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Retrieving the 3-D Tropospheric Wet Refractivity
Field From a Standalone Ground-Based GNSS

Station With A Priori Information: Theory
and Simulation

Xianjie Li , Jingna Bai , Jean-Pierre Barriot , Yidong Lou , and Weixing Zhang

Abstract— Sensing water vapor contents in the troposphere
with ground-based Global Navigation Satellite System (GNSS)
stations has been widely studied and related to extreme weather
events and climate changes over the years. Usually, GNSS
tomography is the tool of choice to retrieve the 3-D water vapor
field. However, a dense GNSS network is required, which means
that the GNSS tomography is not applicable everywhere, e.g.,
in island countries, where only one/a few GNSS stations are
available. In this work, we propose a new method to retrieve the
3-D wet refractivity field from the data collected at a standalone
ground-based GNSS station. Using 3-D Zernike functions to
model the turbulent component of the wet refractivity field and
the corresponding perturbations in slant wet delays (SWDs),
a typical Radon inverse problem is obtained. Two kinds of a
priori information, namely, the spatial covariance of the SWDs
and a Kaula-like rule, respectively, are proposed and introduced
to regularize this ill-posed inverse problem. The proposed method
is validated with a simulation experiment. The simulation results
indicate its usefulness for retrieving the 3-D wet refractivity field
overhead a single GNSS station with the appropriate a priori
information.

Index Terms— 3-D Zernike functions, atmospheric turbulence,
Global Navigation Satellite System (GNSS), Kaula-like rule, slant
wet delay (SWD), Tikhonov regularization, wet refractivity field.

I. INTRODUCTION

THE Earth’s atmosphere is rarely static but consists of
ubiquitous nonturbulent and turbulent flows, particu-

larly in the troposphere [1], [2]. As a result, variations of
atmospheric variables in the troposphere, e.g., temperature,
water vapor, and refractivity [3], could be found on various
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spatiotemporal scales (e.g., synoptic scale, mesoscale, and
microscale) [4], [5]. These variations in water vapor contents
make it difficult to determine or model the signal delays
when radio-wave signals pass through the troposphere, i.e., the
tropospheric delays [6]. Moreover, the variability of the water
vapor content in the atmosphere is crucial by itself because it
is inextricably linked to extreme weather events and climate
changes [7].

The ground-based Global Navigation Satellite System
(GNSS) is nowadays becoming one of the most promising
techniques to continuously observe the water vapor content in
the troposphere with the advent of GNSS meteorology [8], [9].
In convention, 1-D integrated amounts of water vapor (IWVs)
can be obtained from the integrated tropospheric delays in
GNSS signals, i.e., the slant wet delays (SWDs) and zenith
wet delays (ZWDs). A 2-D ZWD/IWVs map is also available
with a dense ground-based GNSS network (see [10], [11]).
In terms of the 3-D distribution of the water vapor field,
a lot of attention has been paid to GNSS tomography over
the years (see [12], [13], [14], [15], [16], [17], [18], [19],
[20]). However, a dense GNSS network is often required by
GNSS tomography for collecting sufficient slant IWVs as
input, which is too heavy to be implemented. This prerequisite
restricts the application of GNSS tomography on a relatively
small island where only a standalone GNSS station is avail-
able, e.g., Tahiti Island in French Polynesia with a diameter
of about 30 km.

In this case, one may have other options for retrieving
the 3-D water vapor field, such as the numerical weather
models (NWMs) and water vapor differential absorption lidar
(WVDIAL). Unfortunately, the resolution of the former is too
low at present, e.g., the latest ERA5 now provides hourly
products with a horizontal resolution of about 30 km [21],
and it is still not economically feasible for the latter to build
a network for observing the 3-D water vapor field [22]. To fill
this gap, here in our study, we propose to apply a new model
of the tropospheric delays, or more precisely, the SWDs,
to retrieve the 3-D tropospheric wet refractivity field on a local
scale overhead a standalone ground-based GNSS station. Here,
the local scale is defined as a spatial scale ranging from several
kilometers (2∼5 km) to hundreds of kilometers (∼100 km).
The corresponding water vapor field could be inferred from
the 3-D wet refractivity field since the refractivity is a function
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of temperature, pressure, humidity, and electric density in the
atmosphere [23]. Hence, we will hereinafter focus on the 3-D
wet refractivity field.

