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Machine Learning-Based Wet Refractivity
Prediction Through GNSS Troposphere Tomography
for Ensemble Troposphere Conditions Forecasting

Saeid Haji-Aghajany , Witold Rohm , Maciej Kryza, and Kamil Smolak

Abstract— This article introduces an innovative ensemble
troposphere conditions forecasting method using wet refractivity
within the context of Global Navigation Satellite System (GNSS)
troposphere tomography. The current models lack coverage
of diverse geographical locations and weather conditions, and
they do not utilize high-spatial resolution tropospheric data
to cover a large area. Moreover, their deterministic prediction
mode may introduce high uncertainty into the results. This
article leverages long short-term memory (LSTM) networks
and genetic algorithms (GAs) to optimize hyperparameters,
enabling the prediction of 3-D wet refractivity fields for ensemble
forecasting under various weather conditions including rain
bands sweeping in Poland and a storm in California, USA.
A comparison of the 3-h predictions with Weather Research and
Forecasting (WRF) model outputs at levels with a height lower
than 3000 m shows root-mean-squared error (RMSE) values
of 4.15 and 3.18 ppm for Poland and California, respectively.
After utilizing the generative adversarial network (GAN) to
produce realistic time series, ensemble forecasting is conducted.
The model demonstrates exceptional accuracy in both regions,
yielding an optimal threshold of 0.41, which shows a point at
which the balance between true positive (TP) and true negative
(TN) instances is optimized, achieving a sensitivity of 0.967 and a
precision of 0.973 in Poland. Additionally, it achieves an optimal
threshold of 0.52, yielding a sensitivity of 0.982 and a precision of
0.993 in California. The low false positive rate (FPR) of 0.027 in
Poland and 0.011 in California underscore the adaptability and
reliability of the model across diverse datasets.

Index Terms— Ensemble forecasting, generative adversarial
network (GAN), long short-term memory (LSTM), machine
learning (ML), troposphere tomography.

I. INTRODUCTION

THE presence of water vapor, which plays a crucial
role in atmospheric phenomena, introduces significant

measurement errors that profoundly affect Earth observation
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systems, particularly the Global Navigation Satellite System
(GNSS). GNSS signals experience delays as they traverse
Earth’s troposphere, a phenomenon of significant importance
in GNSS meteorology [1]. Variations in zenith tropospheric
delay (ZTD) closely correlate with changes in pressure,
temperature, and water vapor around GNSS stations [2].
ZTD comprises two main components: zenith hydrostatic
delay (ZHD) and zenith wet delay (ZWD) [3]. ZWD relies
on wet refractivity and presents challenges due to the
uneven distribution of water vapor in both space and time.
In addition to increasing the accuracy of real-time and near-
real-time positioning modes [4], modeling of ZWD or other
GNSS tropospheric products, like precipitable water vapor,
is beneficial for forecasting of natural phenomena, including
the subsidence [5], groundwater level reduction [6], flash
floods [7], wind speed [8], cyclonic storm [9], rainfall [8],
[10], [11], [12], [13], [14], and foehn winds [15].

The initial attempts to predict GNSS tropospheric products
relied on mathematical methods, including the linear trend,
decomposition, moving average, and exponential smoothing
models [16], [17], [18]. However, as technology advanced,
researchers shifted their focus to harnessing the potential
of machine learning (ML) due to its remarkable capabil-
ities. One prominent research avenue entails the creation
of regional tropospheric models utilizing artificial neural
networks (ANNs). Several other studies have employed a
backpropagation NN (BPNN) explicitly designed for modeling
regional tropospheric delay [19], [20]. A comprehensive
analysis revealed that the radial basis function (RBF) algorithm
outperformed others in modeling tropospheric delay with
local-scale samples [21]. Some researchers employed the
multilayer perceptron (MLP) method to capture variations in
tropospheric delay time series [22]. In 2017, a ZTD prediction
model was crafted utilizing GNSS data from Hong Kong. This
model was created through a hybrid method, incorporating
both BPNN and genetic algorithm (GA) [23]. After exploring
recurrent NN (RNN) methods based on their ability for time-
series prediction, some researchers focused on using different
RNN methods like long short-term memory (LSTM) for ZTD
prediction. A groundbreaking predictive model for ZTD was
introduced using the LSTM network architecture [24], [25].
A study addressed the intricate spatiotemporal dynamics of
Global Positioning System (GPS) stations in West Antarctica.
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This article approach involved BP and LSTM networks [26].
Enhancements were made in correcting ZTD values in the
Antarctic region by incorporating RBF and LSTM models,
effectively addressing both spatial and temporal factors [27].
In another research, ZTD was predicted at seven GNSS
monitoring stations across China, leveraging static precise
point positioning technology using an LSTM network [28].
GNSS tropospheric products have been employed in previous
research efforts. However, one of the challenges which has not
been solved before is the prediction of a high spatiotemporal
local tropospheric map, along with the handling of challenging
parameters such as wet refractivity. GNSS troposphere
tomography is a potent technique for the reconstruction
of the 3-D wet refractivity field, and therefore offers a
promising solution for this challenge. It has shown its ability
in different fields of study including increasing the accuracy
of positioning [29], InSAR tropospheric correction [30],
and downscaling of precipitation [31]. Various troposphere
tomography methods have been developed in recent years,
including voxel-based [32], [33], [34], [35], [36], function-
based [37], [38], and node-based [39], [40] approaches,
with efforts made by researchers to optimize these methods.
Another challenge is that there has been a lack of utilization
of more robust forecasting methods like ensemble forecasting
to enhance the accuracy of weather predictions.

