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Abstract— Circular statistics is the mathematical theory for
dealing with variables distributed on a circle. The interferometric
phase of distributed targets can be modeled with circular statis-
tics due to its wrapped and pseudorandom nature. In this study,
we introduce a novel adaptive neighborhood selection (ANS)
method and a novel phase-linking (PL) method for distributed
scatterer (DS) interferometry, both based on circular statistics
principles. The proposed ANS method enables the direct selection
of pixels with similar SAR interferometry (InSAR) decorrelation
behaviors, called similarly decorrelated pixels (SDP), from the
interferometric phases. The proposed PL method: 1) shows
significant resistance to the potential departure from the fully
developed speckle assumption in the SAR observations (also
known as non-Gaussianity) compared to methods that rely on
this assumption; 2) does not introduce substantial implementation
complexity, computational cost, or numerical solution challenges
compared to methods that elaborately model the non-Gaussianity,
e.g., through a product model; and 3) can achieve higher
consistent wrapped phase estimation precision compared to other
methods solely based on interferometric phases. In addition to
validating the proposed methods through simulation experiments,
we also found that a combination of the two proposed methods
can produce interferograms with minimal noise in a real data
experiment.

Index Terms— Adaptive neighborhood selection (ANS),
circular statistics, distributed scatterer (DS), interferogram
filtering, non-Gaussianity, phase-linking (PL), SAR interferom-
etry (InSAR), synthetic aperture radar (SAR), trigonometric
moment, von Mises distribution.

I. INTRODUCTION

SAR interferometry (InSAR) has become a powerful
tool for estimating motion on the Earth’s surface with

unprecedented accuracy and resolution. The core of InSAR
analysis and applications lies in estimating parameters from
the interferometric phases. Thus, the final results will cer-
tainly benefit from accurate phase estimates. Distributed
targets are widespread in natural scenes, and susceptible to
noise and interference. The original interferometric phase
observed from a distributed scatterer (DS) is often noisy.
To adequately reduce the phase noise and reliably esti-
mate the phase, an appropriate stochastic phase model is
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required and a set of samples that can fit that stochastic
model needs to be selected. Once the samples and the
stochastic model are determined, a set of consistent wrapped
phases can be estimated by employing the phase closure
constraint [1]. For example, in SqueeSAR [2], the Gaus-
sian speckle assumption, also known as the fully developed
speckle assumption [3], is adopted to derive its stochas-
tic model for its phase estimation process, i.e., the phase
triangulation algorithm (PTA), and a two-sample statistical
test working on the amplitude time series is used to select
the statistically homogenous pixel (SHP). Selecting a set of
pixels with some kind of homogeneity (referred to as “brother
pixels”) and then estimating the consistent wrapped phases is a
typical two-step framework in DS-InSAR [4]. In recent years,
different methods have been proposed for DS phase estimation
within this framework [5], [6], [7], [8].

We refer to the process of selecting brother pixels as
adaptive neighborhood selection (ANS) and the subsequent
consistent wrapped phase estimation as phase-linking (PL).
In ANS, the amplitude or intensity time series is widely used
as the a metric to determine whether two pixels are statistically
similar because: 1) they could be used as a proxy for phases
and 2) they are linear variables and do not suffer from
wrapping as phases do. However, the amplitude or intensity
inherently represents the energy reflected from the target,
whereas the noise distribution of the DS phases is mainly
determined by the interference of elementary scatterer motion
(temporal decorrelation). Thus, the amplitude or intensity does
not necessarily represent the phase noise distribution [8].
Currently, we lack methods that directly select the pixels with
similar phase noise distributions [9] and we lack comparisons
between the results of these two pixel selection schemes.

The Gaussian speckle model is widely adopted in various
PL methods, which takes the following assumptions [10], [11]:

1) The amplitude and the phase of every elementary scat-
terer are statistically collective independent.

2) The phase of every elementary scatterer is uniformly
distributed in [−π, π).

3) No single scatterer dominates the others in a resolution
cell.

4) The number of elementary scatterer approaches infinite.
Therefore, the mathematical derivation results in a multivariate
complex circular Gaussian (CCG) distribution for one SAR
pixel [12]. We therefore refer to this SAR stochastic model
as the CCG model. PL methods based on the CCG model
rely on its corresponding assumptions, so their accuracy will
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decrease if these assumptions differ from reality for the reason
of, say, a small resolution cell with few elementary scatterers.
There are few methods to account for this deviation using
an additional independent real product factor [3], [13]. These
factors can introduce additional computational cost due to non-
analytical probability density function (pdf) and challenge the
numerical optimization process. The EMCF-SBAS method [7]
provides a simpler way of PL without assuming any particular
distribution.