Our new method follows the works by Barriot and Feng [4]
and Barriot et al [24], where the wet refractivity field is repre-
sented by a well-recognized exponential decay together with
a relatively small term εw reflecting the fluctuation/departure
of the refractivity with respect to the exponential decay law.
As proposed in [4], the term εw can be represented as a 3-D (or
4-D if the temporal evolution is concerned) series expansion
based on a set of predefined orthogonal basis functions.
By definition, the SWD is an integration of the wet refractivity
along the ray path. Thereby, this integral relationship gives us
a Radon transform [25]. Solving the 3-D wet refractivity field
with SWDs is essentially a typical Radon inverse problem.
Known as a classical ill-posed problem, this Radon inverse
problem needs to be solved by applying some regulariza-
tions [26]. The truncated singular value decomposition (tSVD)
method was used in the previous work by Barriot et al. [24].
However, some important features of the field may be lost
due to truncation. A better way to obtain a physically accept-
able solution is to introduce additional physical information
about the observables or wet refractivity field from diverse
sources [24]. Thereafter, this ill-posed problem can be solved
with the Tikhonov regularization method as shown in the
framework of radar tomography (see [27], [28]).

Therefore, in this work, we investigate the availability of the
a priori information for reconstructing the 3-D wet refractivity
field based on SWDs derived from a single GNSS station.
Two kinds of appropriate a priori information are proposed
and then adopted for a simulation study. The simulation and
reconstruction form a closed-loop test to validate our proposed
a priori information and the inverse process, which also reveals
an alternative potential method for modeling and retrieving
the 3-D wet refractivity field in the troposphere from a single
GNSS station.

This article is organized as follows. To have a clear picture
of the a priori information that is applicable to our study, pos-
sible a priori information related to SWDs and wet refractivity
field in previous studies is revisited in Section II, leading to
two kinds of proposed a priori information. The method that is
used to model and simulate SWDs is introduced in Section III,
where the adaptation of the a priori information proposed in
Section II is elucidated. The inverse process is also given
in this section with details. In Section IV, the experimental
results of the simulation and reconstruction are presented and
discussed. Finally, our conclusion is given in Section V.

II. REVISIT OF THE A PRIORI INFORMATION
FOR REGULARIZATIONS

The concept of introducing the a priori information of
parameters or observations in data analysis is not new in
the space geodesy community, e.g., the a priori empiri-
cal elevation-dependent weighted matrix for observations in
GNSS data processing. Here, in our work, specifically, by the
a priori information, we mean the temporal or spatial corre-
lation/(co)variance function of the quantity that is of concern,
i.e., SWDs or wet refractivity.

One possible way to obtain such a priori information is
from atmospheric turbulence theory [29], [30]. By assuming a
statistically homogeneous and isotropic turbulent atmosphere,
the covariance function of the wet refractive index can be
directly computed from the refractive index structure function
that follows the well-known 2/3 Kolmogorov scaling law
(see [31], [32]). These turbulence-based covariance functions
of wet refractive index were successfully introduced as the a
priori information in the Kalman filter of GPS tomography for
simulation studies, see [33], [34].

Moreover, the (co)variance function of SWDs can be
derived from the (co)variance matrix of phase observations in
space geodesy if one assumes that the correlations between
them are predominantly introduced by isotropic turbulence
occupying a “slab” boundary layer (typically below 1–2 km
altitude). Pioneering work in terms of correlations in very
long baseline interferometry (VLBI) observations can be found
in [35] (or the TL model). Similarly, using the spectral repre-
sentation of atmospheric turbulence, Schön and Brunner [36]
proposed a generalized form of the TL model. Both methods
were then adopted and verified in many other applications in
space geodesy with both real datasets and simulations (see [5],
[6], [37], [38], [39], [40], [41], [42]) as it has been shown
to improve the quality and precision description of parameter
estimations. However, all the above covariance functions are
derived based on turbulence models, the parameters of which
are given empirically and are only approximations to the truth.
One needs to be cautious when applying these covariance
functions since the assumptions that these turbulent models
underlie may no longer be valid in real cases.

On the other hand, according to the conventional model
of SWDs in GNSS data processing with mapping functions
and horizontal gradients, statistical information on ZWDs
or horizontal gradients could also give us indications for
the covariance function of SWDs. Indeed, the variations of
GNSS-derived ZWD/IWV on different time scales have been
analyzed both in meteorological (see [43], [44], [45], [46], and
references therein) and climatological studies (see [8], [11],
[47], [48], and references therein) over the years. Horizontal
gradients were also found to help describe the anisotropy
of the water vapor field and detect small-scale convective
structures as a valuable indicator (e.g., [49], [50], [51], [52]).
Nevertheless, the temporal or spatial variations of ZWD/IWV
before and after the onset of severe weather events are the
main target of previous literature dealing with severe weather
events [46]. Only temporal variations of the 1-D IWV are
analyzed, which cannot represent the 3-D nature of the water
vapor field [44]. A similar problem can be found in climate
research with GNSS as the studies so far have been limited to
investigating the long-term linear trends in IWVs [45].

Another alternative way is to derive the covariance function
from the statistical property of the SWDs or wet refractivity
field sampled over NWMs on various spatiotemporal scales.
Again, as we mentioned before, the spatial resolution of
NWMs at present is too low to be applied to our case.