In this article, the primary focus is on predicting the 3-D
local wet refractivity field using troposphere tomography in
combination with the LSTM network and GA. This predictive
model is employed to prepare input data for ensemble
forecasting of both synoptic-scale and local-scale weather
phenomena in Poland and California, USA, encompassing
varying climate conditions and utilizing the wet refractivity
field from the tomography technique. The process begins with
the generation of extensive time-series data from troposphere
tomography, which serves as the training data for LSTM-
GA. The generative adversarial network (GAN) method is
then employed to generate ensemble members for forecasting,
ensuring the production of realistic time series. In this context,
“realistic” implies that the generated time series closely
mimics the specifications and behavior of actual time-series
data. Subsequently, predictions are made using both types of
time series—real data and the realistically generated synthetic
data. The predicted wet refractivity values are then utilized as
input data for ensemble forecasting of rain bands sweeping
in Poland and a storm in California. Sections II–IV of this
article delve into the theoretical foundations of the problem,
introduce the study area and dataset, and thoroughly discuss
the processing results.

II. METHODOLOGY

A. GNSS Troposphere Tomography

GNSS troposphere tomography furnishes a comprehensive
3-D depiction of wet refractivity, capitalizing on tropospheric
delays derived from GNSS data in the line-of-sight direc-
tion [32].

1) Tropospheric Wet Delay: As GNSS signals traverse the
troposphere, they undergo bending and delays influenced by

a multitude of tropospheric factors. The ZTD is intimately
intertwined with tropospheric parameters like pressure,
temperature, and water vapor along the signal’s path, and
it can be extracted through the adept application of GNSS
data processing techniques [41]. This division of ZTD into
its pivotal constituents entails the ZHD and ZWD [42].
The precise determination of ZHD is achieved through the
judicious utilization of the Saastamoinen model [41]

ZHD =
0.002277 Ps

(1 − 0.00266 cos(2ϕ) − 0.00000028 Hs)
(1)

where Ps represents the surface pressure in hPa, ϕ is the
latitude, and Hs denotes the height of the station in meters.
Subsequently, ZWD can be computed as the difference
between ZTD and ZHD. In conjunction with ZTD, the
results of GNSS processing encompass tropospheric horizontal
gradients, offering insights into the nonuniform distribution
of tropospheric gases. The ZWD values can be geometrically
transformed into the respective directions of GNSS satellites
to determine the slant wet delay (SWD). Subsequently, the
estimation of SWD can be accomplished by employing the
subsequent equation [32]

SWD = mfwet(α) × ZWD + cot(α)

×
((

GW
EW × sin Az

)
+

(
GW

NS × cos Az
))

(2)

where GW
EW and GW

NS represent the wet tropospheric horizontal
gradients in the East–West and North–South directions,
respectively. Moreover, α and Az correspond to the elevation
angle and azimuth of the satellite, respectively, and mfwet
characterizes the wet mapping function. In this study, the
Vienna mapping function is used for mfwet [43]. The
determination of hydrostatic gradients relied on a methodology
described by Shoji [44], which leveraged the horizontal
distribution of surface pressure. These gradients were then
subtracted from the GNSS-derived gradient values, allowing
us to focus exclusively on the wet components in (2). In prior
studies, an established method for improving SWD values
includes integrating postfit residuals derived from GNSS
analysis. These residuals are used to account for signal delay
factors that are not explicitly modeled [45], [46]. Nevertheless,
alternative research suggests that the contribution of postfit
residuals to the estimation process is relatively minor [47] and
may potentially introduce inaccuracies associated with GNSS
measurements, such as multipath interference [48]. In our
investigation, we have made the deliberate choice to refrain
from incorporating postfit residuals.

SWD serves as an input parameter for tomography, enabling
the reconstruction of wet refractivity. In the context of
this application, the fundamental tomography equation is
articulated as shown in the following [32]:

SWD = 10−6
∫ Sat.

Rec.
Nwds (3)

where s denotes the ray’s length, and Nw represents the wet
refractivity value.
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2) Three-Dimensional Wet Refractivity Reconstruction
Through Tomographic Solution: In this article, voxel-based
troposphere tomography is implemented. While (3) is
well-suited for addressing continuous spatial challenges,
voxel-based tomography operates within a discrete spatial
framework, partitioning space into 3-D voxels. The associated
equations governing tomographic observations are similarly
discretized, as outlined in the work by Flores et al. [32]

SWDi
= 10−6

n∑
j=1

Nw j1Si
j (4)

where i serves as the GNSS ray counter, j represents the
number of voxels, 1Si

j denotes the length traveled by ray i
within voxel j , and Nw j is the wet refractivity within voxel
j . The matrix representation of this equation is provided as
follows:

SWD = A · Nw (5)

where A denotes the coefficient matrix based on the distances
traveled by the GNSS rays in each voxel of the tomography
model and Nw represents the vector of unknowns. The
model resolution matrix serves as a distinctive feature of
the coefficient matrix, offering insights into the resolution
and geometry of the tomographic model [49]. Consequently,
it plays a crucial role in determining the optimal resolution and
geometry for the tomographic model [50]. The formulation of
the model resolution matrix is outlined as follows:

Rm = A† A = Vq V T
q (6)

where q represents the number of singular values, A† denotes
the generalized inverse, and matrix V represents the right
singular vector of the coefficient matrix. The resolution matrix
is an identity matrix when the model null space is trivial [50].
Specifically, if any of the diagonal elements of the resolution
matrix are trivial, the corresponding parameters will be poorly
resolved [51]. The resolution matrix captures the geometry
and can be computed during the experiment to determine the
optimal resolution for the tomographic model. Additionally,
the horizontal gradient of tropospheric delay should be taken
into account to prevent an unusual increase in the number of
voxels.

B. ML for Time-Series Prediction

1) RNN: Mastering Time-Series Patterns and Dependen-
cies: RNNs, distinguished in NN architectures, feature
recurrent connections enabling them to maintain a dynamic
hidden state as they process sequential data. This innate
recurrence allows RNNs to capture temporal dependencies
and intricate patterns, making them well-suited for tasks
emphasizing context [52]. In time-series data modeling, RNNs
excel at grasping underlying temporal dependencies, aiding in
discerning evolving patterns and trends [53]. Their sequential
processing adapts to data idiosyncrasies, reducing the need
for extensive feature engineering. Despite demanding compu-
tational resources, RNNs’ ability to parallelize computations
across time steps enhances efficiency in predicting extended
sequences. The recurrent hidden state functions as a memory

Fig. 1. Internal configuration of an LSTM unit.

mechanism, proving invaluable in tasks requiring historical
context, such as weather trend forecasting [54].