It is possible to group the pixels and estimate the consistent
wrapped phases without using any amplitude data. In ANS,
this means selecting pixels directly from their phase noise
distributions and avoiding the disadvantages caused by the
potential discrepancy between amplitude statistics and phase
statistics. In the PL, dropping the amplitude can lead to more
generalized models, as the correlation between interferometric
amplitudes and phases no longer needs to be assumed, though
at the cost of losing some potentially useful information. The
optimal DS-InSAR processing under this condition is still an
open issue. Since the phases are wrapped and can therefore
be seen as distributed on a circle, the circular statistics,
also known as the directional statistics [14], of mathematical
sciences can be a promising tool. For example, the Kuiper’s
test, which concerns whether two groups of circular data have
similar distribution, has been adopted in the ANS [9] and the
PL of EMCF-SBAS [7] approximates to weight the phase of
each interferogram with the mean resultant length.

In this article, we present a new ANS method and a new
weighting scheme for the PL. Both parts are based on the
theory of circular statistics. In our ANS method, instead of
identifying pixels with similar amplitude statistics, we focus on
the pixels that have a similar interferometric phase component
corresponding to the target decorrelation. We refer to these
pixels as similarly decorrelated pixels (SDP). The disadvantage
caused by the potential discrepancy between the statistical
properties of amplitude and phase is overcome in our ANS
method. A clustering approach is used for our ANS, yielding
a more efficient selection compared to applying two-sample
tests which are designed for circular data. In our PL method,
we weight the interferometric phases with the inverse of the
variance of their circular sample means according to the von
Mises distribution, and a debiasing is applied. This approach
can lead to the resistance to non-Gaussianity in intensities and
thus to the robustness, without introducing significant imple-
mentation complexity and computational burden. Compared to
other PL methods that focus on the phases, e.g., EMCF-SBAS,
the proposed PL method has a more solid mathematical basis
and can therefore achieve a higher theoretical accuracy.

This article is organized as follows. Section II introduces
the interferometric signal model. Section III describes the
proposed ANS method. The proposed PL method is introduced
in Section IV. Section V is the experiment with real data. The
conclusions are summarized in Section VI.

II. INTERFEROMETRIC SIGNAL MODEL

Let ym and yn be complex signals received from two
well-aligned SAR pixels at different times over a distributed
target. Assuming that the number of elementary scatterers is

very large and the speckle is fully developed, then [ym, yn]
T

follows a bivariate CCG distribution. By assuming the spatial
samples in a window are i.i.d. distributed, the corresponding
joint maximum likelihood estimator (MLE) of the coherence
magnitude γm,n and the true interferometric phase ψ0

m,n is

γ̂m,neȷψ̂
0
m,n =

Np∑
p=1

|ym(p)||yn(p)|eȷ(ψm (p)−ψn(p))√
Np∑

p=1
|ym(p)|2

Np∑
p=1

|yn(p)|2
(1)

where ȷ = (−1)1/2 and Np denotes the number of pixels. From
the numerator in (1), we can see that the estimate of ψm,n can
be regarded as the sample mean of eȷ (ψm (p)−ψn(p)) weighted
by the interferometric amplitude Aint(p) = |ym(p)||yn(p)|,
indicating that the pixels with larger amplitude tend to have
smaller residuals.1 Furthermore, Aint(p) is the optimal weight
rather than any other increasing function of Aint(p), and the
phase uncertainty can be accurately described by the underly-
ing γm,n , for example, through the Cramér-Rao bound [15]
var(ψ)cr = (1 − γ 2

m,n)/2Npγ
2
m,n . However, this quantitative

coupling is directly associated with the fully developed speckle
assumption. It is shown that in modern SAR systems, depar-
tures from the fully developed speckle assumption can occur
frequently [16], causing the CCG model to become inaccurate.