In summary, the covariance function of SWDs or the wet
refractivity that we are looking for should describe their
correlations within a relatively small spatial scale (tens of
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kilometers) but with various time scales (ranging from minutes
to weeks). This means that both atmospheric turbulent and
nonturbulent flows on the microscale, mesoscale, and even the
synoptic scale are concerned in our case. The impacts of these
atmospheric flows on the covariance function of SWDs or the
refractivity field hence should be considered.

Fortunately, Zhang et al. [53] recently found a covariance
function of SWDs that applies to our case. Based on real
datasets collected at one GNSS station for about eight months,
Zhang et al. [53] presented the statistical property of an
almost stationary process with respect to the elevation angle
el, i.e., SE = SWD · sin(el). This approach was first used in
previous studies of the SWDs, e.g., [40], [54]. In Zhang et al.’s
work [53], this SE series was expanded with spherical har-
monics in space and trigonometric functions in time. Thereby,
an angular correlation length of about 20◦ and a correlation
time of up to four days are reported. Here, in this work,
we will adopt this spatial covariance information as the a priori
information for SWDs or, strictly speaking, SEs.

It is worth noting that an additional a priori information
(or constraint) needs to be introduced, which is implicitly
suggested in our model of εw. Since we assume that the term
εw can be modeled by a set of orthogonal, “well-behaved”
functions, staying within certain bounds, the parameters of
functions generally should decrease in magnitude as the
degrees of functions increase according to Parseval’s theo-
rem [55], [56]. Such a constraint is widely used in modeling
the gravitational and geopotential field of the Earth with
spherical harmonics (see [57], [58], [59], [60]), which is
known as Kaula’s rule [55], [61]. This rule of thumb states
that the degree variance of normalized harmonic parameters is
proportional to the inverse cube of the degree l, i.e., ∼10−10/l3

[55]. Considering that spherical harmonics are included in our
model (see Section III) and the similarity in inversion studies
between the atmospheric refractivity field and the geopotential
field, it is natural to come to a hypothesis that a similar Kaula’s
rule taking the power-law form will provide the a priori
constraint for our model parameters. However, this Kaula-type
power rule needs to be slightly adapted to our case, which will
be discussed in detail in Section III-B.

III. METHODOLOGY

A. Modelization

A good approximation of refractive index n(r) in the
troposphere can be taken as a twofold exponential formula [4]

n(r) = 1 + Nh + Nw

= 1 + N 0
h · exp

(
−

r − r0

Hh

)
+ N 0

w · exp
(

−
r − r0

Hw

)
(1)

where Nh is the hydrostatic refractivity; Nw is the wet refrac-
tivity; r is the geocentric radius; r0 is the geocentric radius at
the GNSS receiver; N 0

h and N 0
w are the hydrostatic and wet

refractivity at the receiver, respectively; Hh is the scale height
of Nh ; and Hw is the scale height of Nw, also known as water
vapor scale height. Since delays caused by the hydrostatic
component (i.e., Nh) can be accurately determined by a model
with atmospheric pressure measurements, see [62], we here

only focus on Nw, which is highly variable both in time and
space due to the highly variable water vapor content in the
troposphere [63].

Taking into account both the nonturbulent and turbulent
flows in the troposphere, the wet refractivity field can be
represented as [4], [24]

Nw = N 0
w · exp

(
−

r − r0

Hw

)
· (1 + εw(x, y, z, t)) (2)

where a relatively small term εw (|εw| ≪ 1) is introduced
to represent the fluctuation/departure of the refractivity with
respect to the general exponential decay law; x , y, and z are
spatial coordinates in a given frame; and t denotes the time.
As proposed in [4], the term εw in (2) can be represented as a
4-D series expansion with a set of predefined orthogonal basis
functions. Here, in our case, we adopt a set of orthonormal
functions with respect to time Tu(t) up to degree umax to
describe the variations of εw in time and 3-D Zernike functions
up to degree nmax to express εw in space with the spherical
coordinate as

εw(x, y, z, t) = εw(r, θ, λ , t)

=

umax∑
u=0

nmax∑
n=0

n∑
l=0

l∑
m=0

Tu(t)Rl
n(r)Y m

l (θ, λ )pm
nl,u

(3)

where radial polynomials Rl
n(r) (0 ≤ r ≤ 1) and spherical

harmonics Y m
l (θ, λ ) form a set of orthonormal basis functions

over a whole ball (i.e., the 3-D Zernike functions) with r , θ ,
and λ denoting the radial distance, polar angle, and azimuthal
angle in the spherical coordinate, respectively. Here, u, n, m,
and l are integers with u ≥ 0, 0 ≤ l ≤ n, 0 ≤ m ≤ l,
n − l is even, and m + l is even for orthogonality over
the hemisphere. pm

nl,u are the parameters in the model to be
estimated. The definition of 3-D Zernike functions is highly
technical, we therefore refer to [64], [65], and [66] for further
details.

