 128, and
a mixed precision of training to speed up the training process
and reduce memory consumption. We also applied the same
training procedure on the CAEs for end-to-end learning, which
follows a symmetrical encoder–decoder structure.

The learned representations by the feature extractors are
used as inputs to learn supervised and semi-supervised
PCTs and random forests. Single trees are pruned using
M5 pruning. The PCTs and the ensembles of PCTs are
implemented in the CLUS+ framework [69] (available
at https://github.com/knowledge-technologies/clus). We use
100 unpruned trees to construct random forests, with the
feature subset size set to the sqrt of the total number of
features. For the SSL version, we optimize the parameter w

using an internal threefold cross-validation procedure, applied
to the labeled portion of the training set. We consider values
of the parameter w in the range of 0–1, with 0.1 increments.
For the state-of-the-art semi-supervised and self-supervised
methods, we use the parameter values recommended by their
respective authors.

The experiments were conducted on a computer with an
AMD EPYC 7702 2 GHz 64-core processor and 1 TB of
RAM.

F. Computational Complexity

The computational complexity of the proposed framework
depends on the feature extractor part and the SSL part. The
complexity introduced within the feature extractor part varies
depending on the chosen architecture. For instance, VGG-16
and VGG-19 require approximately 15.3 and 20 GFLOPS.
On the other hand, in the-ResNet based architectures,
the complexities range from 3.9 GFLOPS for ResNet-34
to 11 GFLOPS for ResNet-152 [67]. Finally, in EfficientNets,
renowned for their efficiency, the requirements are notably
lower, with EfficientNet-B0 at 0.39 GFLOPS, EfficientNet-B1
at 0.68 GFLOPS, and EfficientNet-B2 at 1 GFLOPS [68].

The SSL part consists of semi-supervised PCTs and random
forests. The complexity of building a single SSL-PCT tree is
O(DN log2 N ))+O((D +T )N D log N )+O(N log N ), while
the complexity of random forests of SSL-PCTs is bounded
by k(O(D′N ′ log2 N ′)+O((T + D)N ′ D′ log N ′)), where D is
the number of descriptive variables, T is the number of labels,
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N is the combined number of unlabeled and labeled training
examples, N ′ is the number of bootstrap samples, D′ is the
number of features considered at each tree node in random
forest, and k is the number of trees [42].

IV. RESULTS AND DISCUSSION

This section presents a comprehensive discussion of the
experimental evaluation of the proposed methods for SSL
on RSI. The evaluation aims to address several research
questions that shed light on the advantages and limitations
of the proposed methods. The outcomes of the evaluation are
analyzed in relation to the following research questions.

1) Can the proposed SSL methods for RSI classification
effectively leverage information from unlabeled data to
improve performance?

2) Does the ranking of the considered methods remain
consistent across different evaluation measures for MLC
and MCC?

3) Is the performance improvement of SSL methods con-
sistent across different datasets, and to what extent does
SSL outperform SL?

4) How robust is the performance of the proposed SSL
methods to changes in the architecture of the underlying
CNN feature extractors?

5) How do the results obtained with the proposed methods
compare to those state-of-the-art semi-supervised and
self-supervised methods for RSI classification from the
literature?

A. Predictive Performance Using Increasing Amounts of
Labeled Data

Here, we present the results in the form of learning curves
showing the performance of the models learned with varying
percentages of labeled data in order to investigate whether
SSL methods can benefit from unlabeled data. The results are
presented in terms of AUPRC (for MCC tasks) and AUPRC
(for MLC tasks) evaluation measures. Note that although we
considered multiple evaluation measures in our experiments,
for simplicity and easier interpretation, we report the per-
formance using a single evaluation measure for each task.
As analyzed and discussed in Section IV-B, the results remain
consistent across the different evaluation measures.