2) LSTM: Overcoming the Vanishing Gradient Problem:
LSTM, a specialized RNN architecture, tackles the vanishing
gradient problem in traditional RNNs [55], [56]. This problem
impedes learning long-term dependencies in sequences due
to diminishing gradients during backward propagation. LSTM
addresses this by incorporating a complex internal structure
with three gates: input, forget, and output [5], [57]. The
input gate controls what information should be stored in the
cell state and regulates the flow of new data into the cell
state. The forget gate determines what information from the
previous cell state should be discarded, helping the LSTM
“forget” irrelevant information from the past. The output gate
decides what part of the cell state should be used to make
predictions or provide outputs. These gates, in combination
with the cell state, enable LSTM networks to effectively
capture long-range dependencies in time-series data [5], [57].
Additionally, LSTM is inherently more parallelizable than
traditional RNNs, enabling faster training and prediction times,
which is especially beneficial when dealing with synoptic-
scale time-series datasets.

A series of LSTM cells forms an LSTM NN, where
time-series data samples represented as h0, h1, . . . , ht are
concurrently fed into different LSTM cells as inputs. The
internal structure of an LSTM cell is depicted in Fig. 1, with
the internal cell states denoted as Ct . Cell state information
is updated, preserved, or deleted by the LSTM through the
utilization of the forget gate (Ft ), input gate (It ), and output
gate (Ot ), respectively. At each time step t , the input sequence
vector X (t), the hidden layer output from the previous time
step, ht−1, and the cell state from the previous time step, Ct−1,
are acted upon. Two primary outputs are generated by the
LSTM cell: the LSTM hidden layer output, ht , and the cell
state, Ct [58].

The computation of the forget gate, input gate, and output
gate is accomplished through the application of the following
equations [59]:

It = Fg
(
WI

[
ht−1, X t

]
+ BI

)
(7)
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Ft = Fg
(
WF

[
ht−1, X t

]
+ BF

)
(8)

Ot = Fg
(
WO

[
ht−1, X t

]
+ BO

)
. (9)

In the provided context, WI , WF , and WO represent the
weight matrices for the input gate, forget gate, and output
gate, respectively. Additionally, BI , BF , and BO correspond
to the bias terms for the input gate, forget gate, and output
gate, respectively, while Fg represents the activation function
for gating mechanisms. The sigmoid function outputs values
between 0 and 1. It is particularly useful for modeling gating
mechanisms in NNs. The present candidate cell state, denoted

as
∧

Ct , is determined using the following equation:

∧

Ct = Fc
(
WC

[
ht−1, X t

]
+ BC

)
. (10)

The forget gate and the input gate ascertain the distribution

of information between Ct−1 and
∧

Ct within the current cell
state Ct , respectively. Equation (11) calculates the state Ct ,
while (12) computes the current output of the hidden layer

Ct = Ft .Ct−1 + It .
∧

Ct (11)
ht = Ot .Fc(Ct ). (12)

The Fc function is employed in the computation of the current
candidate cell state as an activation function.

In general, the hyperbolic tangent (tanh) function is selected
for Fc because it exhibits an S-shaped curve similar to the
sigmoid function, but it restricts input values to the range of
−1 to 1. The tanh is frequently utilized to govern the update
of the cell state due to its ability to accommodate both positive
and negative values. The tanh exhibits heightened sensitivity
to changes in input, which can be advantageous for capturing
nonlinear relationships within data [59].

3) LSTM-GA: Hyperparameter Optimization: In time-series
prediction using LSTM networks, key hyperparameters play a
crucial role in shaping the model’s architecture and influencing
its ability to capture temporal dependencies. Optimizing
these hyperparameters is essential for significantly improving
predictive accuracy, especially in dealing with the intricate
patterns and trends commonly observed in time-series data.
The hyperparameters of LSTM and their specifications are
visible in Table I.

Crucial hyperparameters for LSTM optimization include
the number of neurons in hidden layers, LSTM layers, and
regularization parameters like dropout rate [60]. Training-
related parameters, such as learning rate and batch size, early
stopping, activation functions, and optimizer, play integral
roles, with poorly chosen values hindering convergence
and training efficiency. However, certain parameters, like
input/output layer neurons, input sequence length, loss
function, and gradient clipping threshold, benefit less from
extensive optimization, relying more on domain knowledge.

GAs systematically explore hyperparameter combinations
for optimal solutions, enhancing prediction accuracy [61],
[62]. It excels in distributed computing, concurrently exploring
multiple solutions. GA’s adaptability in adjusting search
strategies reduces overall optimization time for LSTM
parameters. Particularly useful for nondifferentiable functions,

Fig. 2. Prediction algorithm used in this study.

GA, independent of gradients, is well-suited for optimizing
complex time-series data [62]. The procedure commences
with the initialization of a pool of potential solutions, each
one corresponding to a different set of hyperparameters of
the LSTM network. Then, each candidate solution undergoes
an evaluation by training an LSTM model with the proper
hyperparameters on the training data and testing on the
separate validation data. Candidates are selected for the
next generation by the way they are evaluated. Solutions
demonstrating superior performance are favored, simulating
the process of natural selection. Selected solutions then
undergo crossover, where pairs of solutions are combined
to produce offspring, mimicking genetic recombination. The
offspring, as well as likely some of the initial solutions, are
the next-generation population that replaces the previous one.
The mentioned iterative process continues for a limited number
of generations or until a specific termination condition is met,
such as reaching the maximum number of iterations or meeting
the convergence criteria [62].