Although the 4-D wet refractivity field is of more concern,
taking the temporal variations into account will introduce a
high degree of freedom in the model, which is too complicated
to deal with at the moment. At this stage, we only consider
the 3-D wet refractivity field, i.e., the wet refractivity field
overhead a standalone GNSS station at a fixed measurement
epoch [i.e., t = tF and Tu(tF ) = 1]. The 4-D case with time
t involved will be investigated in our future work. Hence, the
term t in εw is removed from (2) and (3) in this work as

εw(x, y, z) = εw(r, θ, λ ) =

nmax∑
n=0

n∑
l=0

l∑
m=0

Rl
n(r)Y m

l (θ, λ )pm
nl .

(4)

For simplicity, we hereinafter use a matrix representation of
the model

εw = Gw · p (5)

with Gw and p representing the matrix of coefficients
Rl

n(r)Y m
l (θ, λ ) and the vector of parameters pm

nl in (4),
respectively.
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By definition, the SWD is an integration of the wet refrac-
tivity along the ray path S launching at elevation angle el and
azimuth angle λ , which reads

SWD(el, λ ) =

∫
S(el,λ )

N 0
w · exp

(
−

r − r0

Hw

)
· (1 + εw)ds.

(6)

According to the ansatz [24]∫
exp(−aµ) · µcdµ = −

1
ac+1 0(c + 1, aµ). (7)

Equation (6) can be further expanded as

SWD(el, λ ) = SWD(el, λ ) + δSWD(el, λ ) (8)

where

SWD(el, λ ) = −
N 0

w Hw

sin(el)

(
exp

(
−

S · sin(el)
Hw

)
− 1

)
(9)

and

δSWD(el, λ )

= N 0
w S

·

nmax∑
n=0

n∑
l=0

l∑
m=0

[
k∑

v=0

qv
kl · γ (2v + l + 1, a) · a−(2v+l)−1

]
· Y m

l

(π

2
− el, λ

)
· pm

nl . (10)

We assume that the ray path is limited to a certain azimuthally
fixed vertical plane. Here, qv

kl are the coefficients in the radial
polynomials Rl

n(r) with integer v taking values from 0 to
k = (n − l)/2 and a = S · sin(el)/Hw, where S is the ray
path length, Hw is the water vapor scale height, µ represents
the first moment of 3-D Zernike functions, and γ denotes
the lower incomplete Gamma function. Further derivations of
(8)–(10) can be found in the Appendix. In analogy, once SWDs
at various elevation and azimuth angles are obtained, one can
rewrite (8) into its matrix form

SW D = SW D + G I · p. (11)

The so-called SE is simply a production of SWDs and the
sine function of the corresponding elevation angles el as [53]

SE(el, λ ) = SWD(el, λ ) · sin(el) (12)

of which the matrix form reads

SE = SE + G · p. (13)

B. A Priori Information

As aforementioned, the a priori information given by
Zhang et al. [53] is adopted in our simulation study. The
temporal evolution is not taken into account at this moment,
and therefore, only the spatial covariance function of the
SEs with an angular correlation length of about 20◦ is used
here. To put it simply, we approximate this spatial covariance
function in an analytical form as

CovSE(9) = δ2
0 · exp

(
−(9/20)2) (14)

where 9 is the spherical distance in degree and δ2
0 is the vari-

ance. We will hereinafter use CovSE denoting the covariance
function in its matrix form.

An additional constraint for parameters p needs to be
introduced according to Parseval’s theorem. Taking Kaula’s
rule as a prototype, we here propose a Kaula-like rule for the
variance of parameters p in our case as

δ2
nl =

∑
m

∣∣pm
nl

∣∣2
=

A
nα pβ

(15)

considering that both degrees n and l in 3-D Zernike functions
have physical significance. Order m is not considered as it has
no physical significance in the degree variance of spherical
harmonics. Here, A > 0 is an empirical constant, and α >

0 and β > 0 are the power of degrees n and l, respectively.
In practice, following the derivation of Kaula’s rule [61],

one possible method to determine the unknowns in (15) (i.e.,
A, α, and β) is from a spectral analysis of the wet refractivity
field over the spatial and time scale that is of concern, e.g.,
from NWM products. Unfortunately, it is not applicable in
our case due to the low resolution of the present NWM
products. Nevertheless, a good indication for the values of
α = 2 and β = 2 can be found in previous studies related
to the spectral behavior of wind speed or other atmospheric
variables (see [67], [68], [69], and references therein). The
determination of the constant A is case-dependent. In this way,
the a priori constraint with a diagonal (co)variance matrix C p
for parameters p can be obtained from (15).

Provided that CovSE and C p for parameters p are available,
the a priori information of parameters p can be derived as [70],
[71]

Cov p =
(
GTG + C−1

p
)−1GTCovSEG

(
GTG + C−1

p
)−1

(16)

recalling the model of SEs in (13).