The departures from the CCG model, also known as the
non-Gaussianity, can occur in two ways. One is the so-called
texture with clear boundaries between different regions of the
target. In this case, adaptive filters focusing on the intensity
or amplitude can be appropriate. In the other case, there
is an intrinsic spatial fluctuation of the target signal from
pixel to pixel. This kind of non-Gaussianity can be attributed
to the insufficiency of elementary scatterers in a pixel due
to the improvement of spatial resolution. For interferometry
aimed at surface motion estimation, the non-Gaussianity could
be addressed by more elaborate adaptive filters, especially
focusing on the outlier suppression [17], [18]. However, it can
be expected that the adaptive filters aimed at selecting CCG
samples can easily drop pixels in such areas. Another way
to account for the non-Gaussianity is to use the product mod-
els [3], [13], [19], [20], which assume the received SAR signal

y = z × x (2)

where z is a real factor that can be constrained via a distribu-
tion [3] or on its moment(s) [19] or without constraint [13],
and x is the component that fits the CCG model. It can be
deduced that such models: 1) assume that the non-Gaussianity
factor z does not affect the decorrelation of the interferometric
phase because of the independence between z and x , which
is not verified in terms of the scattering mechanism and
2) still invoke the central limit theorem because of the term x .

1The phase residual is defined as one minus the cosine of the difference of
the phase derived inversely from the estimated parameter between the original
observed phase. In (1), the estimated parameter is the multilooked phase ψ̂0

m,n ,
so the phase derived inversely from it is also ψ̂0

m,n(p) = ψ̂0
m,n , and the original

observed phase is arg[exp(ȷ (ψm(p) − ψn(p)))] = ψm,n(p). Therefore, the
phase residual is 1 − cos(ψ̂0

m,n − ψm,n(p)).
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The potential failure of the first assumption can distort the
actual coupling of interferometric amplitude and phase, and
the second can make an inaccurate assumption. In addition,
numerical methods (e.g., integration) are often required
for estimates based on such models, which increases the
computational burden and challenges the estimation.

Instead of exploiting the coupling between interferomet-
ric amplitude and phase distorted by the non-Gaussianity,
we adopt a simple model that focuses only on the inter-
ferometric phase. We assume that the interferometric phases
are wrapped normal distributed around their true values due
to the random change of the relative positions between the
elementary scatterers and the antenna [21], and can therefore
be approximated with the von Mises distribution [22], regard-
less of whether the joint amplitude-phase distribution can fit
the CCG model or not. This interferometric phase model is
hereafter referred to as the VM model. The pdf of the von
Mises distribution and wrapped normal distribution are

fVM
(
ψ;ψ0, κ

)
=

1
2π I0(κ)

exp
(
κ cos

(
ψ − ψ0)) (3)

fWN
(
ψ;ψ0, σ

)
=

1

σ
√

2π

∞∑
k=−∞

exp

{
−

(
ψ − ψ0

+ 2πk
)2

2σ 2

}
(4)

where I0 is the modified Bessel function of the first kind and
order zero, and κ is referred to as the concentration parameter.
κ acts as the inverse of the variance, so a random angle
(noisy interferometric phase ψ) will be more dispersed for
a smaller κ . It should be noted that we define all phase or
angle values in the interval [−π, π). Without an infinite sum
in the density function, the von Mises distribution is easier to
use than the wrapped normal distribution in many cases [23].

We show the compatibility of the VM model with the
CCG phase model by plotting their pdfs together (see Fig. 1).
The pdf of the interferometric phase under the CCG model
(single-look) is

fCCG
(
ψ;ψ0, γ

)
=

(
1 − γ 2

)
2π

1
1 − γ 2 cos2

(
ψ − ψ0

)
×

γ cos
(
ψ − ψ0

)
arccos

(
−γ cos

(
ψ − ψ0

))√(
1 − γ 2 cos2

(
ψ − ψ0

)) + 1

. (5)

It is shown that both fVM and fCCG are unimodal in the field
of definition [−π, π) (and so is fWN). We compared the pdfs
of two phase distributions with the same degree of uncertainty,
measured by an index that does not depend on any particular
distribution, the mean resultant length R. The mean resultant
length is defined as

R =
∣∣E

[
eȷψ

]∣∣ = E
[
cos

(
ψ − ψ0)]. (6)

To obtain the von Mises pdf with respect to a certain coherence
value, the following relationship is adopted [21]:

R =
π

4
γ F

(
1
2
,

1
2
; 2; γ 2

)
(7)

Fig. 1. Interferometric phase pdfs with (a) R = 0.28 and (b) R = 0.59.
The Kullback–Leibler divergence between two curves KL( fCCG|| fVM) is
calculated numerically.

where F() is the hypergeometric function. It is shown that both
R and γ take values from 0 to 1 and R is monotone increasing
with γ [21]. Fig. 1 shows that both these two pdfs are quite
similar at medium-low coherence, and the difference between
them increases with coherence. This increasing difference can
be recognized by the increasing Kullback–Leibler divergence
KL( fCCG|| fVM). However, as the coherence increases, the
difficulty of estimating the phase and its uncertainty decreases.
Furthermore, these two pdfs both converge to the uniform
distribution when R = γ = 0. This compatibility indicates
that the VM model can also work on the CCG distributed
SAR observations.