After training and validating the LSTM-GA model, the
prediction step is conducted at various time spans, including
1-, 2-, and 3-h intervals. This approach is implemented to
assess the validity of the results in real-time and near real-
time applications, providing insights into the practical utility
of the predictions. The prediction diagram is visible in Fig. 2.
In the first prediction, the model uses data from the previous
p epochs to predict the next h epochs. In the next prediction,
the model uses a combination of previously predicted and
actual data for further prediction. The actual values from the
(n − p + h) to n epochs are used along with the values
from (n + 1) to (n + h) epochs to predict the values for
the next h epochs. Here, n represents the total number of
epochs in the time-series dataset. In other words, once the
predicted epochs were reached, the actual values of those
epochs were used to predict the following epochs. The diagram
outlines a two-stage prediction process. It should be noted that,
to incorporate weather conditions from the last day and night
before the prediction epoch, data from the previous 24 epochs
preceding the prediction were used to predict subsequent
epochs.

C. Ensemble Forecasting

1) Leveraging GAN for Improved Predictive Accuracy:
Ensemble forecasting stands out as a powerful technique in
the field of weather prediction and other scientific disciplines,
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TABLE I
LSTM HYPERPARAMETERS AND THEIR ROLES AND RANGE
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offering numerous advantages over traditional deterministic
approaches [63]. In the deterministic approach, a single set
of inputs is used to produce a single prediction. However,
ensemble forecasting generates a diverse set of predictions,
enhancing accuracy by capturing the inherent uncertainty and
variability in complex systems. The need for diversity among
ensemble members is critical, ensuring a more robust and
informative forecast. The generation of ensemble members
requires sophisticated methods, with one particularly valuable
approach being the use of GAN. GAN, a class of ML models,
is designed to generate realistic data by learning underlying
patterns from a training dataset [64], [65]. The advantages of
using GAN for ensemble member generation are manifold.
First, GANs can learn and mimic the complex relationships
within the data, enabling the creation of ensemble members
that reflect the intricacies of the system under consideration.
Second, GAN facilitates the generation of ensemble members
with a level of diversity that might be challenging to
achieve through traditional methods. GAN is composed of
two interconnected NNs—a generator and a discriminator.
At the heart of a GAN is the generator, an NN designed
to create realistic data samples by capturing the underlying
patterns within a given training dataset. In the context of
ensemble forecasting, the generator is tasked with generating
diverse and representative time series that encapsulate the
complexities of atmospheric conditions. Through a process of
iterative learning, the generator refines its ability to produce
realistic data that closely resembles the characteristics of the
training dataset. The discriminator, alongside the generator
in a GAN, distinguishes between real and generated data.
It continuously adapts as the generator refines its output,
creating an adversarial process crucial for capturing intricate
patterns in complex systems. In ensemble forecasting, this
synergy enhances accuracy and robustness by creating diverse
ensemble members mirroring observed conditions. In this
article, a GAN is trained on a real time series to generate
ten ensemble members encapsulating the diverse atmospheric
conditions observed over time. Subsequently, the produced
time series from the GAN are considered for training and
validation in the LSTM model. Finally, there will be 11 sets of
time series and 11 sets of predictions using the same optimal
hyperparameters in LSTM. Ensemble forecasting can then be
conducted by averaging the predicted values from different
time series.

2) Binary Classification Metrics: Binary classification
metrics are crucial in troposphere conditions forecasting,
categorizing instances into two classes to predict specific
weather events [66]. Key metrics include true positive (TP),
true negative (TN), false positive (FP), and false negative
(FN), used to calculate Precision, Sensitivity (Recall), and
false positive rate (FPR). Precision measures the accuracy of
positive predictions, Sensitivity captures the model’s ability to
identify positive instances, and FPR assesses specificity [67].
Optimal threshold selection, balancing classification errors,
is pivotal for model effectiveness. It determines the decision
boundary, influencing the model’s real-world applicability
and performance metrics. Adjusting the threshold allows
customization based on specific needs, prioritizing sensitivity

Fig. 3. Procedural steps followed throughout this article.

or precision. The threshold, determining when an instance
is positive or negative, influences the tradeoff between
evaluation metrics. In troposphere conditions forecasting,
this optimization ensures accurate predictions aligned with
application requirements. This article aims to balance TP and
TN instances by identifying a threshold that minimizes the
difference between them. This approach simplifies decision-
making and is advantageous for classifiers that need to perform
well on both positive and negative instances without favoring
either class. Aligning with the intuitive notion of achieving
balance, particularly in applications where both types of errors
are equally undesirable, this method offers a robust approach
in situations with unknown or challenging-to-quantify costs or
consequences of FPs and FNs. Fig. 3 illustrates the flowchart
representing the methodology employed in this study.

III. STUDY AREA AND DATASET

In order to gain a more complete assessment of the method,
two study areas located on different continents with two
different climate and weather conditions have been selected.
The first area, located in Europe, is Poland with a moderate
climate and the second one is California in North America
with a Mediterranean climate. Meteorological reports from
September 29 and 30, 2021, indicate the extension of sweeping
rain bands over Poland, with a specific emphasis on its western
and central regions. This occurrence serves as a valuable
case study for evaluating the method proposed in this article
for ensemble forecasting of both synoptic-scale and typical
atmospheric phenomena. Moreover, in the last week of July
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Fig. 4. Distribution of GNSS stations on the background of topography.

2021, the onset of the monsoon season displayed significant
activity characterized by a highly robust low-pressure system
moving from East to West through the Southwestern region
of the United States, particularly near California. This event
led to a range of consequences, including damage from high
winds in specific areas, heavy precipitation, and numerous
instances of flash floods. Initially, this weather phenomenon
exhibited a combination of thunderstorms and concentrated
rainfall. Subsequently, it transitioned into widespread moderate
rain, with certain localized areas experiencing even heavier
precipitation. As a result, these events serve as suitable case
studies for assessing the effectiveness of the proposed method
in ensemble forecasting of local-scale atmospheric events.