C. Simulation

The a priori information of parameters p, i.e., Cov p in (16),
allows us to simulate a set of Gaussian random parameters p,
as well as the SE series. This can be done with the spectral
decomposition approach [72]. In this approach, the SVD of
Cov p is first implemented to obtain the orthonormal matrix of
eigenvectors V and eigenvalues 3 as

Cov p = V · 3 · V T. (17)

Thereafter, a set of parameters ps can be simulated by

ps
= V ·

√
3 · w (18)

with a vector of random variables w = [w1, w2, . . .] taking
Gaussian normal distribution with mean 0 and variance 1.
In this way, the simulated parameters ps will take zero mean
and (co)variance Cov p.

Recalling the model of SEs in (13), a set of SE series could
also be generated based on the simulated parameters ps as

SEs
= SEs

+ G · ps . (19)
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D. Inverse Process

Taking the simulated SEs as input, let us now consider the
linear inverse problem given in (13). The inverse problem is
endogenously ill-posed because the input signals/observations
are integrated values, e.g., SE/SWDs. To obtain a reasonable
and stable solution, here in our case, we propose to introduce
the derived a priori covariance matrix of parameters Cov p
for the regularization of the ill-posed inverse problem. Under
the principle of least square, this ill-posed linear inverse
problem can then be solved following the so-called Tikhonov
regularization method [71], [73] as

p̂s
=

(
GTG + χ · Cov−1

p

)−1GT
(

SEs
− SE

s
)

(20)

where χ > 0 is a regularization parameter that indicates the
weighting of the additional a priori information in the inverse
process.

Several different strategies can be applied to choose this
regularization parameter χ (see [73] and references therein),
e.g., making a compromise between the norm of the residuals
and the norm of the solution. However, no “best” strategy
exists as it depends on the application. Instead, a pragmatic
one is more practical.

Thereafter, we can reconstruct the SE series with (13) as

ŜEs
= SEs

+ G · p̂s (21)

and also, the wet refractivity field in (2) with

ε̂w = Gw · p̂s (22)

based on (5).

IV. SIMULATIONS AND EXPERIMENT RESULTS

A. Simulation Setup

As a rule of thumb, a single ground-based GNSS station can
observe water vapor information of about a 100-km radius in
the horizontal direction (with a cutoff elevation angle of 10◦)

[8]. Taking a single GNSS station located on Tahiti Island as
a prototype, the typical height of the tropopause is 16.5 km
in this tropical region. Therefore, in our simulation, a 3-D
refractivity field with a horizontal scale of 200 × 200 km
and a vertical scale of up to 16.5 km high is considered.
Some simulation parameters are fixed to constants, such as
the Earth’s radius r0 = 6371 km, N 0

w = 128·10−6, and the
water vapor scale height Hw = 2.391 km according to [24],
and the other parameters will be determined in the following
case-dependent analysis.

To give a good spatial representation of the field, the
SWD/SEs are simulated at random elevation and azimuth
angles on the hemisphere over the single station. A cutoff
elevation angle of 10◦ is chosen to avoid the anomalies
near the horizon since no observations below the horizon
are available in reality to constrain the function behavior.
Finally, 4148 SWD/SEs over the hemisphere were sampled
and simulated in this experiment and their distribution is given
in Fig. 1. Note that in real cases, the distribution of SWDs
overhead a standalone GNSS station is much sparser with
periodic GNSS satellite tracks.

Fig. 1. Sky plot of the spatial distribution of the simulated SWD/SEs over
a single GNSS station with a cutoff elevation angle of 10◦.

Fig. 2. Log10 plots of singular values of GTG (blue) and GTG+ C−1
p with

A = 2.5 × 104 (orange).

Based on the spatial distribution in Fig. 1 and using (14),
CovSE is generated. The variance δ2

0 is regulated to 10 to ensure
that the variations of the simulated SEs are in a physically
reasonable range, i.e., about 305 ± 10 mm in our case.
By adopting the model with 3-D Zernike functions up to
degree 20 (i.e., nmax = 20), we generate the design matrix
G for SEs based on the setup of elevation and azimuth angles
above. The number of unknown parameters is 946.

After several trials with different A’s in (15) to derive Cov p,
we found that A significantly affects relatively small singular
values of GTG + C−1

p in (16). We decided to take a value
of A by visual inspection of the decrease pattern of singular
values, as shown in Fig. 2. Taking A = 2.5 × 104, we are
able to keep all the relatively large singular values as those
in GTG and suppress the sharp decrease in smaller singular
values of GTG.

However, even with the addition of the diagonal matrix C−1
p ,

the matrix GTG + C−1
p is not guaranteed to be numerically
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Fig. 3. Statistical histogram distribution of the differences between the
original and reconstructed matrix GTG + C−1

p with tSVD.