III. SDP CLUSTERING

We assume that N SAR images acquired over the same
area have been co-registered and M interferograms have been
generated. We use ψi (p) ∈ [−π, π) to denote the phase of
a pixel with coordinates p ≡ (x, y) in the i th interferogram.
Thus, ψi (p) can be seen as a random angle, i.e., a circular
random variable. To identify SDPs with interferometric phase
time series, the spatial low-pass (SLP) signal component
must first be removed, since its high-pass behavior in time
can overwhelm the phase component corresponding to the
decorrelation. Same as in [9] and [24], we estimate the SLP
component using the standard circular mean estimator in
circular statistics

ψi,SLP = arg

∑
p∈�b

exp(−ȷψi (p))

 (8)

where �b denotes a boxcar spatial neighborhood. It is shown
that this estimator is robust to potential outliers [25] compared
to the mean of linear samples. The SLP component can
also be eliminated by spatial differentiation [8]. In �b, the
phase components corresponding to the target decorrelation
of each pixel are the residuals after subtraction 9res(p) =

W {9(p) − 9SLP}, where 9 = [ψ1, ψ2, . . . , ψM ] denotes the
vector containing the temporal samples and W {} represents
wrapping the input values into [−π, π).

We determine which pixels are similarly decorrelated by
analyzing the statistical properties of ψres(p). According to the
signal model described in Section II, pixels that are grouped
into SDPs mean that they have similar κ in each interferogram
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(we assume that the phase is locally stationary so that pixels
within a boxcar window always have similar ψ0). As with
the treatment of linear data such as amplitudes and intensities
in SHP identification, two-sample statistical tests could be
an option [2], and nonparametric tests designed for circular
samples, such as Kuiper’s test [9], [26] and Watson’s-U 2 [27]
test, could be used. A test relying on a particular distribution is
not suitable for 9res(p), since according to the adopted signal
model, 9res(p) contains correlated samples from a set of von
Mises distributions with mixture parameters.

Instead of using two-sample statistical tests, we present a
different approach to determine the adaptive neighborhood
from the phases. Before describing our approach, we need
to introduce the characteristic function and the trigonometric
moments of a circular variable. Given ψ ∈ [−π, π) is a
random angle, its characteristic function is

φp = E
[
eȷpψ]

=

∫ π

−π

(e)ȷpψd F(ψ), p = 0,±1,±2, . . .

(9)

where F(ψ) is the probability distribution function. We shall
have

φp = αp + ȷβp (10)

αp = E
[
cos pψ

]
,

∣∣αp
∣∣ < 1 (11)

βp = E
[
sin pψ

]
,

∣∣βp
∣∣ < 1 (12)

where αp and βp are defined as the trigonometric moments.
It is shown that the probability distribution of a random angle
is determined by its characteristic function, and the sequence
{(αp, βp):p = 0,±1, . . .} is equivalent to the characteristic
function of ψ [14]. Thus, the distribution of a random angle
is determined by its trigonometric moments.

We assume that the pixels in a boxcar window have Nc

decorrelation behaviors, and can form Nc clusters in a Nm

dimensional space, where Nm is the number of orders of
the trigonometric moments. Therefore, we identify the SDP
by clustering according to the sample moments of 9res.
We choose the first four-order moments for the clustering
(Nm = 4), as the location, dispersion, skewness, and kurtosis,
which control the shape of a probability distribution, are
controlled up to the fourth moment. Since the SPL component
is preremoved, we assume β̂p = E[sin pψres] = 0, and
thus φ̂p = α̂p = (1/M)

∑M
i=1 cos pψi,res. In our approach,

we use the k-means clustering method [28] and we estimate
Nc as the number of near-zero eigenvalues of the normalized
random-walk Laplacian matrix [29], [30]. The cluster contain-
ing the central pixel forms the adaptive neighborhood.