The results for the MCC and MLC datasets are presented
in Figs. 4 and 5, respectively, where each row represents a
specific backbone architecture, and the columns correspond
to the different datasets used in the experiments. For each
pair consisting of a dataset and a backbone architecture,
the SSL methods are compared with their supervised learn-
ing (SL) counterparts (resulting in a single graph in the
figure). Overall, the results clearly demonstrate that SSL-PCTs
and SSL-RForests consistently outperform their supervised
counterparts, SL-PCTs and SL-RForests, highlighting the
importance of leveraging unlabeled data. Semi-supervised
random forests yield overall the best performance, par-
ticularly when dealing with small percentages of labeled
data.

Concerning the end-to-end CAEs, improvements in the
performance of SSL over SL were observed only for specific
architecture types, with the EfficientNet base architectures
consistently displaying the largest performance gains. A more
detailed analysis of these effects can be found in Section IV-D,
where we present a more in-depth explanation of these
observations.

B. Performance of Methods Across Different Evaluation
Measures

We next investigate the methods’ rankings in terms of
the observed predictive performance across the six MCC
evaluation measures and 13 MLC evaluation measures used
throughout the experiments (as described in Section III-C).
To assess the stability and consistency of the rankings,
in Fig. 6, we present the distribution of ranks for both SSL
and SL methods across the different evaluation measures,
separately for MCC and MLC tasks.

An inspection of the results reveals that the ranks are fairly
stable across the different percentages of labeled examples,
particularly for the MCC task. Therefore, we chose to present
the results of the remaining analyses using the AUPRC eval-
uation measure for MCC and the AUPRC evaluation measure
for MLC, as these evaluation measures are independent of
classification thresholds and provide a reliable evaluation of
performance. We note that the Ankara dataset is an exception,
where the results across different evaluation measures are not
stable for small amounts of labeled data. This might be due
to the fact that the Ankara dataset is the smallest among the
datasets used, and experiments conducted with 1% and 5%
labeled data use very few labeled images.

The SSL methods based on decision trees (SSL-PCTs
and SSL-RFs) consistently outperform their SL counterparts.
Among the SSL methods, the RForest approach exhibits the
best predictive performance across all datasets and displays a
more consistent trend when learning from different percent-
ages of labeled examples. On the other hand, the ranks of the
SL and SSL end-to-end methods are more stable at higher
percentages of labeled examples, while they exhibit greater
variability in ranks at lower percentages.

C. Relative Performance of SL and SSL Methods Across
Different Datasets

In this section, our goal is to explore the extent of improve-
ment achieved by SSL compared to SL methods, as well as
to determine if the improvement of SSL over SL depends on
the dataset at hand. To accomplish this, we calculate the dis-
tribution of the relative differences between the performance
of SSL and SL methods across various network architectures.
This analysis is performed separately for each dataset. The
relative difference is defined as follows:

r1M =
MSSL − MSL

MSSL
(4)

where r1M is positive if SSL outperforms SL and negative
otherwise. In the case of MCC, M is AUPRC, while for MLC,
M is AUPRC.
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Fig. 4. Predictive performance of SL and SSL on MCC datasets of RSI. PCTs and RForests are applied to features obtained by backbone feature extractors
using different CNN architectures. The same CNN architectures are used in end-to-end mode as SL baselines and as parts of the SSL-CAE approach. The
learning curves depict µ ± σ (mean and standard deviation) for AUPRC across five repeats, where higher values indicate better predictive performance. Note
that the σ values are typically very small and are not visible in the graphs (especially at higher percentages of labeled data).

The distributions of r1M values are depicted in Fig. 7. Our
findings indicate that among the different methods tested, SSL-
PCTs and SSL-RForest consistently exhibit improvements

over their supervised counterparts across all datasets. Specif-
ically, the most significant improvement in the predictive
performance of SSL over SL is observed for the single PCT
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Fig. 5. Predictive performance of SL and SSL on MLC datasets of RSI. PCTs and RForests are applied to features obtained by backbone feature extractors
using different CNN architectures. The same CNN architectures are used in end-to-end mode as SL baselines and as parts of the SSL-CAE approach. The
learning curves depict µ ± σ (mean and standard deviation) for AUPRC across five repeats, where higher values indicate better predictive performance. Note
that the σ values are typically very small and are not visible in the graphs (especially at higher percentages of labeled data).