Fig. 4. Covariance functions of SEs with respect to the spherical distances
9. The generated a priori covariance function is shown in orange dots and
the a posteriori covariance function is given in blue dots.

invertible. Here, in our case, we use the tSVD method to
get an approximation of the inverse of matrix GTG + C−1

p .
By truncating the 900 leading singular values, the truncated
matrix still retains the major characteristics of GTG + C−1

p ,
e.g., the norm of the truncated matrix takes over 99.9% of the
original GTG + C−1

p . This is also indicated in Fig. 3, where
the statistical histogram distribution of the differences between
them is shown. Only a small fraction of information is lost due
to the truncation.

To further validate the approximated (GTG + C−1
p )−1

from tSVD, a comparison between the generated CovSE
and the a posteriori Cov′

SE is shown in Fig. 4, of which
Cov′

SE = GCovSEGT is derived according to the error prop-
agation law. A good agreement can be found in the figure as
the norm of CovSE takes over 99.9% of the norm of Cov′

SE.

B. Experimental Results

With Cov p derived from (16), a set of Gaussian random
parameters ps is simulated by applying the spectral decomposi-
tion with (17) and (18), as shown in Fig. 5. The corresponding
SEs values are then generated using (19) (see Fig. 6), where
the computation of the mean part SEs can be found in the
Appendix with (12).

Taking the simulated SEs as input, the ill-posed inverse
problem in (13) can be solved with the Tikhonov regularization
method as given in (20). Since the “true” values of parameters
are known in our simulation, we selected χ = 0.01 to make a

Fig. 5. Series of the simulated parameters (blue circles) and reconstructed
parameters (orange dots).

Fig. 6. Sky plot of the simulated SEs over the hemisphere from the viewpoint
of a single GNSS station.

Fig. 7. Choice of the regularization parameter χ by achieving a compromise
between the norm of the residual vector and the norm of the vector difference
of the reconstructed solution and the true solution.

compromise between the norm of the residuals vector and the
norm of the vector difference of the reconstructed solution and
the true solution (see Fig. 7). However, in real cases, a better
way to determine χ is to compare the reconstructed refractivity
field with those observed/derived from other techniques, such
as the vertical profile of refractivity derived from radiosonde.

The reconstructed parameters p̂s are shown in Fig. 5
together with the simulated ps . Residuals of the reconstructed
SEs are shown in Fig. 8. Overall, the reconstructed parameters
agree well with the simulated ones and a good agreement
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Fig. 8. Sky plot of the residuals of the reconstructed SEs compared to the
simulated ones.

Fig. 9. Statistical histogram distributions of the residuals of (a) reconstructed
parameters ps and (b) reconstructed SEs .

could also be found between ŜEs and SEs . These results
are validated in the corresponding statistical histograms of the
residuals given in Fig. 9. More specifically, the mean of the SE
residuals is about −1.4 × 10−4 mm and the root mean square
(rms) takes about 0.01 mm. The minimum and maximum SE
residuals are about −0.037 and 0.05 mm, respectively. Most
of the relatively large SE residuals are found at low elevation
angles, which may be ascribed to the less constrained behavior
of our model near the boundary of the simulated observations
geometry.

Finally, the 3-D wet refractivity field is retrieved according
to (22) and (2). The 2-D profiles of the simulated and recon-
structed fluctuating component εw in the north–south direction
(azimuth angles 0◦ and 180◦) are shown and compared in
Fig. 10. Taking the exponential decay into account, the corre-
sponding 2-D profiles of the simulated and reconstructed 3-D
wet refractivity field in the north–south direction are presented
in Fig. 11. An overall good agreement between them can be
concluded.

A full picture of the 3-D distribution of the simulated and
reconstructed εw, as well as the wet refractivity field, is pre-
sented in Figs. 12 and 13 and Figs. 14 and 15, respectively.
Note that all the 3-D plots are presented in the topocentric
cartesian coordinate of the single GNSS station. Turbulent

Fig. 10. Two-dimensional profiles of (a) simulated and (b) reconstructed
fluctuating component of the 3-D wet refractivity field in the north–south
direction.

Fig. 11. Two-dimensional profiles of (a) simulated and (b) reconstructed 3-D
wet refractivity field in the north–south direction.

Fig. 12. Three-dimensional distribution of the fluctuating component εw of
the simulated wet refractivity field.

eddies can be found not only in 2-D profiles but also in the
3-D distribution of the wet refractivity field overhead the single
GNSS station (see Figs. 10, 12, and 13). However, the impacts
of these turbulent eddies are relatively small and decayed
associated with the exponential decay of the wet refractivity
with respect to the altitude. Therefore, no apparent fluctuations
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Fig. 13. Three-dimensional distribution of the fluctuating component εw of
the reconstructed wet refractivity field.

Fig. 14. Three-dimensional distribution of the simulated wet refractivity
field.