We designed a simulation experiment to evaluate the per-
formance of different phase-based ANS methods. Kuiper’s
test, Watson’s-U 2 test, and our SDP clustering approach were
tested. A total of 25 SAR images were simulated and 300 inter-
ferograms were generated. We assumed that there are two
different decorrelation behaviors in a window [see Fig. 2(a)],
one with an exponential decay and the other with almost com-
plete decorrelation in each interferogram. The decorrelation
model is

γm,n = p0 exp
(
−δtm,n/τ

)
+ p∞ (13)

Fig. 2. (a) Simulated multilooking window with two decorrelation behaviors.
(b) Coherence magnitude matrix of the first decorrelation behavior. (c) Coher-
ence magnitude matrix of the second decorrelation behavior.

TABLE I
COMPARATION OF THREE ANS METHODS

where p0 and p∞ are the proportions of short-term coherent
scatterers and the long-term persistently coherent scatterers,
respectively, p0 + p∞ = 1, δtm,n is the temporal baseline,
and τ is the decorrelation rate [31]. We set p0 = 0.8,
p∞ = 0.2, and τ = 20 in the first decorrelation behavior,
which gives that the coherence with a temporal baseline
of 12 days is 0.64 and with a temporal baseline greater
than 204 days is 0.2. For the second decorrelation behavior,
we assumed that p0 = 0.95, p∞ = 0.05, and τ = ∞,
resulting in that the coherence magnitude in each interfero-
gram is 0.05 [see Fig. 2(b) and (c)]. We assumed that the
temporal baseline between each pair of adjacent acquisitions
was 12 days. We repeated the test 2000 times and summa-
rized their precision, recall, and harmonic mean in Table I.
As the alternative hypothesis of a two-sample statistical test
is typically that the samples are from different distributions,
we took points identified as nonbrother pixels as positive
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samples in the calculation of precision and recall. Thus, the
precision indicates the ability to include more brother pixels
correctly, and the recall indicates the ability to ensure that
the identified brother pixels actually have similar distributions.
The harmonic mean, also known as the F1 score, balances
between precision and recall and provides a single metric
to assess the ANS performance. According to the recall,
our approach shows an overwhelming advantage in excluding
the heterogeneous pixels against Kuiper’s test and Watson’s-
U 2 test. Furthermore, the precision of our method is also
superior to that of Kuiper’s test and Watson’s-U 2 test.

IV. PHASE-LINKING

PL, also known as phase optimization, is the process of
estimating N − 1 optimal consistent wrapped interferometric
phases θ = [0, θ1, θ2, . . . , θN−1] by employing the phase
closure constraint [2], [5], [32]. The first element of θ is the
zero-reference. The first PL algorithm is an MLE associated
with the multivariate CCG distribution [33]. By replacing the
complex covariance matrix with the coherence matrix, PTA
has almost the same objective function as in [33], and they
can be considered as using the same model. As shown in [34],
PL can be seen as the minimization of the weighted residuals
between the parameterized phases of each interferogram and
their initial (multilooked) values. In this format, the objective
function can be expressed as

arg min
θ

{
−

N∑
m=1

N∑
n>m

(w)m,n cos
(
θm − θn − ψ̂0

m,n

)}
. (14)

The objective function can also be further parameterized with
additional terms, for example, accounting for the uncertainty
in wm,n [19], [35].

After SDP clustering, an adaptive neighborhood �a is deter-
mined. We assume that for each interferogram, �a contains
i.i.d. von Mises samples, and the MLE of the multilooked
phase and the sample mean resultant length R in the i th
interferogram is

Ri eȷψ i = Ri eȷψ̂
0
i =

∑
p∈�a

exp(ȷψi (p)). (15)

Equation (15) provides another way to estimate ψ0 that does
not rely on the CCG model, which is different from (1). It is
shown that the variance of ψ is [14]

var
(
ψ

)
=

1
κA(κ)L

+
3κ

(
1 − A(κ)2

)
− 5A(κ)

κ2 A(κ)3L2
+ O

(
L−2)

≈
1

κA(κ)L
(16)

where L is the number of independent samples and

A(κ) =
I1(κ)

I0(κ)
= R. (17)

Thus, in our PL method, we determine that

w = 1/var
(
ψ

)
= κA(κ)L . (18)

Fig. 3. (a) Bias of R̂, (b) RMSE of R̂, (c) absolute bias of κ̂ , and (d) RMSE
of κ̂ . (c) and (d) are on a logarithmic scale for a better visualization. L = 49.

Fig. 4. RMSE of the estimated consistent phase in a simulated SLC stack.
N = 25,M = (N − 1)N/2 = 300, L = 49. (a) Gaussian speckle case and
(b) and (c) are two non-Gaussian cases generated with the KM model [3].
In (d), we compare several phase-based approaches.