In order to estimate SWD as input for troposphere
tomography, a collection of observations from GNSS stations
was compiled, encompassing a wide range of weather
conditions. Fig. 4 shows the geographical location of the
study area and the distribution of GNSS stations. In Poland,
GNSS observations gathered on 300 days in 2020 and 2021,
and in California, GNSS observations covered a span of
108 days. Fig. 5 depicts the temporal distribution of processed

Fig. 5. Temporal distribution of processing days, represented by green lines.

Fig. 6. Tomography skeletons for study areas.

days in these two different areas. To thoroughly assess
the tomographic results across the tomography models and
validate the obtained predicted wet refractivity, the Weather
Research and Forecasting (WRF) model was used. Table II
shows the physical parameters used for running the WRF
models. The physical configuration of the WRF model in
Poland is similar to the one described by Kryza et al. [68]
and Werner et al. [69].

IV. PROCESSING AND RESULTS

A. Tomography Results and Validation

First, the GNSS observations were processed using Bernese
5.2 software [80]. In this processing, the ZTD and its hori-
zontal gradients were estimated at 1-h resolution. The Vienna
mapping function was employed to parameterize the mapping
of tropospheric delays to the vertical direction. In the first
case study, Poland, GNSS troposphere tomography was
generally performed using the TOMO2 options developed
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TABLE II
PHYSICS SCHEMES USED IN THE WRF CONFIGURATION

Fig. 7. Three-dimensional reconstructed wet refractivity in three-sample epochs.

at Wrocław University of Environmental and Life Sciences,
Wrocław, Poland [33], [81], [82]. In the second case study,
California, tomography was primarily based on the details
mentioned in [29], [37], and [83]. It should be noted that
the spatial resolution of the tomography models in the two
case studies was determined based on the resolution matrix
and tropospheric horizontal gradients [49]. In Poland, the
tomography skeleton consisted of 12 × 12 × 11 voxels with
a horizontal resolution of 0.8◦ in the x-direction and 0.5◦ in
the y-direction across 11 irregularly distributed vertical layers
with widths ranging from 500 to 5500 m. In California, the

skeleton comprised 5 × 5 × 13 voxels with a horizontal
resolution of 0.2◦ in both directions across 13 irregularly
distributed vertical layers with widths ranging from 500 to
1000 m. Fig. 6 illustrates the tomography skeleton considered
for the two study areas. Fig. 7 shows the examples of
3-D reconstructed wet refractivity in two areas during three
different epochs. As is visible in Fig. 7, wet refractivity
exhibits high variation in different months of the year and can
be categorized into low, middle, and high values. As expected,
the amount of wet refractivity in July is greater than that in
May and April. After the wet refractivity was reconstructed,
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TABLE III
STATISTICAL RESULTS OF VALIDATION OF TOMOGRAPHY

RESULT WITH WRF MODEL OUTPUTS

the need arose to validate the results that had been obtained.
As mentioned previously, the obtained tomography results
were evaluated using WRF model outputs. For this purpose,
the negative values that are sometimes produced in the
tomography solution at higher levels, where wet refractivity
is very close to zero, were eliminated from the results. Apart
from negative wet refractivity values, uncertainties in the
tomographic reconstruction process can arise from factors such
as measurement errors and model assumptions. According
to the statistical analysis, negative wet refractivity values
were found to comprise 1.89% and 1.13% of all data in
Poland and California, respectively. Following the removal of
negative values, outliers were identified through the utilization
of a boxplot. The boxplot’s whiskers were delineated in
accordance with the interquartile range, specifically calculated
as 1.5 times the difference between the first quartile and the
third quartile. It should be noted that the first case study,
Poland, is characterized by a significantly large area compared
to the second one, and it exhibits a much higher average total
precipitation. Poland experiences different weather conditions
as well as varying amounts of precipitation. Therefore,
to facilitate the identification of outliers and to account for
the effect of precipitation on the variation of wet refractivity,
the tomography days in Poland were categorized into rainy
(daily total precipitation equal to or greater than 1 mm) and
nonrainy days based on the total precipitation from WRF
model outputs. In the case of California, the area is much
smaller than that of Poland, and no distinct climate or weather
conditions are observed in different parts of the tomography
model. Additionally, the average precipitation in California
is much lower than in Poland. Nevertheless, to achieve
greater accuracy in outlier detection, the tomography days
in California were also categorized into rainy and nonrainy
days. To provide a more comprehensive analysis of the
results, statistical parameters, including root-mean-squared
error (RMSE), mean absolute error (MAE), and Nash–Sutcliffe
efficiency (NSE), are presented in Table III [84]. For

TABLE IV
SEARCH RANGE FOR LSTM HYPERPARAMETERS

both case studies, Poland and California, the statistical
results are presented separately for different height categories
(Height ≤ 3000 m, 3000 < Height ≤ 6000 m, and
Height > 6000 m) and for both rainy and nonrainy conditions.
The results show variations in RMSE, MAE, and NSE across
these categories, reflecting the differences in accuracy and
model performance under varying conditions and altitudes.
In both case studies, Poland and California, RMSE values
consistently demonstrate a trend: they decrease with increasing
altitude. RMSE values are generally higher during rainy
conditions compared to nonrainy conditions in both case
studies, reflecting the challenges associated with accurately
modeling wet refractivity. MAE measures the average absolute
differences between the tomography data and the WRF
model outputs. Similar to RMSE, the MAE values of
these differences both in Poland and California display a
consistent pattern: they decrease with increasing altitude.
Like RMSE, MAE values are generally higher during rainy
conditions compared to nonrainy conditions in both case
studies. NSE evaluates the relative accuracy of the tomography
data compared to the WRF model outputs, with a value of
1 indicating a perfect match. Across all height categories and
weather conditions, NSE values consistently indicate good
agreement between the tomography data and the WRF model
outputs in both case studies. In Poland, NSE values range from
0.82 to 0.92, while in California, they range from 0.87 to 0.91.