Fig. 15. Three-dimensional distribution of the reconstructed wet refractivity
field.

are shown in the 3-D wet refractivity field (see Figs. 11, 14,
and 15).

V. CONCLUSION

We have presented a new potential function-based method
for retrieving the 3-D wet refractivity field overhead from
the SWDs generated at a single GNSS station. In short,
by applying 3-D Zernike functions for modeling the 3-D wet
refractivity field, the SWDs take the form of Radon transform,
the inverse process of which is endogenously ill-posed and
can be regularized by adding sufficient additional a priori
information that we proposed in this work. The feasibility of
our method has been demonstrated by a simulation. Although
this method is heavy in computation, its major advantages are
that no GNSS networks are required as in GNSS tomography

and it can be implemented in parallel with several GNSS
stations. Moreover, compared to the conventional model of
SWDs, this new method could give more physical information
about the atmospheric conditions as both nonturbulent and
turbulent motions are taken into account.

Although the method that we proposed is mainly for a
standalone GNSS station, it can also be adapted to GNSS
networks. There are two ways to do this. The first way
is to directly apply our standalone method to every single
station in the network. It can be expected that those 3-D
wet refractivity fields that are retrieved from each station may
overlap, leading to an additional control on the reconstructed
3-D wet refractivity field over the span of the atmosphere
covered by the network. In the second way, the set of 3-D
Zernike functions must be replaced by a more suitable spectral
representation (with respect to space), which is tailored to
the network, e.g., an empirical orthogonal function (EOF)
basis. Similar studies on oceanography have already been
carried out using this approach, e.g., for modeling sea surface
topography [74]. The usual GNSS tomography framework
with discrete voxels is an alternative to the EOFs since it
is essentially a set of function bases with 1 inside each
voxel and 0 outside the voxel. Meanwhile, the same a priori
information (correlations of the modeled wet refractivity field
in time and space) proposed in our study can be kept as
it provides additional physical information regardless of the
model representations. This information can be helpful, e.g.,
to reduce the number of stations required in a GNSS network
when using the GNSS tomography technique.

At this moment, only simulation results are presented in
this work. Therefore, it is natural to come to the question:
is this method applicable to real datasets? The answer is
carefully not yet but probably soon if the two kinds of
the a priori information that we proposed in this work are
shortly available, i.e., the a priori information on SWDs and
model parameters (or wet refractivity field). In practice, the
a priori information on SWDs could be obtained from the
spatial/temporal covariance functions of SE series based on
the SWDs generated at the GNSS stations of concern [53].

However, it is tricky to give the a priori information on
model parameters, i.e., the Kaula-like rule. It is suggested
that a general way to derive a realistic Kaula-like rule is to
perform a spectral analysis of the wet refractivity field within
the spatiotemporal scale that is of concern. Unfortunately,
so far to our best knowledge, no such studies are available.
The most promising way is using NWM products. However,
the resolution of the present NWM products is too low to
apply to a relatively smaller area, e.g., 2∼5 km (required in
our case) versus about 30 km by ERA5. Nevertheless, high-
resolution NWMs are being developed (e.g., AROME-France
and ARPEGE models in Europe [75], [76]) and it can be
expected that the resolution of NWM products will be continu-
ously improved over the globe. Once a fine resolution of NWM
products is achieved, e.g., 2∼5 km in space, a more realistic
Kaula-like rule can be derived, as well as the covariance
function of the wet refractivity field.

In addition, the SWDs that are currently retrieved from
GNSS with mapping functions and horizontal gradients are too
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coarse for us as this conventional model cannot represent the
atmospheric conditions/processes on relatively smaller scales
(e.g., from hundreds of meters to several kilometers in space
and several minutes in time). The data coverage overhead of a
standalone GNSS station is also limited by the nearly repetitive
satellite tracks. Nevertheless, high-spatiotemporal-resolution
data coverage is coming soon with multiconstellations, espe-
cially the low Earth orbit (LEO) constellations. It has been
shown in many previous studies that the upcoming LEO satel-
lites will significantly improve the coverage and the geometry
of observations overhead a standalone GNSS station with
the so-called LEO augmented GNSS technique (LeGNSS)
(see [77], [78]). Until then, SWDs with a higher spatiotempo-
ral resolution can be retrieved with LeGNSS. This would be
of great help for applying our method to resolve the 3-D wet
refractivity field on a local scale as these SWDs could give a
better representation of the real complex weather conditions
and atmospheric processes. Therefore, our contribution can be
considered as the first step to see whether the proposed method
was feasible and robust from the viewpoint of mathematics
with ideal conditions in the simulation.

It should be pointed out that the results from real datasets
may be different from the ones presented here. This is because
our simulation is based on a priori covariance functions,
which are unsighted to the means in the considered quantities.
We here simply assume that the mean of the fluctuating
component εw of the wet refractivity field is zero.