The term κA(κ)L can also be interpreted as the Fisher
information

J = −E


∂2∑ ln fVM

∂ψ02

∂2∑ ln fVM

∂ψ0∂κ

∂2∑ ln fVM

∂κ∂ψ0

∂2∑ ln fVM

∂κ2
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Fig. 5. (a) Time-averaged amplitude of 19 TerraSAR-X data (©DLR, 2022)
and (b) optical image (from ©Google Earth) of the study area. Both are in
the SAR coordinates.

Fig. 6. Flowchart of data processing.

= L
[
κA(κ) 0

0 1 − A(κ)2 − A(κ)/κ

]
. (19)

Therefore, the weighting factor κA(κ)L is similar to
(2Lγ 2)/(1 − γ 2) in the CCG model [5]. It should be noted
that our PL method (as well as weighting the phases with
(2Lγ 2)/(1 − γ 2)) ignores the correlations between different
interferograms, which causes an inherent departure from the
possible optimal estimate.

The estimation of R and k is required for getting w. It is
shown that R is a biased estimate of R and the bias can be
approximated by [36]

E
[
R − R

]
≈

1
2κL

. (20)

To estimate κ , the inverse of A(κ) is required. Best
and Fisher [37] gives an approximation of A−1(R)

Fig. 7. Number of brother pixels identified by (a) AD test, (b) Kuiper’s test,
and (c) SDP clustering.

with good accuracy

κ̂ = A−1(R)

≈


2R + R3

+
(
5R5)/6, R < 0.53

−0.4 + 1.39R + 0.43/(1 − R), 0.53 ≤ R ≤ 0.85(
R3

− 4R2
+ 3R

)−1
, R > 0.85.

(21)

However, κ̂ is also biased due to the approximation of A−1(R),
Best and Fisher suggested an estimator of κ with bias
reduction [37]

κ̂∗
=

{
max

(
κ̂ − 1/2κ̂L , 0

)
, κ̂ < 2

(L − 1)3κ̂/
(

L3
+ L

)
, κ̂ ≥ 2.

(22)

It should be noted that a debias processing may cause an
increase of the variance. To ensure a small overall root mean
square error (RMSE) of R̂ and κ̂ , we present a way to obtain ŵ

1) Getting R̂1 with (15) R̂1 = R.
2) Getting κ̂1 with κ̂1 = A−1(R̂1), where A−1(x) is approx-

imated by (21).
3) The debias of R̂ with (20): R̂2 = R̂1 − 1/2κ̂1L .
4) Getting κ̂2 with κ̂2 = A−1(R̂2), where A−1(x) is approx-

imated by (21).
5) The debias of κ̂2 with (22): κ̂3 = (κ̂∗

|κ̂ = κ̂2).
6) Calculating the weight factor ŵ = κ̂3 R̂2L .
Once the weights of each interferogram have been calcu-

lated, (14) can be optimized via a quasi-Newton algorithm as
in PTA.
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Fig. 8. Identified brother pixels of pixel P1. (a) Time-averaged amplitude on
a logarithmic scale. (b) One of the interferogram in the stack. (c)–(f) Brother
pixels identified by four methods, with blue denoting the centra pixel and
green denoting the identified brother pixel. The significant level used in
(c)–(e) is 0.05. The base map of (c)–(f) is α̂1.

Fig. 9. Clustered scatterplot of the sample trigonometric moments of pixel P1.
(a) α̂1 and α̂2 and (b) α̂3 and α̂4.

We simulated 10 000 replications for varying R to eval-
uate R̂2 and κ̂3 (see Fig. 3). The sample interval of R
is 0.02 and the range is [0.01, 0.98]. Fig. 3(a) and (c) shows

Fig. 10. Identified brother pixels of pixel P2. (a) Time-averaged amplitude
on a logarithmic scale, (b) one of the interferogram in the stack, and
(c)–(f) brother pixels identified by four methods, with blue denoting the centra
pixel and green denoting the identified brother pixel. The significant level used
in (c)–(e) is 0.05. The base map of (c)–(f) is α̂1.

Fig. 11. Clustered scatterplot of the sample trigonometric moments of
pixel P2. (a) α̂1 and α̂2 and (b) α̂3 and α̂4.

that using R̂2 and κ̂3 can significantly reduce the estimation
bias. When R is very small, both bias and RMSE are reduced
by using R̂2 and κ̂3. However, the RMSE of R̂2 and κ̂3 is
increased in the interval R ∈ [0.1, 0.4].
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Fig. 12. Longest-temporal baseline interferograms reconstructed with consistent wrapped phases estimated by different ANS and PL methods. Different rows
indicate different ANS methods and different columns indicate different PL methods. Rows 1 to 3 (top to bottom): AD test, Kuiper’s test and SDP clustering,
respectively. Columns 1 to 3 (left to right): PTA, EMI and the proposed PL method, respectively.