B. Optimal Hyperparameters

In this section, the prediction procedure is described.
First, it is necessary to optimize LSTM hyperparameters.
As mentioned before, the GA algorithm was used for this
purpose. Based on the role of LSTM hyperparameters in time-
series prediction, eight hyperparameters were optimized using
GA. Table IV shows the considered range for selecting their
optimal values. However, how to apply the LSTM-GA model
to the 3-D tomography model influences the modeling of
complex data dependencies with spatial variability. Using a
single LSTM-GA model for the entire 3-D grid simplifies
implementation and ensures computational efficiency, suitable
for generalization but potentially oversimplifying irregular
spatial distribution complexities. Alternatively, employing sep-
arate networks for each height level recognizes height-specific
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TABLE V
OPTIMAL HYPERPARAMETERS FOR THE FIRST LSTM NETWORK

Fig. 8. Variations in RMSE during the training process using optimal
hyperparameters.

variations, crucial for addressing irregular spatial distribution
but comes with computational costs and data limitations.
Another approach involves individual LSTM-GA models
for each grid point, accommodating localized patterns but
demanding substantial computational resources and data
volumes. This article employs the second scheme, utilizing
common LSTM-GA networks for upper heights to reduce
processing time, resulting in eight optimized and trained
LSTM-GA networks for different vertical levels. Conse-
quently, a total of eight LSTM-GA networks were optimized
and trained. These eight LSTM-GA models consist of six
networks for vertical levels from 0 to 6 km, one for heights
between 6 and 9 km, and one for heights above 9 km.
Table V displays the optimal hyperparameters for the first
LSTM-GA model for tomography outputs between 0 and
1000 m, and Fig. 8 illustrates the RMSE throughout its training
process.

TABLE VI
STATISTICAL PARAMETERS FOR COMPARING THE PREDICTED

WET REFRACTIVITY WITH WRF MODEL OUTPUTS AND
TOMOGRAPHY RESULTS

C. Wet Refractivity Prediction Using LSTM-GA

Fig. 9 illustrates an example of predicted wet refractivity
for sample epochs in two different areas. It should be noted
that more than 95% of the time-series data were used for
training and validation. The remaining data were reserved
for testing. This allocation was essential to evaluate the
predicted wet refractivity using validated data, considering
both tomography results and WRF model outputs for this
purpose. The prediction was conducted for three consecutive
days, including September 28–30 in Poland and July 25–27 in
California, with three different temporal resolutions, including
1-, 2-, and 3-h intervals.

The predicted values of wet refractivity were validated using
WRF model outputs and real tomography results. Table VI
indicates a comprehensive statistical validation of predicted
wet refractivity. This validation was performed based on all
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of the predicted wet refractivity values at the locations of the
tomographic points at different vertical levels. Based on the
statistical results, one noteworthy observation that stands out
is the consistent and robust performance of the LSTM-GA
model in short-term predictions, particularly within the 1-h
time frame, when compared to its performance in longer term
predictions spanning 2 and 3 h, across both case studies. In the
case of Poland, when examining the RMSE for 1-h predictions,
it is approximately 2.58 ppm, using the WRF model outputs
as a reference point. However, this RMSE metric experiences
an upward trajectory, reaching 3.63 ppm when extending the
prediction horizon to 2 h.

Similarly, in California, a parallel increase in RMSE values
from 2.29 ppm for 1-h predictions to 3.18 ppm for 3-h
predictions is observable when compared to the WRF model
outputs. These compelling trends paint a clear picture of the
LSTM-GA model’s proficiency in capturing and responding
to rapid fluctuations in wet refractivity but also underscore
its inherent challenge in maintaining precision over longer
periods. This trend is further substantiated when examining
the MAE values, which show a similar pattern of smaller
errors for 1-h predictions and progressively larger errors
for predictions covering longer time spans. Interestingly, the
regional context plays a pivotal role in this narrative. In both
case studies, the model’s performance experiences a relative
decline across various altitude ranges. For instance, at altitudes
exceeding 6000 m in Poland, RMSE values for 1-h predictions
drop as low as 0.61 ppm when compared with the WRF
model outputs. In California, accuracy tends to decrease with
increasing altitude, especially within the intermediate altitude
range of 3000–6000 m. Regarding the NSE, a noteworthy
observation emerges—short-term predictions (1 h) consistently
yield higher values compared to predictions covering longer
time spans. In the case of Poland, NSE values for 1-h
predictions range from 0.85 to 0.88 when comparing the
model with WRF data, while NSE values for 3-h predictions
range from 0.78 to 0.87. A similar trend is discernible
in California, where 1-h predictions consistently outperform
2- and 3-h predictions in terms of NSE values.

D. Evaluation and Binary Classification

In this step, and in order to conduct ensemble forecasting,
GAN was employed to generate realistic time series.
Subsequently, 3-h predictions were made using the generated
time series, employing the same LSTM structure and
hyperparameters used for predictions based on real time series.
In the next step, the ensemble prediction was formulated
using ten realistic sets of predictions and one real set of
predictions, employing the average method. The prediction
started a few hours before the entrance of the phenomena
in the two study areas. To evaluate the ability of ensemble
forecasting, cross sections of the predicted model at different
height levels were considered. Figs. 10 and 11 display samples
of cross sections in the first layer of the model, selected
based on the performance of ensemble forecasting compared
to the deterministic forecasting method. In Fig. 10, it can
be observed that ensemble forecasting performed better than

Fig. 9. Predicted 3-D wet refractivity in a sample epoch using LSTM-GA
based on one-hour prediction.

the deterministic approach in the second hour of prediction.
However, by hour 12, the results of the two methods were
very close to each other and to the real data. By hour 42,
the results were still close; however, the ensemble forecasting
demonstrated greater success in reconstructing the pattern of
the sweeping rain bands in the area. Analyzing the sample
epochs’ hours reveals the visibility of the arrival and departure
of sweeping rain bands. It can be inferred that by hour 42, the
occurrence is leaving the area. In Fig. 11, which is related to
California, during the first hour of prediction, it can be seen
that ensemble forecasting was not useful at all, and the results
of ensemble and deterministic forecasting are almost the same.
By hour 25, the deterministic method could not reconstruct
the wet refractivity variations due to the storm properly,
while ensemble forecasting demonstrated its effectiveness in
reconstructing variations related to the storm in the area.
In hour 39, when the storm is leaving the area, the results
of the two techniques are close; however, the deterministic
method worked slightly better than ensemble forecasting.
To further assess the ability of ensemble forecasting, statistical
parameters are presented in Table VII.
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Fig. 10. Samples of obtained prediction against real tomography data in the first layer in Poland.