method (SSL-PCT) compared to its supervised counterpart
(SL-PCT), particularly for smaller percentages of labeled

data. While SSL-RForest also consistently enhances the pre-
dictive performance compared to SL-RForest, the degree of
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Fig. 6. Distribution of ranks of the newly proposed methods and the competing methods for SL and SSL, across the different MCC and MLC evaluation
measures from Section III-C. Each graph represents the counts of ranks for a specific dataset and a given percentage of labeled data taken into consideration
while learning the predictive models (ranks were rounded to the nearest integer). Overall, these graphs show the stability and robustness of the proposed
methodology under the different evaluation scenarios. The distributions have clear peaks for the MCC datasets while being more spread for the MLC datasets.
For the MCC datasets, our methodology is clearly top-ranked across the different datasets and percentages of labeled data. For the MLC datasets, our
methodology is most frequently the top-ranked method, albeit not always the first.

improvement is lower than that of SSL-PCTs (although SSL-
RForests demonstrate the best overall performance).

On the other hand, CAE does not demonstrate consistent
performance improvement over the baseline method—they
yield relatively similar results. These results suggest that PCTs
and RForest methods are more versatile in using unlabeled
data, and their SSL variants yield consistent improvement
across different datasets.

D. Relative Performance of SL and SSL Methods Across
Different Architectures

In this section, we examine the influence of the net-
work architecture on the (relative) predictive performance
of SSL and SL methods. To this end, we calculate the
distribution of relative improvement of SSL methods over
their supervised counterparts (similarly as in Section IV-C)
across different datasets, for each network architecture
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Fig. 7. Improvement of performance of SSL compared to SL in terms of AUPRC/AUPRC for different MCC/MLC datasets. The distribution of the relative
difference in performance between the SSL and SL methods across the different network architectures is summarized in the boxplots (one for each method
and percentage of labeled data). Regions highlighted in green indicate that SSL outperforms SL, while red indicates the opposite.

Fig. 8. Improvement of SSL performance compared to SL in terms of AUPRC/AUPRC for various network architectures. The distribution of the relative
difference in performance between the SSL and SL methods across the different MCC/MLC datasets is summarized in the boxplots (one for each method
and percentage of labeled data). Regions highlighted in green indicate that SSL outperforms SL, while red indicates the opposite.

separately. The results of this analysis are visualized
in Fig. 8.

The results demonstrate the consistent superiority of the
tree-based semi-supervised methods, namely, SSL-PCTs and
SSL-RForests, over their supervised counterparts, regardless
of the specific network architecture employed. It is worth
noting that SSL-PCTs exhibit a greater relative improvement
compared to SSL-RForests.

In contrast, when considering the end-to-end learning
method, the semi-supervised CAE method outperforms the
supervised baseline only for the EfficientNet-based network
architecture. For other network architectures, it actually
degrades the performance of the supervised baseline. This
suggests that the choice of network architecture plays an
important role in achieving better predictive performance with
an SSL end-to-end CAE.
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TABLE II
PREDICTIVE PERFORMANCE OF THE PROPOSED SEMI-SUPERVISED METHODS (USING THE EFFICIENTNET-B2 NETWORK ARCHITECTURE) COMPARED

AGAINST STATE-OF-THE-ART METHODS FROM THE LITERATURE. THE RESULTS ARE PRESENTED USING THE AUPRC MEASURE FOR MCC
DATASETS AND THE AUPRC MEASURE FOR MLC DATASETS (HIGHER VALUES INDICATE BETTER PREDICTIVE PERFORMANCE). FOR

EACH DATASET AND PERCENTAGE OF LABELED DATA, THE BEST PERFORMANCE IS HIGHLIGHTED IN BOLD

E. Comparison to State-of-the-Art Methods
We have conducted a comprehensive performance compar-

ison of the proposed semi-supervised methods against seven
state-of-the-art self-supervised methods and two SSL methods
for RSI classification (HR-S2DML and MSMatch).