We demonstrate that the consistent phase estimation can
benefit from our PL approach when the non-Gaussianity
presents through simulated SLC stack [see Fig. 4(a)–(c)]. The
signal y was simulated with a product model [see (2)]. The
non-Gaussian component is formed with z = (zc × zt )

1/2,
where 1) zc and zt are independent; 2) zc is time-invariant
and zt is realized independently in each scene; and 3) both
zc and zt follow the Gamma distribution with shape and scale
parameter ξ−1, yielding E[zc] = E[zt ] = 1 and var[zc] = ξc,
var[zt ] = ξt . The above settings result in the KM model pre-
sented in [3]. For the component x , which fits the CCG model,
we assumed the same decorrelation process as in Fig. 2(b).

In Fig. 4(a)–(c), we compare the PTA method (w =

−0̂−m,n γ̂ , where 0̂ represents the sample coherence magni-
tude matrix which is real symmetric, and the superscript −m,n

denotes the m row n column element in the inverse
matrix 0̂−1), the eigendecomposition-based maximum-
likelihood estimator of interferometric phase (EMI) [19]
and our PL method (w = κ̂3 R̂2L). It is not surprising to
see that in the Gaussian speckle case, the PTA and EMI
methods have lower phase RMSE, since they are both
designed for the CCG model and exploit the coupling
between the interferometric amplitudes and phases according
to (1). In this case, our method increased the phase RMSE
by an average of 10%. However, when this coupling is
distorted by the non-Gaussianity caused by the time-invariant
component zc, where var[zc] = 0.4 corresponds to a small
heterogeneity [3], our PL method reduced the phase RMSE
by an average of 30% and 17% compared to PTA and EMI,
respectively. We observed that the time-variant component zt
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Fig. 13. Reconstructed longest-temporal baseline interferograms of area 1 identified in Fig. 12(a). Different rows indicate different ANS methods and different
columns indicate different PL methods. Rows 1 to 3 (top to bottom): AD test, Kuiper’s test and SDP clustering, respectively. Columns 1 to 3 (left to right):
PTA, EMI and the proposed PL method, respectively.

has less effect on the PL, as our PL method can have the
comparable accuracy with PTA and EMI when ξt expands
to 0.6, which corresponds to a medium level of heterogeneity.
We expect that the superiority of our PL method over
CCG model-based methods to increase as the level of
non-Gaussianity increases. In Fig. 4(d), PTA and EMI are
modified into a phase-based version by replacing γ̂ with
R [21], and three other phase-based estimators are tested,
showing that our PL method is superior to other estimators
when only the phase information is used.

V. EXPERIMENT ON REAL DATA

A. Study Area and Data Processing
The selected study area is a region within a radius of 3.5 km

situated in the Hawaii Volcanoes National Park as shown

in Fig. 5. The various features make the area well suited to
test the proposed method, especially in terms of the ANS.
We collected N = 19 TerraSAR-X SAR images covering this
area over the period from 8 December 2021 to 8 July 2022.
The size of each co-registered image is 2720 pixels in
range by 3800 pixels in azimuth. The time interval between
each adjacent pair is either 11 or 22 days. We generated
the interferograms with all possible combinations, yielding
M = N (N − 1)/2 = 171. The topographic and orbital
fringes are subsequently removed from each interferogram.
To fully evaluate the impact of the ANS and PL methods,
we compared the consistent wrapped phases estimated from
all possible combinations of ANS and PL. The ANS methods
involved are: Anderson-Darling (AD) test, Kuiper’s test, and
the proposed SDP clustering method and the PL methods
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Fig. 14. Reconstructed longest-temporal baseline interferograms of area 2 identified in Fig. 12(a). Different rows indicate different ANS methods and different
columns indicate different PL methods. Rows 1 to 3 (top to bottom): AD test, Kuiper’s test and SDP clustering, respectively. Columns 1 to 3 (left to right):
PTA, EMI and the proposed PL method, respectively.

involved are: PTA, EMI, and using the proposed PL weights
ŵ = κ̂3 R̂2L . The window size is 15 × 15 for all ANS and PL
processing. Pixels with <20 brother pixels were discarded, and
displayed as blank in the reconstructed interferograms. The
deformation are not retrieved, since we focus on the impact
on the consistent wrapped phase estimation. Fig. 6 is the data
processing flowchart.