TABLE VII
STATISTICAL PARAMETERS FOR COMPARING ENSEMBLE AND

DETERMINISTIC RESULTS WITH TOMOGRAPHY

In the case of Poland, at heights below 3000 m,
the ensemble forecasting yields an RMSE of 2.68 ppm,
significantly lower than the corresponding 3.56 ppm from the
deterministic forecasting. This trend persists across different

height levels, demonstrating the superiority of ensemble
forecasting with RMSE values of 1.69 (versus 2.25 ppm)
and 0.49 ppm (versus 0.57 ppm) for heights between
3000 and 6000 m and above 6000 m, respectively. Similar
trends are observed in California, where the ensemble
method consistently produces lower RMSE values compared
to deterministic forecasting. For heights below 3000 m,
the ensemble RMSE is 2.04 ppm, notably lower than the
deterministic RMSE of 2.91 ppm. This pattern persists for
heights between 3000 and 6000 m (ensemble RMSE: 1.43 ppm
versus deterministic RMSE: 2.14 ppm) and heights above
6000 m (ensemble RMSE: 0.61 ppm versus deterministic
RMSE: 0.69 ppm). These findings suggest that the ensemble
forecasting approach, leveraging GAN-generated time series,
enhances the accuracy of predictions across various height
levels. The consistently lower RMSE values in the ensemble
method compared to deterministic forecasting indicate its
effectiveness in capturing and predicting weather condition
in both Poland and California. After examining the statistical
parameters of the ensemble and deterministic methods, the
evaluation metrics for binary classification were reviewed.
The first step involved finding the optimal threshold for the
ensemble model. As depicted in the process of determining,
the optimal threshold involved a meticulous analysis of
various thresholds, assessing the disparities in the number of
TP and TN instances. Fig. 12 illustrates this examination,
showcasing how the differences in TP and TN instances
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Fig. 11. Samples of obtained prediction against real tomography data in the first layer in California.

change across different threshold values. This detailed analysis
culminated in the identification of distinct optimal thresholds
for the two regions under consideration. For Poland, the
optimal threshold was determined to be 0.41, signifying a
point at which the balance between TP and TN instances
is optimized. This threshold suggests a careful consideration
of the tradeoff between capturing TPs and avoiding FPs,
emphasizing a nuanced approach to classification. In the
context of California, a different optimal threshold emerged
at 0.52. This threshold indicates a tailored calibration to the
characteristics of the California dataset, optimizing the balance
between TP and TN instances in a manner specific to the area.
After the optimal threshold was found, and to better assess the
performance of the ensemble method, the tradeoff between
FPR, sensitivity, and precision was plotted based on different
threshold values in Fig. 13.

At varying threshold values, the FPR–sensitivity diagram,
called the receiver operating characteristic (ROC) curve,
demonstrates the inherent tradeoff between sensitivity and
the FPR. At lower thresholds, sensitivity is high, implying
effective identification of TPs, but this is accompanied by an
increase in the FPR. As the threshold rises, the FPR decreases,
signifying a more cautious approach in labeling positive

instances but potentially missing some TPs. In contrast, the
sensitivity–precision diagram reveals distinct trends. For lower
thresholds, sensitivity tends to be higher, capturing a greater
proportion of TPs. Table VIII shows the evaluation metrics
for binary classification at the optimal threshold. In Poland,
the model exhibited a high sensitivity of 0.967, indicating
its ability to correctly identify a significant proportion of
actual positive instances. The precision of 0.973 underscores
the accuracy of positive predictions while maintaining a
minimal FPR. The FPR of 0.027 reflected a low occurrence
of misclassifying negative instances as positive. These results
collectively suggest a robust performance in Poland, striking
a favorable balance between correctly identifying positive
instances and minimizing FPs. Similarly, in California, the
ensemble model demonstrated even higher sensitivity at 0.982,
emphasizing its superior capability to capture TPs. The
precision of 0.993 highlighted the precision and accuracy
of positive predictions, with an impressive reduction in FPs.
The FPR of 0.011 further supported the model’s proficiency
in minimizing misclassifications of negative instances. These
results indicate a strong performance in California, with
an emphasis on both high sensitivity and precision. The
ensemble model’s consistent high performance in both
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Fig. 12. Difference between the number of TP and TN at various thresholds.

TABLE VIII
EVALUATION METRICS FOR ENSEMBLE FORECASTING

regions suggests its adaptability and reliability across diverse
datasets.

V. DISCUSSION

The tomographic-based ensemble forecasting approach
presented in this article represents a significant advancement
in improving our understanding and prediction capabilities for
a range of atmospheric phenomena such as sweeping rain
bands and storms, with a specific focus on both synoptic-
scale and local-scale events in two distinct areas exhibiting
various climate conditions. The foundation of the ML-
based troposphere conditions nowcasting model using GNSS
products relies on tropospheric information extracted from
the GNSS measurements. Previous studies have obtained this
information from either one to three GNSS stations [10],
[12], [13]. Alternatively, some studies gathered data from
a network of GNSS stations in a specific area [7], [15].
One of the most crucial challenges in the proposed models
by previous studies arises from the low spatial resolution
and irregular spatial distribution of data, as well as the
absence of values at height levels above the surface.
To address this gap, we implemented tropospheric tomography
techniques to generate 3-D time series of wet refractivity,
serving as fundamental data for weather parameters prediction
such as rainfall and storms. In prior research, we utilized