The results of the performance comparison, based on the
AUPRC measure for MCC datasets and AUPRC measure for
MLC datasets, are presented in Table II. It is evident that the
SSL-RForest consistently outperforms all the other state-of-
the-art methods, with only a few exceptions. Namely, on a
few of the datasets, HR-S2DML is the best performer for

1% of labeled data. The results also demonstrate consistent
improvements of SSL-RForest over SL-RForest and SSL-PCT
over SL-PCT across all percentages of labeled data and all
datasets.

In Fig. 10, we present example predictions for several
randomly sampled images from the test sets of the UCM
and DFC-15 MLC datasets, with their true labels and labels
predicted with different methods. These results indicate that
the SSL-RForest method is the most precise among the other
methods; it clearly has the fewest false positives and false
negatives.
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Fig. 9. Statistical analysis of the relative predictive performance of our proposed methods and state-of-the-art methods in terms of AUPRC for MCC datasets
and AUPRC for MLC datasets considering the EfficientNet-B2 network architecture. The results are presented in the form of average rank diagrams, one for
each percentage of labeled data. In the diagrams, the best ranking methods are positioned at the leftmost side, indicating their superior performance. The
significance level is set at 0.05. If the methods are connected with a red line, the differences in performance among them are not statistically significant.

Fig. 10. Qualitative results of different methods based on 10% of labeled data on: (a) UCM dataset and (b) DFC-15 dataset for MLC of RSIs. The predictions
shown in red indicate false positives. Cases shown in blue are false negatives (should have been predicted, but were not).

To determine the statistical significance of the perfor-
mance differences among the SSL methods across the RSI
datasets, we employed the Friedman test and Nemenyi posthoc
analysis [70] with the significance level set at α = 0.05. The

results are presented using average rank diagrams in Fig. 9,
where the best-performing methods are positioned at the
leftmost side of the diagram (with a rank of 1). Methods with
performances that do not differ significantly are connected
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with a red line. As depicted in the diagrams, the SSL-RForest
is a clear best performer for all percentages of labeled data,
except for 1%, where HR-S2DML is ranked the best. The HR-
S2DML method loses its advantage as the amount of labeled
data increases, with SimCLR and BYOL becoming the closest
competitors to SSL-RForest. For >1% of labeled data, SSL-
RForest statistically significantly outperforms the supervised
end-to-end baseline.

V. CONCLUSION

In this study, we have proposed a framework for semi-
supervised multi-label and MCC of RSIs. It consists of
two main steps: feature representation learning using a
backbone CNN model, to capture the semantically rich
content of RSI, followed by semi-supervised PCTs and
ensembles.

We have conducted an extensive experiment evaluation
covering various aspects of the proposed approach. We use
different RSI datasets for MLC and MCC. First, we evaluate
the performance of the methods with different amounts of
labeled data. Next, we analyze the dependence of their predic-
tive performance on the different network architectures used
as backbone feature extractors. Finally, we rigorously evaluate
our method against several state-of-the-art self-supervised and
SSL methods from the literature.

The results of our experiments demonstrate that the
proposed semi-supervised approaches, SSL-PCT and SSL-
RForest, clearly benefit from unlabeled data as they consis-
tently outperform their supervised counterparts across different
datasets, network architectures, and amounts of labeled data.
This was not the case for the semi-supervised end-to-end CAE
method, which exhibited improvement over its supervised
learning counterpart, only for the EfficientNet-B2 network
architecture. Next, the SSL-RForest method emerged as a
clear winner among nine state-of-the-art self-supervised and
semi-supervised deep learning methods (including BYOL [57],
SimSiam [58], SimCLR [59], BarlowTwins [60], MoCo [61],
DINO [62], SwAV [63], HR-S2DML [35], and MSMatch
[23]). The simpler method, SSL-PCT, even if it cannot
compete with the other methods in terms of predictive
performance, efficiently builds interpretable models, i.e., clas-
sification trees (the only such method among the ones
considered).

The findings of this study imply that our semi-supervised
framework can effectively reduce the reliance on extensive
supervision in RSI multiclass and MLC. This is particularly
valuable in real-world scenarios where the cost of labeling is
high. Building upon these promising results, future extensions
of this work will focus on exploring the incorporation of
hierarchical label information to further enhance the predictive
performance of semi-supervised MLC of RSIs.
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