B. Results and Discussion
Fig. 7 shows the number of brother pixels identified by

different selection methods. It can be seen that the number
of brother pixels identified by all methods has a visible
correlation with the SAR and optical texture. However, the
texture in the lower center right of the SAR and optical images
is missing from Fig. 7(c), which may be due to the poor phase

quality in these areas, preventing the trigonometric moments
from forming distinct clusters.

Fig. 8 shows an example of identified brother pixels of
pixel P1 [see Fig. 5(a)] by different approaches. We also tested
the Watson’s-U 2 test on this pixel. The first-order sample
moment α̂1 acts as a phase stability indicator like temporal
coherence, and the two distinct gray levels in the base map
of Fig. 8(c)–(f) indicate two different scattering mechanisms.
We can see that the AD test [38] working on the amplitude
time series confuses these two mechanisms [see Fig. 8(c)],
which could be explained either by the insufficient power of
the test or by the deviation of the amplitude statistics from
the phase statistics. The Kuiper’s test and Watson’s-U 2 test
working on ψres show very similar results, and did not confuse
the mechanisms, but resulted in a significant reduction of the
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sample size as many pixels inside the boundary were rejected
[see Fig. 8(d) and (e)]. Our clustering can both distinguish
different decorrelation mechanisms and preserve sufficient
samples as shown in Fig. 8(f). It should be noted that although
our SDP clustering approach outperforms other approaches in
both the simulated experiment and a real-data case, the failure
of approaches based on circular two-sample statistical tests
is different. In this real data case, these approaches show a
lack of ability to include a sufficient number of brother pixels,
rather than an inability to exclude wrong pixels as shown in
the simulated experiment. Fig. 9 shows that pixels can form
different clusters according to their moments, which allows us
to separate them using clustering methods such as K-means.
In this example, the pixels around P1 have been split into
two clusters, one with higher phase stability (as indicated by
the higher α̂1) and the other with lower. Fig. 10 shows another
example of pixel P2, but the surrounding pixels have been split
into three clusters with high, medium, and low phase stability,
respectively, as shown in Fig. 11. In Fig. 10, we can see that
in this example, the different scattering mechanisms are again
confused by the ANS method based on the AD test and the
pixel selected by different phase-based methods are similar.

Fig. 12 shows the reconstructed wrapped interferograms
of the longest temporal baseline (242 days). To compare
the results of different methods more clearly and visibly,
two representative areas boxed in Fig. 12(a) are selected for
focused views as shown in Figs. 13 and 14. In the subgraph (i)
of Figs. 12–14, we can see that the combination of the
proposed ANS and PL approaches obtained the phases with
minimized noise. These results demonstrate the validity of the
two proposed methods, and indicate that the selected samples
can fit the stochastic model assumed in the PL approach. The
noticeable noise in the subgraphs (g) and (h) of Figs. 12–14
indicates that applying the proposed SDP clustering method
alone cannot guarantee an improved result. The reason is that
the proposed SDP clustering approach aims to select pixels
with similar phase noise components, which cannot guarantee
that the samples have similar CCG parameters. However, the
proposed PL method can accommodate different types of
samples, as we can see that the phases retrieved by our PL
method always have minimized noise, regardless of how the
samples are selected. This is due to the compatibility of the
VM model with the CCG phase model, as shown in Fig. 1.
Since the proposed PL method requires an iterative solution,
the computational cost of our PL method is comparable to
that of PTA, except that there is no matrix inversion in our
PL method, and it does not suffer from the ill-condition.
The numerical solution of our PL method can also benefit
from an initialization closer to its optima [19], for example,
through EMI.

VI. CONCLUSION

In this article, we present a novel ANS method and a novel
PL method that focus on the exploitation of interferometric
phase statistics. These methods are based on a simple but gen-
eralized and practical interferometric signal model that does
not rely on the CCG assumption: the interferometric phases
are the only observation and the interferometric amplitudes

are discarded. The circular statistics of mathematical science
is the foundation of the two proposed methods. The proposed
ANS method does not rely on any particular phase distribution,
and the proposed PL method assumes that the interferometric
phases are von Mises distributed and uncorrelated between
different interferograms. Simulated and real data results pre-
liminarily show the interest and superiority of the proposed
methods and the model used. Future work will focus on
developing the quality number and exploiting the correlation
between interferograms in terms of circular statistics.
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