Fig. 13. Tradeoff between sensitivity, FPR, and precision at different
threshold values.

troposphere tomography results to enhance the accuracy of
GNSS positioning [29], [38]. Considering the significant
capability of tropospheric tomography technique, in this
article, we employed this method to assess its effectiveness
in addressing issues related to the low spatial resolution
and spatial irregularity of the weather prediction model,
as well as having values at different vertical levels. The
statistical results indicated that tomography is a promising
method in the field of troposphere conditions forecasting,
in addition to GNSS positioning. Table IX provides a
comparison between the specifications of prior studies and
this article. Another deficiency in previous ML-based weather
forecasting models is the use of traditional ML methods that
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TABLE IX
SPECIFICATIONS OF GNSS-BASED FORECASTING MODELS

are not rigorous in capturing the temporal dependence of
data. As shown in Table IX, only one study utilized LSTM,
a powerful RNN method, for time-series prediction [8], while
other studies relied on traditional methods. In this article,
in addition to using the LSTM method, we optimized the
hyperparameters using GA to ensure the best performance of
the troposphere parameters prediction method. An additional
challenge observed in prior research lies in the prevalent use
of deterministic forecast methods, which grapple with uncer-
tainties in initial conditions, resulting in significant deviations
in predictions. The reliance on a deterministic forecast in
normal forecasting meteorological models introduces inherent
biases, often failing to accurately represent the intricacies of
complex atmospheric processes. To fill this gap, we utilized
a GAN-based ensemble forecasting method, showcasing its
enhanced predictive abilities for atmospheric phenomena
compared to the traditional deterministic forecasting approach.
Additionally, the proposed model in this study, based on
ensemble forecasting, provides the ability to deliver probability
predictions, enhancing decision-making by offering a more
nuanced understanding of the uncertainty associated with
predictions. None of the studies that were looking into GNSS-
based prediction ever used ensemble forecasting. Another
challenge in the field is that an effective forecasting model
should demonstrate proficiency across diverse regions and
climates, accurately predicting various weather phenomena.
To validate our model, we applied it to two distinct areas,
with different climate conditions: Poland and California.
In addition, a powerful forecasting model should be able to

predict different kinds of atmospheric phenomena; that is why
we tested our model with forecasting sweeping rain bands and
storms. It should be noted that previous research focused on a
specific phenomenon except a study done by Chkeir et al. [8]
that focused on two phenomena, including rainfall and extreme
wind speed; however, this investigation refers to a specific area
with specific climate conditions. Importantly, as of authors’
knowledge cutoff date, the mentioned gaps have not been
explored in previous research.

In spite of these efforts, some limitations remain with
the presented troposphere parameters forecasting models. The
first problem is the lead time of forecasting models. The
models can only forecast the troposphere conditions for a few
hours. The challenge of extending this lead time to a longer
forecasting horizon is related to a wider range of atmospheric
factors and complex dynamic processes. The other limitation
is due to the dynamics of the atmosphere and the interaction
between meteorological parameters. The models currently
being used may not consider the full interaction of the
parameters such as temperature, humidity, and pressure, which
are vital in getting the weather patterns and the occurrence of
the phenomena. To disregard these interactions may result in
biased forecasts, especially in regions and conditions where
the dynamics of the atmosphere are complex. This study will
be an initial step toward the artificial intelligence (AI) weather
forecasting movement that is becoming more and more popular
worldwide [85], [86], [87]. Detailed information on the critical
analysis of current AI-based weather forecasting models can
be found in [88].
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Regarding the computational aspect of the proposed method,
it is important to point out that LSTM networks require
training with voluminous spatiotemporal data. Moreover, GA,
being an iterative procedure, also adds to the computational
cost since it conducts parameter search to find suitable
configurations. Nevertheless, the improvement in hardware
resources, including parallel computing architectures and
graphics processing units (GPUs) which can speed up
training and be used to find the best combination of
hyperparameters, can be helpful. The proposed method and
the obtained results in two different case studies and various
phenomena exhibit promising scalability potential, enabling
its application to larger datasets and broader geographical
regions.

VI. CONCLUSION

This article introduced a novel ensemble forecasting
approach that leveraged GNSS troposphere tomography,
LSTM networks, and GA to predict 3-D wet refractivity fields.
The method’s robust performance was showcased through a
thorough analysis of meteorological events, highlighting its
effectiveness in predicting the movement of rain bands and
storms, with specific case studies conducted in Poland and
California. The focused exploration of the singular parameter,
wet refractivity, within the LSTM-GA-based prediction model
reflects a deliberate effort to enhance simplicity without
compromising predictive accuracy. The model’s adaptability
to diverse climates, as evidenced by successful case studies in
Poland and California, suggested broader applicability beyond
the studied regions. The strategic use of separate networks
for different height levels in the LSTM architecture struck a
balance between efficiency and modeling accuracy, allowing
the model to capture rapid fluctuations in wet refractivity
and provide valuable insights for short-term predictions.
The ensemble forecasting outperformed the deterministic
method, emphasizing the utility of realistic time series
generated by GAN. The evaluation of thresholds, indicating
the point at which the balance between TP and TN
instances is optimized, emphasizes the model’s proficiency
in distinguishing TPs and minimizing FPs. This is further
underscored by the sensitivity and precision metrics, with
customized threshold approaches tailored for each region.
The low FPR in both Poland and California underscored
the adaptability and reliability of the ensemble model across
diverse datasets with varying climates. In summary, the
ensemble forecasting approach introduced in this article not
only advanced our understanding of atmospheric phenomena
but also held promise for improving the accuracy and
reliability of weather predictions in diverse and complex
atmospheric contexts. Further advancements could include
extending the lead time of forecasting models beyond a
few hours and incorporating additional data sources, such as
satellite imagery and ground-based observations, to capture a
broader range of atmospheric factors and complex dynamic
processes. Moreover, enhancing the models’ understanding of
the interactions between meteorological parameters could lead
to a more accurate and reliable prediction of the tropospheric
conditions.
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