However, this is not always true. As a result, the results of
our simulation can only be considered as perturbations δεw

superimposed on an unknown “mean” (or to say it better,
a background value) ε̄w, also a potentially fluctuating com-
ponent of the wet refractivity field. In practice, this “hidden”
mean part must be calibrated using observations from other
techniques, e.g., radiosonde, when applying our method to
real datasets. The results of modeling δεw from real datasets
and our simulation are only comparable if ε̄w is defined in
such a way that the mean of δεw is zero. The derivation of a
physically sound ε̄w is by itself another interesting topic and
needs to be further investigated. However, it is out of the scope
of this work.

In our future work, we will consider simulating the 4-D
wet refractivity field, i.e., with the addition of time evolu-
tion. The inclusion of time evolution allows us to describe
critical atmospheric processes such as deep convection and
cloud formation. The introduction of time variability is less
problematic from a mathematical point of view as most of the
ill-posedness lies with the Radon transform in space. The time
scale has not yet been considered, but we infer that it should
take a resolution of at least 30 min to accumulate sufficient
observations for constraining the model. In that case, the
correlation time of up to four days for GNSS-derived SWDs
(see Section II) should be included as another a priori infor-
mation for time-varying parameters. Besides, the Kaula-like
rule needs to be reconsidered according to the degree of
the orthonormal functions used to represent the temporal
variations.

However, the number of unknowns to be solved will
increase dramatically by introducing the time variability

Fig. 16. Geometry of a ray path launching from a single station at the
elevation angle el.

[see (3)]. The corresponding linear systems with a tremendous
number of unknowns (up to tens of thousands) will have to
be solved with the help of a highly parallel supercomputer
with sufficient memory. Taking the 3-D case in this work as
a milestone, a fully mature 4-D model with time evolution
involved will eventually be accomplished as we move forward
in the direction mentioned above.

APPENDIX

Assuming that the ray path is limited to a certain
azimuthally fixed vertical plane, the 2-D geometry of a ray
path S launching at an elevation angle el from a single
station is shown in Fig. 16. The delay SWD therefore can
be computed as

SWD = N 0
w ·

∫
s

exp
(

−
r − r0

Hw

)
ds

= N 0
w ·

∫ S

0
exp

(
−

s · sin(el)
Hw

)
ds

= −
N 0

w Hw

sin(el)

[
exp

(
−

S · sin(el)
Hw

)
− 1

]
. (23)

The ray path S usually can be obtained by implementing the
so-called ray-tracing, and however, here for simplicity, we take
the ray path as a straight line. Thereby, S can be derived from
a given el based on the geometry illustrated in Fig. 16 as

(r0 + S · sin(el))2
+ (S · cos(el))2

=
(
r0 + Htropo

)2 (24)

S =

−2r0 sin(el)+
√

4r2
0 sin2(el)+4 ·

(
2r0 · Htropo+H 2

tropo

)
2

(25)

where Htropo = 16.5 km is the height of the tropopause in
our case. The other parameters can be found in the context of
Section III.

For the other delay δSWD in (8), we have

δSWD = N 0
w ·

∫ S

0
exp

(
−

s · sin(el)
Hw

)
· εwds. (26)

By changing the variable of the integration s = µ·S, i.e., ds =

S ·dµ, we have the integral over the interval [0, 1] that follows
the limitation of r (0 ≤ r ≤ 1) in the radial polynomials Rl

n(r)

of 3-D Zernike functions. Thereby, together with 3-D Zernike



4105612 IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, VOL. 62, 2024

functions in (4), (26) can be rewritten as

δSWD = N 0
w ·

nmax∑
n=0

n∑
l=0

l∑
m=0

∫ 1

0
exp

(
−

µS · sin(el)
Hw

)
Rl

n(µ)dµ

· Y m
l (θ, λ ) · pm

nl . (27)

Note that only the radial polynomials Rl
n(µ) and the expo-

nential function in (27) depend on the variable of integration.
Considering that the ansatz in (7) and the radial polynomials
Rl

n(µ) take the form [64]

Rl
n(µ) =

k=(n−l)/2∑
v=0

qv
kl · µ2v+l (28)

the definite integral in (27) can be derived as∫ 1

0
exp

(
−

µS · sin(el)
Hw

)
Rl

n(µ)dµ

=

k=(n−l)/2∑
v=0

qv
kl

∫ 1

0
exp

(
−

µS · sin(el)
Hw

)
µ2v+ldµ

=

k=(n−l)/2∑
v=0

qv
kl

[
−

1
a2v+l+1 0(2v + l + 1, aµ)

]∣∣∣∣∣
1

0

=

k=(n−l)/2∑
v=0

qv
kl ·

l
a2v+l+1 γ (2v + l + 1, a). (29)

We let a = S · sin(el)/Hw in (7). Here, 0 and γ denote the
upper and lower incomplete Gamma functions, respectively.
By substituting (29) into (27), (10) is derived.
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